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1. Introduction

Given a rational map of C-varieties X 99K P2, can one decide whether there is a ratio-
nal section? This question, to be made precise below, is equivalent to a question about
polynomial equations over C(t1, t2). As background, consider

Hilbert’s tenth problem (1900): Find an algorithm1 that takes as input an arbitrary
polynomial f ∈ Z[x1, . . . , xn] and outputs YES or NO according to whether f(~x) = 0 has a
solution in Zn.

Theorem 1.1 ([DPR61,Mat70]). No such algorithm exists.

Our goal is to outline a proof of the corresponding statement with C(t1, t2) in place of
Z. The proof we present is the original 1992 proof of Kim and Roush (with some minor
modifications by Eisenträger, Demeyer, and myself).

Theorem 1.2. [KR92] There is no algorithm that takes as input an arbitrary polynomial
f ∈ Q(t1, t2)[x1, . . . , xn] and outputs YES or NO according to whether f(~x) = 0 is solvable
over C(t1, t2).

Remark 1.3. The reason for restricting the coefficients of the input to lie in Q(t1, t2) is so
that the input admits a finite description suitable for a Turing machine.

We can restate Theorem 1.2 in logical terms. A positive existential formula in the language
〈+, ·, 0, 1, t1, t2〉 is a first order formula such as

(∃x)(∃y) (x + t1 · y = 1 + 1) ∧ (t2 · x + 1 = y · z)

built using any of the symbols of the language, =, the logical symbols ∧,∨, and variables,
some of which may be bound by existential quantifiers ∃, but not negation ¬ or universal
quantifiers ∀. A positive existential formula in which all variables are bound by ∃ is called a
positive existential sentence. If one then interprets the variables as running over C(t1, t2) with
the symbols having their usual meanings, the sentence has a truth value. More generally,
given a positive existential formula, the truth depends on the values of the free variables,
so it defines a subset of C(t1, t2)

n (namely, the subset of parameter values that make the
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1A precise notion of algorithm came only later, with the work of Church and Turing in the 1930s. The

modern interpretation of “algorithm” is “Turing machine”, essentially a computer program.
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formula true), where n is the number of free variables; such a subset is called a positive
existential subset. The positive existential theory of 〈C(t1, t2); +, ·, 0, 1, t1, t2〉 is the set of
positive existential sentences that are true for C(t1, t2). The positive existential theory is
said to be decidable if there is an algorithm that can decide whether an arbitrary positive
existential sentence belongs to the theory. Theorem 1.2 is equivalent to the following:

Theorem 1.4. The positive existential theory of 〈C(t1, t2); +, ·, 0, 1, t1, t2〉 is undecidable.

The equivalence of Theorem 1.2 and 1.4 is almost trivial: it relies on elementary observa-
tions such as:

• Equations with coefficients in Q(t1, t2) are equivalent to equations with coefficients
in Z[t1, t2].

• The formula (f = 0) ∨ (g = 0) is equivalent to fg = 0.
• The formula (f = 0) ∧ (g = 0) is equivalent to f 2 + t1g

2 = 0.

2. Proof

Lemma 2.1. If m and n are odd integers, then

T 2
0 − amT 2

1 − bnT 2
2 = 0

has no nontrivial solution with T0, T1, T2 ∈ C((a))((b)).

Proof. Without loss of generality, m = n = 1, and T0, T1, T2 are b-adically integral, with
at least one of them being nonzero modulo b. Since a is not a square in the residue field
C((a)), the element b divides T0 and T1. Then the equation forces b to divide T2 as well, a
contradiction. �

Let E : y2 = x3 +ax+ b be an elliptic curve over C with a, b ∈ Q and End E ' Z. Let O ∈
E(C) be the identity. Let L = C(t1, u1, t2, u2) be the function field of E×E, where the ith copy
of E uses the variables ti, ui in place of x, y. So L is a degree-4 extension of K := C(t1, t2).
Rational maps E×E 99K E are everywhere defined, so E(L) ' HomC-varieties(E×E, E) (the
morphisms here need not be homomorphisms of abelian varieties). Let Pi ∈ E(L) correspond
to the ith projection E × E → E. Let G := ZP1 ⊕ ZP2 ⊂ E(L). Let G′ = G − {(O,O)},
which may be identified with a subset of L2, which may be identified with K8.

Lemma 2.2. The subset of K8 corresponding to G′ is positive existential.

Sketch of proof. Multiplication by −1 on E × E induces an element σ ∈ Aut(L/K). Let
E(L)− := {P ∈ E(L) : σP = −P}. Then E(L)− = ZP1⊕ZP2⊕E[2]. So G = ZP1⊕ZP2 =
2E(L)−+{O, P1, P2, P1 +P2}, which can be expressed in terms of polynomial equations. �

For two elements (a, b) and (c, d) of Z × Z, let (a, b) ∼ (c, d) mean that they are Z-
dependent.

Proposition 2.3. We have (a, b) ∼ (c, d) if and only if (a, b) = (0, 0) or (c, d) = (0, 0) or
there exist T0, T1, T2 ∈ L not all zero such that

(1) T 2
0 − y(aP1 + bP2)T

2
1 − y(cP1 + dP2)T

2
2 = 0.
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Proof. If (a, b) and (c, d) are nonzero and dependent, then y(aP1 + bP2) and y(cP1 + dP2)
lie in a subfield L0 ⊆ L of transcendence degree 1 over C, so the Tsen-Lang theorem (or
actually, a special case proved earlier by Max Noether) shows that (1) has a solution in L0,
and hence in L.

Now suppose that (a, b) and (c, d) are independent. The divisor of y(aP1 + bP2) on E×E
agrees in a neighborhood of (O, O) with −3D1 where D1 := {(Q1, Q2) ∈ E×E : aQ1+bQ2 =
O}. Define D2 similarly. Then D1 and D2 meet transversely at (O,O). After an analytic
change of variable, (1) becomes as in Lemma 2.1 with m = n = −3. So (1) has no nontrivial
solution. �

Corollary 2.4. There is a positive existential model of the structure L := 〈Z × Z; +,∼
, (1, 0), (0, 1)〉 in 〈C(t1, t2); +, ·, 0, 1, t1, t2〉.

Corollary 2.4 is saying that there is a bijection between Z × Z and a positive existential
subset of C(t1, t2)

N for some N such that the graph of + in (Z×Z)3 corresponds to a positive
existential subset of C(t1, t2)

3N , and ∼ corresponds to . . . , and so on.

Proof. The bijection identifies Z × Z with G′ (plus one extra point). The operation +
corresponds to a subset defined by polynomial equations expressing the group law on E(L),
and ∼ corresponds to a positive existential subset defined using Proposition 2.3. �

Proposition 2.5. There is a positive existential model of 〈Z; +, ·, 0, 1〉 in 〈Z × Z; +,∼
, (1, 0), (0, 1)〉.

Proof. The subgroup Z×{0} admits a positive existential definition in L since it is the set of
(r, s) such that (r, s) ∼ (1, 0). Similarly, {0}×Z is positive existential. Also, {(a, 0), (0, a)} ∈
(Z×Z)2 is positive existential since it is the subset of (Z× {0})× ({0} ×Z) determined by
(a, 0) + (0, b) ∼ (1, 1).

Consider the bijection Z → Z × {0} sending a to (a, 0). Addition in Z corresponds to
addition in Z× Z restricted to Z× {0}. Now, given a, b, c ∈ Z, we have

ab = c if and only if (a, 0) + (0, 1) ∼ (c, 0) + (0, b). �

Proof of Theorem 1.4. Combining Corollary 2.4 and Proposition 2.5 shows that there is an
effective procedure for taking an instance of Hilbert’s tenth problem (over Z) and producing a
positive existential sentence in 〈C(t1, t2); +, ·, 0, 1, t1, t2〉 with the corresponding truth value.
So if there were an algorithm for the positive existential theory of 〈C(t1, t2); +, ·, 0, 1, t1, t2〉,
there would be an algorithm for Hilbert’s tenth problem. But there is no algorithm for the
latter. �

Remark 2.6. The use of elliptic curves in undecidability proofs originated much earlier, in
[Den78], which proved undecidability of polynomial equations over fields such as R(t).

3. Generalization

Theorem 3.1. [Eis04] Let K1 be a field that is generated over C by a finite subset S of K1.
Let K0 = Q(S) ⊂ K1. If trdeg(K1/C) ≥ 2, then there is no algorithm that takes as input
an arbitrary polynomial f ∈ K0[x1, . . . , xn] and outputs YES or NO according to whether
f(~x) = 0 is solvable over K1.
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The proof chooses an embedding K := C(t1, t2) ↪→ K1 and considers E(L1) where L1 is
a compositum of K1 and the L used before, but much more work, involving a theorem of
Moret-Bailly, is required to ensure that E(L1) is no larger than E(L). Some care is required
also in the proof of Proposition 2.3.

Remark 3.2. The question is open for every finitely generated extension of C of transcendence
degree 1. See [Kol08] for some work related to this question.
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