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1 Introduction

This note is meant to give an introduction to the subjects of Lie groups and
equivariant connections on homogeneous spaces. The final goal is the study
of the Levi-Civita connection on a symmetric space of the non-compact type.
An introduction to the subject of ”symmetric space” from the point of view
of differential geometry is given in the course of J. Maubon [5].

2 Lie groups and Lie algebras: an overview

In this section, we review the basic notions concerning the Lie groups and
the Lie algebras. For a more completed exposition, the reader is invited to
consult standard textbook, for example [6], [1] and [3].
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Definition 2.1 A Lie group G is a differentiable manifold1which is also en-
dowed with a group structure such that the mappings

G×G −→ G , (x, y) 7−→ xy multiplication

G −→ G , x 7−→ x−1 inversion

are smooth.

We can define in the same way the notion of a topological group: it is a
topological space2 which is also endowed with a group structure such that
‘multiplication’ and ‘inversion’ mappings are continuous.

The most basic examples of Lie groups are (R, +), (C− {0},×), and the
general linear group GL(V ) of a finite dimensional (real or complex) vector
space V . The classical groups like

SL(n,R) = {g ∈ GL(Rn), det(g) = 1},
O(n,R) = {g ∈ GL(Rn), tgg = Idn},

U(n) = {g ∈ GL(Cn), tgg = Idn},
O(p, q) = {g ∈ GL(Rp+q), tgIp,qg = Ip,q}, where Ip,q =

(
Idp 0
0 −Idq

)

Sp(R2n) = {g ∈ GL(R2n), tgJg = J}, where J =

(
0 −Idn

Idn 0

)

are all Lie groups. It can be proved by hand, or one can use an old Theorem
of E. Cartan.

Theorem 2.2 Let G be a closed subgroup of GL(V ). Then G is a embedded
submanifold of GL(V ), and equipped with this differential structure it is a
Lie group.

The identity element of any group G will be denote by e. We denote the
tangent space of the Lie groups G,H, K at the identity element respectively
by: g = TeG, h = TeH, k = TeK.

Example : The tangent space at the identity element of the Lie groups
GL(Rn), SL(n,R), O(n,R) are respectively

gl(Rn) = {endomorphism of Rn},
sl(n,R) = {X ∈ gl(Rn), Tr(X) = 0},
o(n,R) = {X ∈ gl(Rn), tX + X = 0},
o(p, q) = {X ∈ gl(Rn), tXIdp,q + Idp,qX = 0}, where p + q = n.

1All manifolds are second countable.
2Here “topological space” means Hausdorff and locally compact.
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2.1 Group action

A morphism φ : G → H of groups is by definition a map that preserves the
product : Φ(g1g2) = Φ(g1)φ(g2).

Exercise 2.3 Show that φ(e) = e and φ(g−1) = φ(g)−1.

Definition 2.4 An (left) action of a group G on a set M is a mapping

α : G×M −→ M (2.1)

such that α(e,m) = m, ∀m ∈ M , and α(g, α(h,m)) = α(gh, m) for all m ∈
M and g, h ∈ G.

Let Bij(M) be the group of all bijective maps from M onto M . The
conditions on α are equivalent to saying that the map G → Bij(M), g → αg

defined by αg(m) = α(g, m) is a group morphism .
If G is a Lie (resp. topological) group and M is a manifold (resp. topo-

logical space), the action of G on M is said to be smooth (resp. continuous)
if the map (2.1) is smooth (resp. continuous). When the notations are un-
derstood we will write g ·m, or simply gm for α(g, m).

A representation of a group G on a real vector space (resp. complex) V
is a group morphism φ : G → GL(V ) : the group G acts on V through linear
endomorphism.

Notation : If φ : M → N is a smooth map between differentiable
manifolds, we denote by Tmφ : TmM → Tφ(m)N the differential of φ at
m ∈ M .

2.2 Adjoint representation

Let G be a Lie group and let g be the tangent space of G at e. We consider
the conjugation action of G on itself defined by

cg(h) = ghg−1, g, h ∈ G.

The mappings cg : G → G are smooth and cg(e) = e for all g ∈ G, so one
can consider the differential of cg at e

Ad(g) = Tecg : g → g.

Since cgh = cg ◦ ch we have Ad(gh) = Ad(g) ◦ Ad(h). That is, the mapping

Ad : G −→ GL(g) (2.2)
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is a smooth group morphism which is called the adjoint representation of G.
The next step is to consider the differential of the map Ad at e:

ad = TeAd : g −→ gl(g). (2.3)

It is the adjoint representation of g. In (2.3), the vector space gl(g) denotes
the vector space of all linear endomorphism of g, and is equal to the tangent
space of GL(g) at the identity.

Lemma 2.5 . We have the fundamental relations
• ad(Ad(g)X) = Ad(g) ◦ ad(X) ◦ Ad(g)−1 for g ∈ G,X ∈ g.
• ad(ad(Y )X) = ad(Y ) ◦ ad(X)− ad(X) ◦ ad(Y ) for X,Y ∈ g.
• ad(X)Y = −ad(Y )X for X,Y ∈ g.

Proof : Since Ad is a group morphism we have Ad(ghg−1) = Ad(g) ◦
Ad(h) ◦ Ad(g)−1. If we differentiate this relation at h = e we get the first
point, and if we differentiate it at g = e we get the second one.

For the last point consider two smooth curves a(t), b(s) on G with a(0) =
b(0) = e, d

dt
[a(t)]t=0 = X, and d

dt
[b(t)]t=0 = Y . We will now compute

the second derivative ∂2f
∂t∂s

(0, 0) of the map f(t, s) = a(t)b(s)a(t)−1b(s)−1.

Since f(t, 0) = f(0, s) = e, the term ∂2f
∂t∂s

(0, 0) is defined in an intrinxsic

manner as an element of g. For the first partial derivatives we get ∂f
∂t

(0, s) =

X − Ad(b(s))X and ∂f
∂s

(t, 0) = Ad(a(t))Y − Y . So ∂2f
∂t∂s

(0, 0) = ad(X)Y =
−ad(Y )X. ¤

Definition 2.6 If G is a Lie group, one defines a bilinear map, [−,−]g :
g × g → g by [X, Y ]g = ad(X)Y . It is the Lie bracket of g. The vector
space g equipped with [−,−]g is called the Lie algebra of G. We have the
fundamental relations

• anti symmetry : [X, Y ]g = −[Y, X]g
• Jacobi identity : ad([Y, X]g) = ad(Y ) ◦ ad(X)− ad(X) ◦ ad(Y ).

On gl(g), a direct computation shows that [X,Y ]gl(g) = XY − Y X. So
the Jacobi identity can be rewritten as ad([X, Y ]g) = [ad(X), ad(Y )]gl(g) or
equivalently as

[X, [Y, Z]g]g + [Y, [Z, X]g]g + [Z, [X, Y ]g]g = 0 for all X,Y, Z ∈ g. (2.4)

Definition 2.7 • A Lie algebra g is a real vector space equipped with the
antisymmetric bilinear map [−,−]g : g×g → g satisfying the Jacobi identity.

• A linear map φ : g → h between two Lie algebras is a morphism of Lie
algebras if

φ([X, Y ]g) = [φ(X), φ(Y )]h. (2.5)
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Remark 2.8 We have defined the notion of real Lie algebra. The definitions
goes through on any field k, in particular when k = C we speak of complex
Lie algebras. For example, if g is a real Lie algebra, the complexified vector
space gC := g⊗ C inherits a canonical structure of complex Lie algebra.

The map ad : g → gl(g) is the typical example of a morphism of Lie
algebras. This example generalizes as follows.

Lemma 2.9 Consider a smooth morphism Φ : G → H between two Lie
groups. Let φ : g → h be its differential at e. Then:

• The map φ is Φ-equivariant: φ ◦ Ad(g) = Ad(Φ(g)) ◦ φ.
• φ is a morphism of Lie algebras.

The proof works as in Lemma 2.5.

Example : If G is a closed subgroup of GL(V ), the inclusion g ↪→ gl(V )
is a morphism of Lie algebra. In other words, if X,Y ∈ g then [X,Y ]gl(V ) =
XY − Y X belongs to g and corresponds to the Lie bracket [X,Y ]g.

2.3 Vectors fields and Lie bracket

Here we review the typical example of Lie bracket : those of vectors fields.
Let M be a smooth manifold. We denote by Diff(M) the group formed by

the diffeomorphism of M , and by Vect(M) the vector space of smooth vectors
fields. Even if Diff(M) is not a Lie group (it’s not finite dimensional), many
aspects discuss earlier apply here, with Vect(M) in the role of the Lie algebra
of Diff(M). If a(t) is a smooth curve in Diff(M) passing through the identity
at t = 0, the derivative V = d

dt
[a]t=0 is a vectors field on M .

The ”adjoint” action of Diff(M) on Vect(M) is defined as follows. If
V = d

dt
[a]t=0 one takes Ad(g)V = d

dt
[g ◦ a ◦ g−1]t=0 for every g ∈ Diff(M).

The definition of Ad extends to any V ∈ Vect(M) through the following
expression

Ad(g)V |m = Tg−1m(g)(Vg−1m), m ∈ M. (2.6)

We can now define the adjoint action by differentiating (2.6) at the identity.
If W = d

dt
[b]t=0 and V ∈ Vect(M), we take

ad(W )V |m =
d

dt

[
Tb(t)−1m(b(t))(Vb(t)−1m)

]
t=0

, m ∈ M. (2.7)

If we take any textbook on differential geometry we see that ad(W )V =
−[W,V ], where [−,−] is the usual Lie bracket on Vect(M). To explain why
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we get this minus sign, consider the group morphism

Φ : Diff(M) −→ Aut(C∞(M)) (2.8)

g 7−→ g

defined by g · f(m) = f(g−1m) for f ∈ C∞(M). Here Aut(C∞(M)) is the
group of automorphism of the algebra C∞(M). If b(t) is a smooth curve
in Aut(C∞(M)) passing through the identity at t = 0, the derivative u =
d
dt

[b]t=0 belongs to the vector space Der(C∞(M)) of derivations of C∞(M):
u : C∞(M) → C∞(M) is a linear map and u(fg) = u(f)g + fu(g). So
the Lie algebra of Aut(C∞(M)) as a natural identification with Der(C∞(M))
equipped with the Lie bracket: [u, v]Der = u◦v−v◦u, for u, v ∈ Der(C∞(M)).

Let Vect(M)
∼→ Der(C∞(M)), V 7→ Ṽ be the canonical identification

defined by Ṽ f(m) = 〈dfm, Vm〉 for f ∈ C∞(M) and V ∈ Vect(M).
For the differential at the identity of Φ we get

dΦ(V ) = −Ṽ , for V ∈ Vect(M). (2.9)

Since dΦ is an algebra morphism we have − ˜ad(V )W = [Ṽ , W̃ ]Der. Hence
we see that [V, W ] = −ad(V )W is the traditional Lie bracket on Vect(M)

defined by posing [̃V,W ] = Ṽ ◦ W̃ − Ṽ ◦ W̃ .

2.4 Group actions and Lie bracket

Let M be a differentiable manifold equipped with a smooth action of a Lie
group G. We can specialize (2.8) to a group morphism G → Aut(C∞(M)).
Its differential at the identity defines a map g → Der(C∞(M))

∼→ Vect(M),
X → XM by XM |m = d

dt
[a(t)−1 ·m]t=0, m ∈ M . Here a(t) is a smooth curve

on G such that X = d
dt

[a]t=0. This mapping is a morphism of Lie algebras:

[X,Y ]M = [XM , YM ]. (2.10)

Example : Consider the actions of translations R, L of a Lie group G
on itself:

R(g)h = hg−1, L(g)h = gh for g, h ∈ G. (2.11)

Theses actions defines vectors field XL, XR on G for any X ∈ g, and (2.10)
reads

[X, Y ]L = [XL, Y L], [X,Y ]R = [XR, Y R].

Theses equations can be used to define the Lie bracket on g. Consider the
subspaces V L = {XL, X ∈ g} and V R = {XR, X ∈ g} of Vect(G). First
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we see that V L (resp. V R) coincides with the subspace of Vect(G)R (resp.
Vect(G)L) formed by the vectors fields invariant by the R-action of G (resp.
L-action of G). Second we see that the subspaces Vect(G)R and Vect(G)L

are invariant under the Lie bracket of Vect(G). Then for any X,Y ∈ g, the
vectors field [XL, Y L] ∈ Vect(G)R, so there exist a unique [X, Y ] ∈ g such
that [X, Y ]L = [XL, Y L].

2.5 Exponential map

Consider the usual exponential map e : gl(V ) → GL(V ): eA =
∑∞

k=0
Ak

k!
. We

have the fundamental property

Proposition 2.10 • For any A ∈ gl(V ), the map φA : R→ GL(V ), t 7→ etA

is a smooth Lie group morphism with d
dt

[φA]t=0 = A.
• If φ : R→ GL(V ) is a smooth Lie group morphism we have φ = φA for

A = d
dt

[φ]t=0.

Now, we will see that an exponential map together with Proposition 2.10
exists on all Lie group.

Let G be a Lie group with Lie algebra g. For any X ∈ g we consider the
vectors field XR ∈ Vect(G) defined by XR|g = d

dt
[ga(t)]t=0, g ∈ G. Here a(t)

is a smooth curve on G such that X = d
dt

[a]t=0. The vectors fields XR are
invariant under the left translations, that is

Tg(L(h))(XR
g ) = XR

hg, for g, h ∈ G. (2.12)

We consider now the flow of the vectors field XR. For any X ∈ g we
consider the differential equation

∂

∂t
φ(t, g) = XR(φ(t, g)) (2.13)

φ(0, g) = g.

where t ∈ R belongs to an interval containing 0, and g ∈ G. Classical results
assert that for any g0 ∈ G (2.13) admits a unique solution φX defined on
]− ε, ε[×U where ε > 0 is small enough and U is a neighborhood of g0. Since
XR is invariant under the left translations we have

φX(t, g) = gφX(t, e). (2.14)

The map t → φX(t,−) is a 1-parameter subgroup of (local) diffeomorphisms
of M : φX(t + s, m) = φX(t, φX(s,m)) for t, s small enough. Eq. (2.14) give
then

φX(t + s, e) = φX(t, e)φX(s, e) for t, s small enough. (2.15)
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The map t 7→ φX(t, e) initially defined on an interval ]−ε, ε[ can be extended
on R thanks to (2.15). For any t ∈ R take ΦX(t, e) = φX( t

n
, e)n where n is

an integer large enough so that | t
n
| < ε. It is not difficult to see that our

definition make sense and that R→ G, t 7→ ΦX(t, e) is a Lie group morphism.
Finally we have proved that the vectors field XR is completed: its flow is
defined on R×G.

Definition 2.11 For each X ∈ g, the element expG(X) ∈ G is defined as
ΦX(1, e). The mapping g → G, X 7→ expG(X) is called the exponential
mapping from g into G.

Proposition 2.12 • expG(tX) = ΦX(t, e) for each t ∈ R.
• expG : g → G is C∞ and Te expG is the identity map.

Proof : Let s 6= 0 in R. The maps t → ΦX(t, e) and t → ΦsX(tX
s
, e)

are both solutions of the differential equation (2.13): so there are equal and
a) is proved by taking t = s. To proved b) consider the vectors field V on
g × G defined by V (X, g) = (XR(g), 0). It is easy to see that the flow ΦV

of the vectors field V satisfies ΦV (t, X, g) = (g expG(tX), X), for (t,X, g) ∈
R × g × G. Since ΦV is smooth (a general property concerning the flows),
the exponential map is smooth. ¤

Proposition 2.10 take now the following form.

Proposition 2.13 If φ : R→ G is a (C∞) one parameter subgroup, we have
φ(t) = expG(tX) with X = d

dt
[φ]t=0.

Proof : If we differentiate the relation φ(t + s) = φ(t)φ(s) at s = 0, we
see that φ satisfies the differential equation (∗) d

dt
[φ]t = XR(φ(t)), where X =

d
dt

[φ]t=0. Since t → ΦX(t, e) is also solution of (∗), and ΦX(0, e) = φ(0) = e,
we have φ = ΦX(−, e). ¤

We give now some easy consequences of Proposition 2.13.

Proposition 2.14 • If ρ : G → H is a morphism of Lie groups and dρ : g →
h is the corresponding morphism of Lie algebras, we have expH ◦dρ = ρ◦expG.

• For Ad : G → GL(g) we have Ad(expG(X)) = ead(X).
• expG : g → G is G-equivariant: expG(Ad(g)X) = g expG(X)g−1.
• If [X,Y ] = 0, then expG(X) expG(Y ) = expG(Y ) expG(X) =

expG(X + Y ).

Proof : We use in each case the same type of proof. We consider
two 1-parameters subgroup Φ1(t) and Φ2(t). After we verify that d

dt
[Φ1]t=0 =

8



d
dt

[Φ2]t=0, and from Proposition 2.13 we conclude that Φ1(t) = Φ2(t), ∀t ∈ R.
The relation that we are looking for is Φ1(1) = Φ2(1).

For the first point, we take Φ1(t) = expH(tdρ(X)) and Φ2(t) = ρ ◦
expG(tX) : for the second point we take ρ = Ad, and for the third one
we take Φ1(t) = expG(tAd(g)X) and Φ2(t) = g expG(tX)g−1.

From the second and third point we have expG(X) expG(Y ) expG(−X) =
expG(ead(X)Y ). Hence expG(X) expG(Y ) expG(−X) = expG(Y ) if ad(X)Y =
0. We consider after the 1-parameters subgroups Φ1(t) = expG(tX) expG(tY )
and Φ2(t) = expG(t(X + Y )) to prove the second equality of the last point.
¤

Exercise 2.15 We consider the Lie group SL(2,R) with Lie algebra
sl(2,R) = {X ∈ End(R2), Tr(X) = 0}. Show that the image of the exponen-
tial map exp : sl(2,R) → SL(2,R) is equal to {g ∈ SL(2,R), Tr(g) ≥ −2}

Remark 2.16 The map expG : g → G is in general not surjective. Neverthe-
less the set U = expG(g) is a neighborhood of the identity, and U = U−1. The
subgroup of G generated by U , which is equal to ∪n≥1U

n, is then a connected
open subgroup of G. Hence ∪n≥1U

n is equal to the connected component of
the identity, usually denoted Go.

Exercise 2.17 For any Lie group G, show that expG(X) expG(Y ) =
expG(X + Y + 1

2
[X,Y ] + o(|X|2 + |Y |2)) in a neighborhood of (0, 0) ∈ g2.

Afterward show that

lim
n→∞

(expG(X/n) expG(Y/n))n = expG(X + Y ) and

lim
n→∞

(expG(X/n) expG(Y/n) expG(−X/n) expG(−Y/n))n2

= exp([X, Y ]).

2.6 Lie subgroups and Lie subalgebras

Before giving the precise definition of a Lie subgroup, we look at the infini-
tesimal side. A Lie subalgebra of a Lie algebra g is a subspace h ⊂ g stable
under the Lie bracket : [X,Y ]g ∈ h whenever X, Y ∈ h.

We have a natural extension of Theorem 2.2

Theorem 2.18 Let H be a closed subgroup of a Lie group G. Then H is a
imbedded submanifold of G, and equipped with this differential structure it is a
Lie group. The Lie algebra of H, which is equal to h = {X ∈ g | expG(tX) ∈
H for all t ∈ R}, is a subalgebra of g.
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Proof : The two limits given in the exercise 2.17 show that h is a
subalgebra of g (we use here that H is closed). Let a be any supplementary
subspace of h: one shows that (exp(Y ) ∈ H) =⇒ (Y = e) if Y ∈ a belongs
to a small neighborhood of 0 in a. Now we consider the map φ : h⊕ a → G
given by φ(X + Y ) = expG(X) expG(Y ). Since Teφ is the identity map, φ
defines a smooth diffeomorphism φ|V from a neighborhood V of 0 ∈ g to a
neighborhoodW of e in G. If V is small enough we see that φ map V∩{Y = 0}
onto W∩H, hence H is a submanifold near e. Near any point h ∈ H we use
the map φh : h⊕ a → G given by φh(Z) = hφ(Z): we prove in the same way
that H is a submanifold near h. Finally H is an imbedded submanifold of
G. We now look to the group operations mG : G×G → G (multiplication),
iG : G → G (inversion) and their restrictions mG|H×H : H × H → G and
iG|H : H → G which are smooth maps. Here we are interested in the group
operations mH and iH of H. Since mG|H×H and iG|H are smooth we have
the equivalence:

mH and iH are smooth ⇐⇒ mH and iH are continuous.

The fact that mH and iH are continuous follows easily from the fact that
mG|H×H and iG|H are continuous and that H is closed. ¤

Theorem 2.18 has the following important corollary

Corollary 2.19 If φ : G → H is a continuous group morphism between two
Lie groups, then φ is smooth.

Proof :Consider the graph L ⊂ G × H of the map φ : L = {(g, h) ∈
G×H |h = φ(g)}. Since φ is a continuous L is a closed subgroup of G×H.
Following Theorem 2.18, L is an imbedded submanifold of G×H. Consider
now the morphism p1 : L → G (resp. p2 : L → H) equals respectively to the
composition of the inclusion L ↪→ G × H with the projection G × H → G
(resp. G×H → H): p1 and p2 are smooth, p1 is bijective, and φ = p2◦(p1)

−1.
Since (p1)

−1 is smooth (see Exercise 2.24), the map φ is smooth. ¤
We have just seen the archetype of a Lie subgroup : a closed subgroup of

a lie group. But this notion is too restrictive.

Definition 2.20 (H, φ) is a Lie subgroup of a Lie group G if
• H is a Lie group,
• φ : H → G is a group morphism,
• φ : H → G is a one-to-one immersion.

In the next example we consider the 1-parameter Lie subgroups of S1×S1 :
either they are closed or dense.
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Example : Consider the group morphisms φα : R → S1 × S1, φα(t) =
(eit, eiαt), defined for α ∈ R. Then :

• If α /∈ Q, Ker(φα) = 0 and (R, φα) is a Lie subgroup of S1 × S1 which
is dense.

• If α ∈ Q, Ker(φα) 6= 0, and φα factorizes in a smooth morphism φ̃α :
S1 → S1 × S1. Here φα(R) is a closed subgroup of S1 × S1 diffeomorphic to

the Lie subgroup (S1, φ̃α).

Let (H,φ) is a Lie subgroup of G, and let h, g be their respective Lie
algebras. Since φ is an immersion, the differential at the identity, dφ : h → g,
is an injective morphism of Lie algebras : h is isomorphic with the subalgebra
dφ(h) of g. In practice we often “forget” φ in our notations, and speak of
a Lie subgroup H ⊂ G with Lie subalgebra h ⊂ g. We have to be careful :
when H is not closed in G, the topology of H is not the induced topology.

We state now the fundamental

Theorem 2.21 Let G be a Lie group with Lie algebra g, and let h ⊂ g be a
subalgebra. Then there exists a unique connected Lie subgroup H of G with
Lie algebra equal to h. Moreover H is generated by expG(h), where expG is
the exponential map of G.

The proof uses Frobenius Theorem (see [6][Theorem 3.19]). This Theorem
has an important corollary.

Corollary 2.22 Let G, H be two connected Lie groups with Lie algebras g

and h. Let φ : g → h be a morphism of Lie algebras. If G is simply connected
there exits a (unique) Lie group morphism Φ : G → H such that dΦ = φ.

Proof : Consider the graph l ⊂ g × h of the map φ : l := {(X, Y ) ∈
g× h |φ(X) = Y }. Since φ is morphism of Lie algebras l is a Lie subalgebra
of g × h. Let (L, ψ) be the connected Lie subgroup of G × H associated
to l. Consider now the morphism p1 : L → G (resp. p2 : L → H) equals
respectively to the composition of φ : L → G × H with the projection
G × H → G (resp. G × H → H). The group morphism p2 : L → G
is onto with a discrete kernel since G is connected and dp2 : l → g is an
isomorphism. Hence p2 : L → G is a covering map (see Exercise 2.24). Since
G is simply connected, this covering map is a diffeomorphism. The group
morphism p1 ◦ (p2)

−1 : G → H answers to the question. ¤
Example : The Lie group SU(2) is composed by the 2 × 2 complex

matrices of the form

(
α −β̄
β ᾱ

)
with |α|2 + |β|2 = 1. Hence SU(2) is simply

connected since it is diffeomorphic to the 3-dimensional sphere. Since SU(2)
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is a maximal compact subgroup of SL(2,C), the Cartan decomposition (see
Section 3.4) tells us that SL(2,C) is also simply connected.

A subset A of a topological space M is path-connected if any points a, b ∈
A can be joined by a continuous path γ : [0, 1] → M with γ(t) ∈ A for all
t ∈ [0, 1]. Any connected Lie subgroup of a Lie group is path-connected. We
have the following characterization of the connected Lie subgroups.

Theorem 2.23 Let G be a Lie group, and let H be a path-connected sub-
group of G. Then H is a Lie subgroup of G.

Exercise 2.24 Let ρ : G → H be a smooth morphism of Lie groups, and let
dρ : g → h be the corresponding morphism of Lie algebras.

• Show that Ker(ρ) := {g ∈ G | ρ(g) = e} is a closed (normal) subgroup
with lie algebra Ker(dρ) := {X ∈ g | dρ(X) = 0}.

• If Ker(dρ) = 0, show that Ker(ρ) is discrete in G. If furthermore ρ is
onto, then show that ρ is a covering map.

• If ρ : G → H is bijective, then show that ρ−1 is smooth.

2.7 Ideals

A subalgebra h of a Lie algebra is called an ideal in g if [X,Y ]g ∈ h whenever
X ∈ h and Y ∈ g: in other words h is a stable subspace of g under the
endomorphism ad(Y ), Y ∈ g. A Lie subgroup H of the Lie group G is a
normal subgroup if gHg−1 ⊂ H for all g ∈ G.

Proposition 2.25 Let H be the connected Lie subgroup of G associated to
the subalgebra h of g. The following assertions are equivalent.

1) H is a normal subgroup of Go.
2) h is an ideal of g.

Proof : 1) =⇒ 2). Let X ∈ h and g ∈ Go. For every t ∈ R, the element
g expG(tX)g−1 = expG(tAd(g)X) belongs to H: if we take the derivative at
t = 0 we get (∗) Ad(g)X ∈ h, ∀g ∈ Go. If we take the differential of (∗) at
g = e we have ad(Y )X ∈ h whenever X ∈ h and Y ∈ g.

2) =⇒ 1). If X ∈ h and Y ∈ g, we have expG(Y ) expG(X) expG(Y )−1 =
expG(eadY X) ∈ H. Since H is generated by expG(h), we have
expG(Y )H expG(Y )−1 ⊂ H for all Y ∈ g (see Remark 2.16 and Proposi-
tion 2.21). Since expG(g) generates Go we have finally that gHg−1 ⊂ H for
all g ∈ Go. ¤

Examples of Ideals : The center of g : Zg := {X ∈ g | [X, g] = 0}.
The commutator ideal [g, g]. The kernel ker(φ) of a morphism of lie algebra
φ : g → h.
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We can associate to any Lie algebra g two sequences gi, g
i of ideals of g.

The commutator series of g is the non increasing sequence of ideals gi with

g0 = g and gi+1 = [gi, gi]. (2.16)

The lower central series of g is the non increasing sequence of ideals gi with

g0 = g and gi+1 = [g, gi]. (2.17)

Exercise 2.26 Show that the gi, g
i are ideals of g.

Definition 2.27 We say that g is
• solvable if gi = 0 for i large enough,
• nilpotent if gi = 0 for i large enough,
• abelian if [g, g] = 0.

Exercise 2.28 Let V be a finite dimensional vector space, and let {0} =
V0 ⊂ V1 ⊂ · · ·Vn = V be a strictly increasing sequence of subspaces. Let g be
the Lie subalgebra of gl(V ) defined by g = {X ∈ gl(V ) |X(Vk+1) ⊂ Vk}.

• Show that the Lie algebra g is nilpotent.
• Suppose now that dim Vk = k for any k = 0, . . . , n. Show then that the

Lie algebra of h = {X ∈ gl(V ) |X(Vk) ⊂ Vk} is solvable.

Exercise 2.29 For a group G, the subgroup generated by the commutators
ghg−1h−1, g, h ∈ G is the derived subgroup, and is denoted by G′.

• Show that G′ is a normal subgroup of G.
• If G is a connected Lie group, show that G′ is the connected Lie subgroup

associated to the ideal [g, g].

Exercise 2.30 • For any Lie group G, show that its center ZG := {g ∈
G |hg = hg ∀h ∈ G} is a closed normal subgroup with Lie algebra Zg :=
{X ∈ g | [X, Y ] = 0, ∀Y ∈ g}.

• Show that a lie algebra g is solvable if and only if [g, g] is solvable.
• Let h be the Lie algebra of the group H defined in Exercise 2.28. Show

that [h, h] is nilpotent, and that h is not nilpotent.

2.8 Group actions and quotients

Let M be a set equipped with an action of group G. For each m ∈ M the
G-orbit through m is defined as the subset

G ·m = {g ·m | g ∈ G}. (2.18)
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For each m ∈ M , the stabilizer group at m is

Gm = {g ∈ G | g ·m = m}. (2.19)

The G-action is free if Gm = {e} for all m ∈ M . The G-action is transitive
if G ·m = M for some m ∈ M . The set-theoretic quotient M/G corresponds
to the quotient of M by the equivalence relation m ∼ n ⇐⇒ G ·m = G · n.
Let π : M → M/G be the canonical projection.

Topological side : Suppose now that M is a topological space equipped
with a continuous action of a topological3 group G. Note that in this situ-
ation the stabilizers Gm are closed in G. We define for any subsets A,B of
M the set

GA,B = {g ∈ G | (g · A) ∩B 6= ∅}.
Exercise 2.31 Show that GA,B is closed in G when A,B are compact in M .

We take on M/G the quotient topology: V ⊂ M/G is open if π−1(V) is
open in M . It is the smallest topology that makes π continuous. Note that
π : M → M/G is then an open map : if U is open in M , π−1(π(U)) = ∪g∈Gg·U
is also open in M , which means that π(U) is open in M/G.

Definition 2.32 The (topological) G-action on M is proper when the sub-
sets GA,B are compact in G whenever A,B are compact subsets of M .

This definition of proper action is equivalent to the condition that the map
ψ : G ×M → M ×M, (g,m) 7→ (g ·m,m) is proper, i.e. ψ−1(compact) =
compact. Note that the action of a compact group is always proper.

Proposition 2.33 If a topological space M is equipped with a proper con-
tinuous action of a topological group G. The quotient topology is Hausdorff,
locally compact.

The proof is left to the reader. The main result is the following

Theorem 2.34 Let M be a manifold equipped with a smooth, proper and
free action of a Lie group. Then the quotient M/G equipped with the quotient
topology carries the structure of a smooth manifold. Moreover the projection
π : M → M/G is smooth, and any n ∈ M/G has an open neighborhood U
such that

π−1(U)
∼−→ U ×G

m 7−→ (π(m), φU(m))

is a G-equivariant diffeomorphism. Here φU : π−1(U) → G is an equivariant
map : φU(g ·m) = gφU(m).

3Here the topological spaces are Hausdorff and locally compact.
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For a proof see [1][Section 2.3].

Remark 2.35 Suppose that G is a discrete group. For a proper and free
action of G on M we have: any m ∈ M has an neighborhood V such that
gV ∩ V = ∅ for every g ∈ G, g 6= e. Theorem 2.34 is true when G is a
discrete group. The quotient map π : M → M/G is then a covering map.

The typical example we are interested in is the action of translation of a
closed subgroup H of a Lie group G: the action of h ∈ H is G → G, g → gh−1.
Its an easy exercise to see that this action is free and proper. The quotient
space G/H is a smooth manifold and the action of translation g → ag of
G on itself descend to a smooth action of G on G/H. The manifolds G/H
are called homogeneous manifolds : these are the manifold with a transitive
action of a Lie group G.

Stiefel manifolds, Grassmanians : Let V be a (real) vector space of
dimension n. for any integer k ≤ n, let Hom(Rk, V ) be the vector space of ho-
momorphism equipped with the following (smooth) GL(V )×GL(Rk)-action:
for (g, h) ∈ GL(V ) × GL(Rk) and f ∈ Hom(Rk, V ), we take (g, h) · f(x) =
g(f(h−1x)) for any x ∈ Rk. Let Sk(V ) be the open subset of Hom(Rk, V )
formed by the one-to-one linear map : we have a natural identification of
Sk(V ) with the set of families {v1, . . . , vk} of linearly independent vectors of
V . Moreover Sk(V ) is stable under the GL(V )×GL(Rk)-action : the GL(V )-
action on Sk(V ) is transitive, and the GL(Rk)-action on Sk(V ) is free and
proper. The manifold Sk(V )/GL(Rk) admit a natural identification with the
set {E subspace of V | dim E = k}: it is the grassmanian manifold Grk(V ).
On the other hand the action of GL(V ) on Grk(V ) is transitive so that

Grk(V ) ∼= GL(V )/H

where H is the closed Lie subgroup of GL(V ) that fixes a subspace E ⊂ V
of dimension k.

2.9 Adjoint group

Let g be a (real) Lie algebra. The automorphism group of g is

Aut(g) := {φ ∈ GL(g) |φ([X, Y ]) = [φ(X), φ(Y )], ∀X, Y ∈ g} (2.20)

It is a closed subgroup of GL(g) with Lie algebra equal to

Der(g) := {D ∈ gl(g) |D([X,Y ]) = [D(X), Y ] + [X, D(Y )], ∀X,Y ∈ g}
(2.21)
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The subspace Der(g) ⊂ gl(g) is called the set of derivations of g. Thanks
to the Jacobi identity we know that ad(X) ∈ Der(g) for all X ∈ g. So the
image of the adjoint map ad : g → gl(g), that we denote ad(g), is a Lie
subalgebra of Der(g).

Definition 2.36 The adjoint group Ad(g) is the connected Lie subgroup of
Aut(g) associated to the Lie subalgebra of ad(g) ⊂ Der(g). As an abstract
group, it is the subgroup of Aut(g) generated by the elements ead(X), X ∈ g.

Consider now a connected Lie group G, with Lie algebra g, and the adjoint
map Ad : G → GL(g). In this case, ead(X) = Ad(expG(X)) for any X ∈ g,
so the image of G by Ad is equal to the group Ad(g). If g ∈ G belongs to
the kernel of Ad, we have g expG(X)g−1 = expG(Ad(g)X) = expG(X), so g
commutes with all the element of expG(g). But since G is connected, expG(g)
generates G. Finally we have proved that the kernel of Ad is equal to the
center ZG of the Lie group G.

It is worth to keep in mind the exact sequence of Lie group

0 −→ ZG −→ G −→ Ad(g) −→ 0 (2.22)

2.10 The Killing form

We have already defined the notions of solvable and nilpotent Lie algebra
(see Def. 2.27). We have the following “opposite” notion.

Definition 2.37 Let g be (real) Lie algebra.
• g is simple if g is not abelian and does not contains ideals different from

{0} and g.
• g is semi-simple if g = g1 ⊕ · · · ⊕ gr where the gi are ideals of g which

are simple (as Lie algebras).

The following remarks follows directly from the definition and give a first
idea of the difference between “solvable” and “semi-simple”.

Exercise 2.38 Let g be a (real) Lie algebra.
• Suppose that g is solvable. Show that [g, g] 6= g, and that g possess a

non-zero abelian ideal.
• Suppose that g is semi-simple. Show that [g, g] = g, and show that

g does not possess non-zero abelian ideals : in particular the center Zg is
reduced to {0}.
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In order to give the characterization of semi-simplicity we define the
Killing form of a Lie algebra g. It is the symmetric R-bilinear map Bg :
g× g → R defined by

Bg(X, Y ) = Tr(ad(X)ad(Y )), (2.23)

where Tr : gl(g) → R is the canonical trace map.

Proposition 2.39 For φ ∈ Aut(g) and D ∈ Der(g) we have
• Bg(φ(X), φ(Y )) = Bg(X, Y ), and
• Bg(DX, Y ) + Bg(X, DY ) = 0 for all X, Y ∈ g.
• We have Bg([X, Z], Y ) = Bg(X, [Z, Y ]) for all X,Y, Z ∈ g.

Proof :If φ is an automorphism of g, we have ad(φ(X)) = φ◦ad(X)◦φ−1

for all X ∈ g (see (2.20)). Then a) follows and b) comes from the derivative
of a) at φ = e. For c) take D = ad(Z) in b). ¤

We recall now the basic interaction between the Killing form and the
ideals of g. If h is an ideal of g, then

• the restriction of the Killing form of g on h× h is the Killing form of h,
• the subspace h⊥ = {X ∈ g |Bg(X, h) = 0} is an ideal of g.
• the intersection h ∩ h⊥is an ideal of g with a Killing form identically

equal to 0.
It was shown by E. Cartan that the Killing form gives criterion for semi-

simplicity and solvability.

Theorem 2.40 (Cartan’s Criterion for Semisimplicity) Let g be a (real) Lie
algebra. The following statements are equivalent

• g is semi-simple,
• the Killing form Bg is non degenerate,
• g does not have non-zero abelian ideals.

The proof of Theorem 2.40 need the following characterization of the
solvable Lie algebra. The reader will find a proof of the following theorem in
[3][Section I].

Theorem 2.41 (Cartan’s Criterion for Solvability) Let g be a (real) Lie alge-
bra. The following statements are equivalent

• g is solvable,
• Bg(g, [g, g]) = 0.

We will not prove Theorem 2.41, but only use the following easy corollary.
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Corollary 2.42 If g is a (real) Lie algebra with Bg = 0, then [g, g] 6= g.

Before giving a proof of Theorem 2.40 let us show how Corollary 2.42
gives the implication b) ⇒ a) in Theorem 2.41.

If g is a Lie algebra with Bg = 0, then Corollary 2.42 tell us that g1 = [g, g]
is an ideal of g different from g with Bg1 = 0. If g1 6= 0, we do it again:
g2 = [g1, g1] is an ideal of g1 different from g1 with Bg2 = 0. This induction
ends after finite steps: let i ≥ 0 such that gi 6= 0 and gi+1 = 0. Then gi is an
abelian ideal of g, and g is solvable. In the situation b) of Theorem 2.41, we
have then that [g, g] is solvable, so g is also solvable.

Proof of Theorem 2.40 using Corollary 2.42 :
c) =⇒ b). The ideal g⊥ = {X ∈ g |Bg(X, g) = 0} of g as a zero Killing form.
If g⊥ 6= 0 we know from the preceding remark that there exists i ≥ 0 such
that (g⊥)i 6= 0 and (g⊥)i+1 = 0. We see easily that (g⊥)i is also an ideal of
g (which is abelian). It gives a contradiction, then g⊥ = 0: the Killing form
Bg is non-degenerate.

b) =⇒ a). We suppose now that Bg is non-degenerate. It gives first that g is
not abelian. After we use the following dichotomy:

i) either g does not have ideals different from {0} and g, hence g is simple,
ii) either g have an ideal h different from {0} and g.
In case i) we have finish. In case ii), let us show that h ∩ h⊥ 6= 0 : since

Bg is non-degenerate, it will implies that g = h⊕ h⊥. If a := h∩ h⊥ 6= 0, the
Killing form on a is equal to zero. Following Corollary 2.42 there exists i ≥ 0
such that ai 6= 0 and ai+1 = 0. Moreover since a is an ideal of g, ai is also an
ideal of g. By considering a supplementary F of ai in g, every endomorphism
ad(X), X ∈ g as the following matricial expression

ad(X) =

(
A B
0 D

)
,

with A : ai → ai, B : F → ai, and D : F → F . The zero term is due to the
fact that ai is an ideal of g. If Xo ∈ ai, then

ad(Xo) =

(
0 ∗
0 0

)
.

because ai is an abelian ideal. Finally for every X ∈ g,

ad(X)ad(Xo) =

(
0 ∗
0 0

)

and then Bg(X, Xo) = 0. It is a contradiction since Bg is non-degenerate.
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So if h is an ideal different from {0} and g, we have the Bg-orthogonal
decomposition g = h ⊕ h⊥. Since Bg is non-degenerate we see that Bh and
Bh⊥ are non-degenerate, and we apply the dichotomy to the Lie algebras h

and h⊥. After finite steps we obtain a decomposition g = g1⊕ . . .⊕ gr where
the gk are simple ideals of g.

a) =⇒ c). Let pk : g → gk be the projections relative to a decomposition
g = g1 ⊕ . . .⊕ gr in simple ideals: the pk are Lie algebras morphims. If a is
an abelian ideal of g, each pk(a) is an abelian ideal of gk which is equal to
{0} since gk is simple. It proves that a = 0. ¤

Exercise 2.43 • For the Lie algebra sl(n,R) show that Bsl(n,R)(X,Y ) =
2nTr(XY ). Conclude that sl(n,R) is a semi-simple Lie algebra.

• For the Lie algebra su(n) show that Bsu(n)(X,Y ) = 2nRe(Tr(XY )).
Conclude that su(n) is a semi-simple Lie algebra.

Exercise 2.44 sl(n,R) is a simple Lie algebra.
Let (Ei,j)1≤i,j≤n be the canonical basis of gl(Rn). Consider a non-zero

ideal a of sl(n,R). Up to a change of a in a⊥ we can assume that dim(a) ≥
n2−1

2
.
• Show that a possess an element X which is not diagonal.
• Compute [[X,Ei,j], Ei,j] and conclude that some Ei,j with i 6= j belongs

to a.
• Show that Ek,l, Ek,k − El,l ∈ a when k 6= l. Conclude.

2.11 Complex Lie algebras

We worked out the notions of solvable, nilpotent, simple and semi-simple real
Lie algebras. The definitions go through for Lie algebras defined over any
field k, and all the result of section 2.10 are true for k = C.

Let h be a complex Lie algebra. The Killing form is here a symmetric
C-bilinear map Bh : h × h → C defined by (2.23), where Tr : glC(h) → C is
the trace defined on the C-linear endomorphism of h.

Theorem 2.40 is valid for the complex Lie algebras: a complex Lie algebra
is direct sum of simple ideals if and only if its Killing form is non-degenerate.

A usefull toll is the complexification of real Lie algebras. If g is a real
Lie algebra, the complexified vector space gC := g ⊗ C carries a canonical
structure of complex Lie algebras. We see easily that the Killing forms Bg

and BgC coincide on g:

BgC(X,Y ) = Bg(X, Y ) for all X, Y ∈ g. (2.24)
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With (2.24) we see that a real Lie algebra g is semi-simple if and only if
the complex Lie algebra gC is semi-simple.

3 Semi-simple Lie groups

Definition 3.1 A connected Lie group G is semi-simple (resp. simple) if its
Lie algebra g is semi-simple (resp. simple).

If we use Theorem 2.40 and Proposition 2.25 we have the following equiva-
lent characterization of semi-simple Lie group that will be used in the lecture
of J. Maubon (see Proposition 6.3).

Proposition 3.2 A connected Lie group G is semi-simple if and only if G
does not have non-trivial connected normal abelian Lie subroup.

In particular the center ZG of a semi-simple Lie group is discrete. We
have the following refinement for the simple Lie groups.

Proposition 3.3 A normal subgroup A of a (connected) simple Lie Group
G which is not equal to G belongs to the center Z of G.

Proof : Let Ao be subset of A defined as follow : a ∈ Ao if there exits
a continuous curve c(t) in A with c(0) = e and c(1) = a. Obviously Ao is
a path-connected subgroup of G, so according to Theorem 2.23 Ao is a Lie
subgroup of G. If c(t) is continuous curve in A, gc(t)g−1 is also a continuous
curve in A for all g ∈ G, and then Ao is a normal subgroup of G. From
Proposition 2.25 we know that the Lie algebra of Ao is an ideal of g, hence
is equal to {0} since g is simple and A 6= G. We have proved that Ao = {e},
which means that every continuous curve in A is constant. For every a ∈ A
and all continous curve γ(t) in G, the continuous curve γ(t)aγ(t)−1 in A must
be constant. It proves that A belongs to the center of G. ¤

We come back to the exact sequence (2.22).

Lemma 3.4 If g is a semi-simple Lie algebra, the vector space of derivation
Der(g) is equal to ad(g).

Proof : Let D be a derivation of g. Since Bg is non-degenerate there
exist a unique XD ∈ g such that Tr(Dad(Y )) = Bg(XD, Y ), for all Y ∈ g.
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Now we compute

Bg([XD, Y ], Z]) = Bg(XD, [Y, Z]) = Tr(Dad([Y, Z]))

= Tr(D[ad(Y ), ad(Z)])

= Tr([D, ad(Y )]ad(Z)) (1)

= Tr(ad(DY )ad(Z)) (2)

= Bg(DY, Z).

(1) is a general fact about the trace: Tr(A[B,C]) = Tr([A,B]C) for any
A,B, C ∈ gl(g). (2) uses the definition of a derivation (see (2.21)). Using
now the non-degeneracy of Bg we get D = ad(XD). ¤

The equality of Lie algebras ad(g) = Der(g) tells us that the adjoint group
is equal to identity component of the automorphism group: Ad(g) = Aut(g)o.

Lemma 3.5 If G is a (connected) semi-simple Lie group, it’s center ZG is
discrete and the adjoint group as zero center.

Proof :The center Z(G) is discrete because the semi-simple Lie algebra
g as zero center. Let Ad(g) be an element of the center of Ad(g): we have

Ad(expG(X)) = Ad(g)Ad(expG(X))Ad(g)−1 = Ad(g expG(X)g−1)

= Ad(expG(Ad(g)X))

for any X ∈ g. So expG(−X) expG(Ad(g)X) ∈ Z(G), ∀X ∈ g. But since
Z(G) is discrete it implies that expG(X) = expG(Ad(g)X)), ∀X ∈ g : g
commutes with any element of expG(g). Since expG(g) generates G, we have
finally that g ∈ Z(G) and so Ad(g) = 1. ¤

The important point here is that a (connected) semi-simple Lie group is
a central extension by a discrete subgroup of a quasi-algebraic group. The
Lie group Aut(g) is defined by finite polynomial identities in GL(g) : it is
an algebraic group. And Ad(g) is a connected component of Aut(g) : it is
a quasi-algebraic group. There is an important case where the Lie algebra
structure impose some restriction on the center.

Theorem 3.6 (Weyl) Let G be a connected Lie group such that Bg is neg-
ative definite. Then G is a compact semi-simple Lie group and the center
ZG is finite.

There are many proofs, for example [2][Section II.6], [1][Section 3.9]. Here
we only stress that the condition “Bg is negative definite” imposes that
Aut(g) is a compact subgroup of GL(g), hence Ad(g) is compact. Now if
we consider the exact sequence 0 → ZG → G → Ad(g) → 0 we see that G is
compact if and only if ZG is finite.
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Definition 3.7 A real Lie algebra is compact if its Killing form is negative
definite.

3.1 Cartan decomposition on subgroups of GL(Rn)

Let Symn be the vector subspace of gl(Rn) formed by the symmetric en-
domorphisms, and let Sym+

n be the open subspace of Symn formed by the
positive definite symmetric endomorphisms. Consider the exponential e :
gl(Rn) → GL(Rn). We compute its differential.

Lemma 3.8 For any X ∈ gl(Rn), the tangent map TXe : gl(Rn) → gl(Rn)

is equal to eX
(

1−e−ad(X)

ad(X)

)
. In particular, TXe is a singular map if and only if

the adjoint map ad(X) : gl(Rn) → gl(Rn) has a non-zero eigenvalue belonging
to 2iπZ.

Proof : Consider the smooth functions F (s, t) = es(X+tY ), and f(s) =
∂F
∂t

(s, 0): we have f(0) = 0 and f(1) = TXe(Y ). If we differentiate F first
with respect to t, and after with respect to s, we find that f satisfies the
differential equation f ′(s) = Y esX + Xf(s) which equivalent to

(e−sXf)′ = e−sXY e−sX = e−s ad(X)Y.

Finally we find f(1) = eX(
∫ 1

0
e−s ad(X)ds)Y . ¤

It is easy exercise to show that exponential map realize a one-to-one map
from Symn onto Sym+

n . The last Lemma tells us that TXe is not singular for
every X ∈ Symn. So we have prove the

Lemma 3.9 The exponential map A 7→ eA realizes a smooth diffeomorphism
from Symn onto Sym+

n .

Let O(Rn) the orthogonal group : k ∈ O(Rn) ⇐⇒ tkk = Id. Every
g ∈ GL(Rn) decomposes in a unique manner as g = kp where k ∈ O(Rn) and
p ∈ Sym+

n is the square root of tgg. The map (k, p) 7→ kp defines a smooth
diffeomorphism from O(Rn)× Sym+

n onto GL(Rn). If we use Lemma 3.9, we
get the following

Proposition 3.10 (Cartan decomposition) The map

O(Rn)× Symn −→ GL(Rn) (3.25)

(k, X) 7−→ keX

is a smooth diffeomorphism.
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We will now extend the Cartan decomposition to an algebraic4 subgroup
G of GL(Rn) which is stable under the transpose map. In other term G is
stable under the automorphism Θo : GL(Rn) → GL(Rn) defined by

Θo(g) = tg−1. (3.26)

The classical groups like SL(n,R), O(p, q), Sp(R2n) fall into this category.
The Lie algebra g ⊂ gl(Rn) of G is stable under the transpose map, so we
have g = k⊕ p where k = g ∩ o(n,R) and p = g ∩ Symn.

Lemma 3.11 Let X ∈ Symn such that eX ∈ G. Then etX ∈ G for every
t ∈ R : in other word X ∈ p.

Proof : The element eX can be diagonalized : there exist g ∈ GL(Rn)
and a sequence of real number λ1 . . . λn such that etX = g Diag(etλ1 , . . . , etλn)g−1

for all t ∈ R (here Diag(etλ1 , . . . , etλn) is a diagonal matrix). From the hypoth-
esis we have that Diag(etλ1 , . . . , etλn) belongs to the algebraic group g−1Gg
when t ∈ Z. Now it an easy fact that for any polynomial in n-variables P , if
φ(t) = P (etλ1 , . . . , etλn) = 0 for all t ∈ Z, then φ is identically equal to 0. So
we have prove that etX ∈ G for every t ∈ R whenever eX ∈ G. ¤

Consider the Cartan decomposition g = keX of an element g ∈ G. Since G
is stable under the transpose map e2X = tgg ∈ G. ¿From Lemma 3.11 we get
that X ∈ p and k ∈ G∩O(Rn). Finally, if we restrict the diffeomorphism 3.25
to the submanifold (G∩O(Rn))×p ⊂ O(Rn)×Symn we get a diffeomorphism

(G ∩O(Rn))× p
∼−→ G. (3.27)

Let K be the connected Lie subgroup of G associated to the subalgebra
k: K is equal to the identity component of the compact Lie group G∩O(Rn)
hence K is compact. If we restrict the diffeomorphism (3.27) to the identity
component Go of G we get the diffeomorphism

K × p
∼−→ Go. (3.28)

3.2 Cartan involutions

We start again with the situation of a closed subgroup G of GL(Rn) stable
under the transpose map A 7→ tA. Then the lie algebra g ⊂ gl(Rn) of G is
also stable under the transpose map.

4i.e. defined by a finite number of polynomial equalities.
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Proposition 3.12 If the Lie algebra g as a center reduced to 0, then g is
semi-simple. In particular, the bilinear map (X, Y ) 7→ Bg(X, tY ) defines a
scalar product on g. Moreover if we consider the transpose map D 7→ tD on
gl(g) defined by this scalar product, we have ad(tX) = tad(X) for all X ∈ g.

Proof : Consider the scalar product on g defined by (X,Y )g := Tr(tXY )
where Tr is the canonical trace on gl(Rn). With the help of (−,−)g, we
have a transpose map D 7→ TD on gl(g): (D(X), Y )g = (X, TD(Y ))g for all
X, Y ∈ g and D ∈ gl(g). A small computation shows that Tad(X) = ad(tX),
and then Bg(X, tY ) = Tr′(ad(X) Tad(Y )) is a symmetric bilinear map on g×g

(here Tr′ is the trace map on gl(g)). If g as zero center then Bg(X, tX) > 0
if X 6= 0. Let D 7→ tD be the transpose map on gl(g) defined by this scalar
product. We have

Bg(ad(X)Y, tZ) = −Bg(Y, [X, tZ]) = Bg(Y, t[tX, Z]),

for all X,Y, Z ∈ g: in other terms ad(tX) = tad(X). ¤

Definition 3.13 A linear map τ : g → g on a Lie algebra is an involution
if τ is an automorphism of the Lie algebra g and τ 2 = 1.

When τ is an involution of g, we define the bilinear map

Bτ (X,Y ) := −Bg(X, τ(Y )) (3.29)

which is symmetric. We have the decomposition

g = gτ
1 ⊕ gτ

−1 (3.30)

where gτ
±1 = {X ∈ g | τ(X) = ±X}. Since τ ∈ Aut(g) we have

[gτ
ε , g

τ
ε′ ] ⊂ gτ

εε′ for all ε, ε′ ∈ {1,−1}, (3.31)

and
Bg(X, Y ) = 0 for all X ∈ gτ

1, Y ∈ gτ
−1. (3.32)

The subspace5 gτ is a sub-algebra of g, gτ
−1 is a module for gτ through the

adjoint action, and the subspace gτ and gτ
−1 are orthogonal with respect to

Bτ .

Definition 3.14 An involution θ on a Lie algebra g is a Cartan involution
if the symmetric bilinear map Bθ defines a scalar product on g.

5We will just denote by gτ the subalgebra gτ
1 .
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Note that the existence of a Cartan involution implies the semi-simplicity
of the Lie algebra.

Example : θo(X) = −tX is an involution on the Lie algebra gl(Rn). We
prove in Proposition 3.12 that if a Lie sub-algebra g ⊂ gl(Rn) is stable under
the transpose map and has zero center, then the linear θo restricted to g is
a Cartan involution. It is the case, for example, of the subalgebras sl(n,R)
and o(p, q).

In the other direction, if a semi-simple Lie algebra g is equipped with a
Cartan involution θ, a small computation shows that

tad(X) = −ad(θ(X)), X ∈ g,

where A 7→ tA is the transpose map on gl(g) defined by the scalar product
Bθ. So the subalgebra ad(g) ⊂ gl(g), which is isomorphic to g, is stable
under the transpose map. Conclusion : for a real Lie algebra g with zero
center, the following statements are equivalent :

• g can be realized as a subalgebra of matrices stable under the transpose
map,

• g is a semi-simple Lie algebra equipped with a Cartan involution.

In the next section, we will see that any real semi-simple Lie algebra has
a Cartan involution.

3.3 Compact real forms

We have seen the notion of complexification of a real Lie algebra. In the other
direction, a complex Lie algebra h can be consider as a real Lie algebra and
we denote it by hR. The behavior of the Killing form with respect to this
operation is

BhR(X, Y ) = 2 Re(Bh(X,Y )) for all X, Y ∈ h. (3.33)

For a complex Lie algebra h, we speak of anti-linear involutions : it is the
involutions of hR which anti-commute with the complex multiplication. If τ
is an anti-linear involution of h then hτ

−1 = ihτ , i.e.

h = hτ ⊕ ihτ . (3.34)

Definition 3.15 A real form of a complex Lie algebra h is a real subalgebra
a ⊂ hR such that h = a⊕ ia, i.e. aC ' h. A compact real form of a complex
Lie algebra is a real form which is a compact Lie algebra (see Def. 3.7).
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For any real form a of h, there exist a unique anti-linear involution τ
such that hτ = a. Equation (3.34) tells us that τ 7→ hτ is a one-to-one
correspondence between the anti-linear involutions of h and the real forms of
h. If a is a real form of a complex Lie algebra h, we have like in (2.24) that

Ba(X,Y ) = Bh(X,Y ) for all X, Y ∈ a (3.35)

In particular Bh take real values on a× a.

Lemma 3.16 Let θ an anti-linear involution of a complex Lie algebra h. θ
is a Cartan involution of the real Lie algebra hR if and only if hθ is a compact
real form of h.

Proof : Consider the decomposition h = hθ ⊕ ihθ and X = a + ib with
a, b ∈ hθ. We have

BhR(X, θ(X)) = 2(Bh(a, a) + Bh(b, b)) (1)

= 2(Bhθ(a, a) + Bhθ(b, b)) (2).

(1) and (2) are consequence of (3.33) and (3.35). So we see that −Bθ
hR is

positive definite on hR if and only if the Killing form Bhθ is negative definite.
¤

Example : the Lie algebra sl(n,R) is a real form of sl(n,C). The complex
Lie algebra sl(n,C) as other real forms like

• su(n) = {X ∈ sl(n,C) | tX + X = 0},
• su(p, q) = {X ∈ sl(n,C) | tXIp,q+Ip,qX = 0}, where Ip,q =

(
Idp 0
0 −Idq

)
.

Here the anti-linear involutions are respectively σ(X) = X, σa(X) =
−tX, and σb(X) = −Ip,q

tXIp,q. Among the real forms sl(n,R), su(n), su(p, q)
of sl(n,C), su(n) is the only one which is compact.

Let g be a real Lie algebra, and let σ be the anti-linear involution of gC
associated to the real form g. We have a one-to-one correspondence

τ 7→ u(τ) := (gC)
τ◦σ (3.36)

between the set of involution of g and the set of real forms of gC which are
σ-stable. If τ is an involution of g, we consider its C-linear extension to gC
(that we still denote by τ). The composite τ ◦σ = σ ◦ τ is then an anti-linear
involution of gC which commutes with σ: hence the real form u(τ) := (gC)

τ◦σ

is stable under σ. If a is a real form on gC defined by a anti-linear involution
ρ which commutes with σ, then σ ◦ ρ is a C-linear involution on gC which
commutes with σ: then it is the complexification of an involution τ on g,
and we have a = u(τ).
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Proposition 3.17 Let g be a real semi-simple Lie algebra. Let τ be an
involution of g and let u(τ) be the real form of gC defined by (3.36). The
following statements are equivalents

• τ is a Cartan involution of g,
• u(τ) is compact real form of gC (which is σ-stable).

Proof : If g = gτ ⊕ gτ
−1 is the decomposition related to the eigen-spaces

of τ then u(τ) = gτ ⊕ i gτ
−1. Take X = a+ ib ∈ u(τ) with a ∈ gτ and b ∈ gτ

−1.
We have

Bu(τ)(X, X) = BgC(X, X) (1)

= Bg(a, a)−Bg(b, b) (2)

= −Bτ
g (X̃, X̃),

where X̃ = a + b ∈ g. (1) is due to (3.35). In (2) we use (2.24) and the
fact that gτ and gτ

−1 are Bg-orthogonal. Then we see that Bu(τ) is negative
definite if and only if Bτ

g is positive definite. ¤

Now we give the way we can prove that a real semi-simple Lie algebra g

has a Cartan involution. Let gC be the complexification of g and let σ the
anti-linear involution of gC corresponding to the real form g. We now from
Proposition 3.17 that it is equivalent to look to the σ-stable compact real
forms of gC. We use first the following fundamental fact.

Theorem 3.18 Any complex semi-simple Lie algebra has a compact real
form.

A proof can be found in [3][Section 7.1]. The existence of a σ-stable
compact real form is given by the following

Lemma 3.19 Let τ : gC → gC be anti-linear involution corresponding to a
compact real form of gC. There exists φ ∈ Aut(gC) such that the anti-linear
involution φτφ−1 commutes with σ. Hence φτφ−1|g is a Cartan involution of
to g.

Proof : The complex vector space gC is equipped with the hermitian
metric : (X, Y ) → BgC(X, τ(Y )). It easy to check that τσ belongs to the
intersection

Aut(gC) ∩ {hermitian endomorphism} = {φ ∈ Aut(gC) | τφτ = φ−1}
(3.37)

ρ = (τσ)2 is positive definite. Following Lemma 3.11, the one parameter
subgroup r ∈ R 7→ ρr belongs to the identity component Aut(gC)o (since
Aut(gC) is an algebraic subgroup of GL((gC)

R)). We leave as an exercise to
check that ρr commutes with τσ for all r ∈ R. Since τρrτ = ρ−r (see (3.37))
it is easy to see that ρrτρ−r commutes with σ if r = −1

4
. ¤
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3.4 Cartan decomposition at the group level

Let G be a connected semi-simple Lie group with Lie algebra g. Let θ be a
Cartan involution of g. So we have g = k ⊕ p where k = gθ is a subalgebra
of g and p = gθ

−1 is a k-module. Let K be the connected Lie subgroup of G
associated to k. This section is devoted to the proof of the following

Theorem 3.20 (a) K is a closed subgroup of G
(b) the mapping K×p → G given by (k, X) 7→ k expG(X) is a diffeomor-

phism onto
(c) K contains the center Z of G
(d) K is compact if and only if Z is finite
(e) there exists a Lie group automorphism Θ of G, with Θ2 = 1 and with

differential θ
(f) the subgroup of G fixed by Θ is K.

Proof : The Lie group Ĝ = Ad(g) which is equal to the image of G by
the adjoint action is the identity component of Aut(g). The Lie algebra ĝ

of Ĝ which is equal to the subspace of derivations Der(g) ⊂ gl(g) is stable
under the transpose map A 7→ tA on gl(g) associated to the scalar product

Bθ on g (since −tad(X) = ad(θ(X))). Since Ĝ is generated by ead(X), X ∈ g,

Ĝ is stable under the group morphism A 7→ tA−1. We have ĝ = k̂⊕ p̂ where
k̂ = {A ∈ ĝ | tA = −A} and p̂ = {A ∈ ĝ | tA = A}. We have of course

ĝ = ad(g), k̂ = ad(k) and p̂ = ad(p). Let K̂ be the compact Lie group equal

to Ĝ ∩ O(g) : its Lie algebra is k̂. Since Aut(g) is an algebraic subgroup of
GL(g), (3.28) applies here and gives the diffeomorphism

K̂ × p̂ −→ Ĝ (3.38)

(k, A) 7−→ keA.

We consider the closed Lie subgroup

K := Ad−1(K̂)

of G : its Lie algebra is k. By definition K contains the center Z = Ad−1(Id)

of G. If we take the pull-back of (3.38) trough Ad : G → Ĝ we get the
diffeomorphism

K × p −→ G (3.39)

(k, X) 7−→ k expG(X),

which proves that K is connected since G is connected : hence K is the
connected Lie subgroup of G associated to the Lie subalgebra k. Finally Z
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belongs to K and K/Z ' K̂ is compact: the point (a), (b), (c) and (d) are
proved.

Let Θ : G → G defined by Θ(k expG(X)) = k expG(−X) for k ∈ K and
X ∈ p. We have obviously Θ2 = 1 and Ad(Θ(g)) = tAd(g)−1. If we take
g1, g2 in G we see that

Ad(Θ(g1g2)Θ(g2)
−1Θ(g1)

−1) =
(

t(Ad(g1)Ad(g2))
−1

) (
tAd(g2)

−1
)

t
(
Ad(g1)

−1
)

= 1.

So Θ(g1g2)Θ(g2)
−1Θ(g1)

−1) ∈ Z for every g1, g2 in G. Since G is connected
and Z is discrete it gives Θ(g1g2)Θ(g2)

−1Θ(g1)
−1 = 1: (e) and (f) are proved.

¤

4 Invariant connections

A connection ∇ on the tangent bundle TM of a manifold M is a differential
linear operator

∇ : Γ(TM) −→ Γ(T∗M ⊗TM) (4.40)

satisfying th Leibnitz’s rule: ∇(fs) = df⊗s+f∇s for every f ∈ C∞(M) and
s ∈ Γ(TM). Here Γ(−) denotes the space of sections of the corresponding
bundle. The contraction of ∇s by v ∈ Γ(TM) is a vectors field on M denoted
∇vs.

The torsion of a connection ∇ on TM is the (2, 1)-tensor T∇ defined by

T∇(u, v) = ∇uv −∇vu− [u, v], (4.41)

for all vectors fields u, v on M . The curvature of a connection ∇ on TM is
the (3, 1)-tensor R∇ defined by

R∇(u, v) = [∇u,∇v]−∇[u,v], (4.42)

for all vectors fields u, v on M . Here R∇(u, v) is a differential operator acting
on Γ(TM) which commutes with the multiplication by functions on M : so
it is defined by the action of an element of Γ(End(TM)). For convenience
we denote R∇(u, v) ∈ Γ(End(TM)) this element. We can specialize the
curvature tensor R∇ at each m ∈ M : R∇

m(U, V ) ∈ End(TmM) for each
U, V ∈ TmM .

4.1 Connections invariant under a group action

Suppose now that a lie group G acts smoothly on a manifold M . The cor-
responding action of G on the vectors spaces C∞(M), Γ(TM) and Γ(T∗M)
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is
g · f(m) = f(g−1m), m ∈ M,

g · s(m) = Tg−1mg(s(g−1m)), m ∈ M,

and
g · ξ(m) = ξ(g−1m) ◦Tmg−1, m ∈ M,

for every f ∈ C∞(M), s ∈ Γ(TM)), ξ ∈ Γ(T∗M) and g ∈ G. Here
we denote Tng the differential at n ∈ M of the smooth map m 7→ gm.
Note that the G-action is compatible with the canonical bracket 〈−,−〉 :
Γ(T∗M)× Γ(TM) → C∞(M): 〈g · ξ, g · s〉 = g · 〈ξ, s〉. We still denote g the
action of g ∈ G on Γ(T∗M ⊗TM).

Definition 4.1 A connection ∇ on the tangent bundle TM is G-invariant
if

g∇g−1 = ∇, for every g ∈ G. (4.43)

This condition is equivalent to asking that ∇g·v(g · s) = g · (∇vs) for every
vectors fields s, v on M and g ∈ G.

For every X ∈ g, the differential of t → expG(tX) at t = 0 defines
linear operators on C∞(M), Γ(TM) and Γ(T∗M), all denoted L(X). For
f ∈ C∞(M) and s ∈ Γ(M) we have L(X)f = XM(f) and L(X)s = [XM , s]
where XM is the vectors field on M defined at Section 2.4. The map X 7→
L(X) is a Lie algebra morphism :

[L(X),L(Y )] = L([X,Y ]), for all X,Y ∈ g. (4.44)

Definition 4.2 The moment of a G-invariant connection ∇ on TM is the
linear endomorphism of Γ(TM) defined by

Λ(X) = L(X)−∇XM
, X ∈ g. (4.45)

Since the Λ(X), X ∈ g commute with the multiplication by functions
on M , we can and we will see the Λ(X) as element of Γ(End(TM)). The
invariance condition (4.43) tells us that the map Λ : g → Γ(End(TM)) is
G-equivariant:

Λ(Ad(g)Y ) = gΛ(Y )g−1, for every (g, Y ) ∈ G× g. (4.46)

If we differentiate (4.46) at g = 1, we get

Λ([X, Y ]) = [L(X), Λ(Y )], for every X, Y ∈ g. (4.47)
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We finish this section by computing the values of the torsion and curvature
on vectors fields generated by the G-action. A direct computation gives

T∇(XM , YM) = [X, Y ]M − Λ(X)YM + Λ(Y )XM . (4.48)

for every X, Y ∈ g. Now using (4.44) and (4.47) we have for the curvature

R∇(XM , YM) = [Λ(X), Λ(Y )]− Λ([X, Y ]), (4.49)

for every X, Y ∈ g.

4.2 Invariant Levi-Civita connections

Suppose now that the manifold M carries a Riemannian structure invariant
under the Lie group G. The scalar product of two vectors fields u, v is just
denote (u, v). The invariance condition is that the equality

g · (u, v) = (g · u, g · v) (4.50)

holds in C∞(M) for u, v ∈ Γ(TM) and g ∈ G. If we differentiate (4.50) at
g = e we get

XM(u, v) = ([XM , u], v) + (u, [XM , v]). (4.51)

Let∇LC the Levi-Civita connection on M relative to the Riemannian met-
ric: it is the unique torsion free connection which preserve the Riemannian
metric. Since the Riemannian metric is G-invariant, the connection g∇LCg−1

preserves also the Riemannian metric and is torsion free for every g ∈ G.
Hence ∇LC is a G-invariant connection. Recall that for u, v ∈ Γ(TM) the
vectors field ∇LC

u v is defined by the relations

2(∇LC

u v, w) = ([u, v], w)− ([v, w], u)+ ([w, u], v)+u(v, w)+ v(u,w)−w(u, v).
(4.52)

If we take u = XM and v = YM in the former relation we find with the help
of (4.51) that

2(∇LC

XM
YM , w) = ([X, Y ]M , w)− w(XM , YM). (4.53)

So we have proved the

Proposition 4.3 For any X, Y ∈ g we have

∇LC

XM
YM =

1

2

(
[X, Y ]M −−−→grad(XM , YM).

)
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5 Invariant connections on homogeneous spaces

The main references here are [2] and [4].

5.1 Existence of invariant connections

We work here with the homogeneous space M = G/H where H is a closed
subgroup with Lie algebra h of a Lie group G. We denote by π : G → M
the quotient map. The quotient vector space g/h is equipped with the H-
action induced by the adjoint action. We consider the space G × g/h with
the following H-action: h · (g, X) = (gh−1, Ad(h)X). This action is proper
and free so the quotient G×H g/h is a smooth manifold: the class of (g, X)
in G ×H g/h is denoted [g, X]. We use here the following G-equivariant
isomorphism

G×H g/h −→ TM (5.54)

[g, X] 7−→ d

dt
π(g expG(tX))|t=0.

Using the G-equivariant isomorphism (5.54) we have

Γ(TM)
∼−→ (C∞(G)⊗ g/h)H (5.55)

s 7→ s̃

and

Γ(End(TM))
∼−→ (C∞(G)⊗ End(g/h))H (5.56)

A 7→ Ã.

For example, the vectors field XM , X ∈ g give rise through the isomorphism
(5.55) to the functions X̃M(g) = −Ad(g)−1X mod g/h.

Let ∇ be a G-invariant connection on the tangent bundle TM , and let
Λ : g → Γ(End(TM)) be the corresponding G-equivariant map defined by

(4.45). Let Λ̃ : g → (C∞(G) ⊗ End(g/h))H be the map Λ through the

identifications (5.56). The mapping Λ̃ is G-equivariant and each Λ̃(X), X ∈ g

is a H-equivariant map from G to End(g/h):

Λ̃(Ad(g)X)(g′) = Λ̃(X)(g−1g′) (5.57)

Λ̃(X)(gh−1) = Ad(h) ◦ Λ̃(X)(g) ◦ Ad(h)−1

for every g, g′ ∈ G, h ∈ H and X ∈ g.
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Definition 5.1 Let λ : g → End(g/h) the map defined by λ(X) = Λ̃(X)(e).

From (5.57), we see that λ is H-equivariant and determines completely
Λ :

Λ̃(X)(g) = λ(Ad(g)−1X). (5.58)

So we have proved that the G-invariant connection ∇ is uniquely deter-
mined by the mapping λ : g → End(g/h).

Proposition 5.2 (a) The linear map λ : g → End(g/h) is H-equivariant,
and when restrict to h is equal to the adjoint action.

(b) A linear map λ satisfying the conditions of (a) determine a unique
G-invariant connection on T(G/H).

Proof : We have Λ(X) = L(X) − ∇XM
. So if XM(m) = 06, we have

Λ(X)m = L(X)m as endomorphism of TmM . When m = e ∈ M , XM(e) = 0
if and only if X ∈ h, and then the endomorphism L(X)e of TeM = g/h is
equal to ad(X). So λ(X) = ad(X) for all X ∈ h. The first point is proved.

Let λ : g → End(g/h) be a linear map satisfying the conditions (a), and
let Λ : g → Γ(End(TM)) be the corresponding G-equivariant map defined
by λ : for g ∈ M and X ∈ g the map Λ(X)g is

TgM −→ TgM

[ g,Y] 7−→ [g, λ(g−1X)Y ].

By definition we have Λ(X)g = L(X)g when XM(g) = 0. Finally we define a
G-invariant connection ∇ on TM by posing for any vectors field v, s on M
and m ∈ M :

(∇vs)|m = (L(X)s)|m − Λ(X)m(s|m),

where X ∈ g is chosen so that XM(m) = s|m. ¤
Counter example : Consider the homogeneous space7 M = SL(2,R)/H

where

H = {
(

a b
0 a−1

)
| a, b ∈ R, a 6= 0}.

We are going to prove that the tangent bundle TM does not carry a G-
invariant connection. Consider the basis (e, f, g) of sl(2,R), where

e =

(
0 0
1 0

)
, f =

(
1 0
0 −1

)
, g =

(
0 1
0 0

)
.

6XM (m) = 0 if and only if m is fixed by the 1-parameter subgroup expG(RX)
7The manifold M is diffeomophic to the circle
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We have [e, f ] = 2e, [g, f ] = −2g, and [e, g] = −f . Since the Lie alge-
bra of H is h := Rf ⊕ Rg, we use the identifications sl(2,R)/h ∼= Re and
End(sl(2,R)/h) ∼= R. For the induced adjoint action of h on Re we have :

âd(f) = −2 and âd(g) = 0. We are interested in a map λ : sl(2,R) → R
satisfying

• λ is H-equivariant, i.e. λ([X, Y ]) = 0 whenever X ∈ h.

• λ(X) = âd(X) for X ∈ h.
Theses conditions can not be fullfilled since the first point gives λ(f) =

λ([g, e]) = 0, and with the second point we have λ(f) = âd(f) = −2.

The previous example shows that some homogeneous spaces do not have
invariant connection. For the remaining of Section 5 we work with the fol-
lowing

Assumption 5.3 The subalgebra h has a H-invariant supplementary sub-
space m in g.

In [4] the homogeneous spaces G/H are called of reductive type when
the assumption 5.3 is satisfied. This hypothesis garanties the existence of
invariant connections as we will see now.

Let X 7→ Xm denotes the H-equivariant projection onto m relatively to
h. This projection induces an H-equivariant isomorphism g/h ' m. Then
a G-invariant connection on T(G/H) is determined uniquely by a linear
H-equivariant mapping λ : g → End(m) which extends the adjoint action
ad : h → End(m). So λ is completely determined by its restriction

λ|m : m → End(m)

The following definition defines a family∇a, a ∈ R of invariant connection
when G/H is an homogeneous spaces of reductive type.

Definition 5.4 Let G/H be an homogeneous spaces of reductive type. For
any a ∈ R, we define a H-equivariant mapping λa : g → End(m) by λa(X) =
ad(X) for X ∈ h and

λa(X)Y = a[X,Y ]m for X,Y ∈ m.

We denote ∇a the G-invariant connection associated to λa.

The connection ∇0 is called the canonical connection. Note that the
connections ∇a, a ∈ R are distincts except when the bracket [−,−]m = 0 is
identically equal to 0.

We finish this section by looking to the torsion free invariant connections.
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Proposition 5.5 Let ∇ be a G-invariant connection on T(G/H) and let
λ : g → End(m) be the associated H-equivariant map. The connection ∇ is
torsion free if and only if we have

[X,Y ]m = λ(X)Y − λ(Y )X for all X,Y ∈ m. (5.59)

Condition (5.59) is equivalent to asking that

λ(X)Y =
1

2
[X, Y ]m + b(X,Y ), (5.60)

where b : m×m → m is a symmetric bilinear map.

Proof : The vectors fields XM , X ∈ g generates the tangent space of
M = G/H, hence the connection is torsion free if and only if T∇(XM , YM) =
0 for every X,Y ∈ g. Following (4.48) the condition is

[X, Y ]M = Λ(X)YM − Λ(Y )XM for all X, Y ∈ g. (5.61)

A small computations shows that the function X̃M : G → m associated
to the vectors field XM via the isomorphism (5.55) is defined by X̃M(g) =

−[Ad(g)−1X]m. For the function ˜λ(X)YM : G → m we have

˜λ(X)YM(g) = −λ(Ad(g)−1X)[Ad(g)−1Y ]m, for all X,Y ∈ g.

So condition (5.61) is equivalent to

[X, Y ]m = λ(X)Ym − λ(Y )Xm for all X,Y ∈ g. (5.62)

It is now easy to see that (5.62) is equivalent to (5.59) and (5.60). ¤

Corollary 5.6 Let ∇a be the G-invariant connection introduced in Defini-
tion 5.4. After Proposition 5.5, we see that

• if the bracket [−,−]m is identically equal to 0 : ∇a = ∇0 is torsion free.
• if the bracket [−,−]m is not equal to 0, ∇a is torsion free if and only if

a = 1
2
.

5.2 Geodesics on an homogeneous spaces

Let∇ be a G-invariant connection on M = G/H associated to a H-equivariant
map λ : m → End(m). A smooth curve γ : I → M is a geodesic relarive to a
∇ if

∇γ′(γ
′) = 0. (5.63)
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The last condition can be understood locally as follow. Let t0 ∈ I and
let U ⊂ M be a neighborhood of γ(t0) : if U is small enough there exists a
vectors field v on U such that v(γ(t)) = γ′(t) for t ∈ I closed to t0. Then for
t near t0, condition (5.63) is equivalent to

∇vv|γ(t) = 0. (5.64)

Proposition 5.7 For X ∈ m, we consider the curve γX(t) = π(expG(tX))
on G/H, where π : G → G/H denotes the canonical projection and expG is
the exponential map of the lie group G. The curve γX is a geodesic for the
connection ∇, if and only if λ(X)X = 0.

Proof : The vectors field XM , which is defined on M , satisfies XM(γX(t)) =
γ′X(t) for t ∈ R. Since ∇XM

XM = Λ(X)XM we get

∇XM
XM |γX(t) = [γX(t), λ(X)X] in TM ' G×H m,

so the conclusion follows. ¤

Corollary 5.8 Let ∇a be the connection on G/H defined in Def. (5.4).
Then

• the maximal geodesic are the curves γ(t) = π(g expG(tX)), where g ∈ G
and X ∈ m.

• the exponential mapping expē : m → G/H is defined by expē(X) =
π(expG(X)).

5.3 Levi-civita connection on homogeneous spaces

We suppose now that one has a Ad(H)-invariant scalar product on the sup-
plementary subspace m of h, that we just denote (−,−).

We define a G-invariant Riemannian metric (−,−)M on M = G/H as
follows. Using the identification G ×H m ' TM , we take (v, w)M = (X, Y )
for the tangent vector v = [g, X] and w = [g, Y ] of TgM . Let ∇LC the
Levi-Civita connection on M relative to this Riemannian metric. Since the
Riemannian metric is G-invariant, the connection ∇LC is G-invariant (see
Section 4.2). Let λLC : g → End(m) the H-equivariant map associated to
the connection ∇LC. Since ∇LC preserves the metric we have

λLC(X) ∈ so(m) for every X ∈ g. (5.65)

Here so(m) denotes the Lie algebra of the orthogonal group SO(m).
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Proposition 5.9 The map λLC is determined by the following conditions:
λLC(X) = ad(X) for X ∈ h and λLC(X)Y = 1

2
[X,Y ]m + bLC(X, Y ) for

X, Y ∈ m, where bLC : m×m → m is the symmetric bilinear map defined by

2(bLC(X, Y ), Z) = ([Z,X]m, Y ) + ([Z, Y ]m, X) X, Y, Z ∈ m. (5.66)

Proof : We uses the decomposition (5.60) together with the fact that
(λLC(X)Y, Z) = −(Y, λLC(X)Z) for X,Y, Z ∈ m. It gives

(bLC(X,Y ), Z)+ (bLC(Z, X), Y ) =
−1

2

(
([X, Y ]m, Z)+ ([X,Z]m, Y )

)
. (5.67)

Now if we interchange X, Y, Z in Z,X, Y and after in Y, Z,X, we get two
other equalities. If we sum them with alternative sign we get on the LHS the
term 2(bLC(X, Y ), Z) and on the RHS we get −([X,Z]m, Y ) − ([Y, Z]m, X).
¤

Example. Suppose that G is a compact Lie group and H is a closed sub-
group. Let (−,−)g be a G-invariant scalar product on g. We take m as the
orthogonal subspace of h. We take on G/H the G-invariant Riemannian met-
ric coming from the scalar product (−,−)g restricted to m. In this situation
we see that the bilinear map bLC vanishes. So, the Levi-Civita connection on
G/H is equal to the connection∇1/2 (see Definition 5.4). Then we know after
Corollary 5.8 that the geodesics on G/H are of the form γ(t) = π(g expG(tX))
with X ∈ m.

5.4 Levi-civita connection on symmetric spaces of the
non-compact type.

We come back to the situation of section 3.4. Let G be a connected semi-
simple Lie group with algebra g. Let Θ : G → G be an involution of G such
that θ = dΘ is a Cartan involution of g. At the Lie algebra level we have the
decomposition g = k ⊕ p where k is the Lie algebra of the closed connected
subgroup K = GΘ and p = {X ∈ g | θ(X) = −X}. We denote by X 7→ Xk

and X 7→ Xp the projections such that X = Xk + Xp for X ∈ g.
We consider here the homogeneous space M = G/K. Since Ad(K) is

compact, the vector subspace p ' TēM carries Ad(K)-invariant scalar prod-
uct that induces G-invariant Rieamannian metric on M . One of them is of
particular interest : the Killing form Bg.

Proposition 5.10 The Levi-Civita connection ∇LC on G/K associated to
any Ad(K)-invariant scalar product on p coincides with the canonical con-
nection ∇0 (see Definition 5.4).
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Proof : Since [p, p] ⊂ k, we have [X,Y ]p = 0 when X,Y ∈ p. After
Proposition 5.9, we have then λLC(X) = ad(Xk) for X ∈ p, which means
that ∇LC = ∇0. ¤

In this setting Corollary 5.8 gives

Corollary 5.11 • All the maximal geodesic on G/K are defined over R :
the Riemannian manifold G/K is completed.

• the exponential mapping expē : p → G/K is defined by expē(X) =
π(expG(X)).

We will now compute the curvature tensor RLC of∇LC. By definition RLC

is a 2-form on M with values in End(TM). We take X, Y ∈ g and look at

RLC(XM , YM) ∈ Γ(End(TM)) or equivalently at the function ˜RLC(XM , YM) :
G → End(p) : (4.49) gives

˜RLC(XM , YM)(g) = −[λLC(g−1X), λLC(g−1X)] + λLC([g−1X, g−1Y ])

= −[ad((g−1X)k), ad((g−1X)k)] + ad([g−1X, g−1Y ]k)

= ad([(g−1X)p, (g
−1Y )p]).

At the point ē ∈ M , the curvature tensor RLC specializes in a map RLC
ē :

p× p → End(p).

Proposition 5.12 For X,Y ∈ p, we have

RLC
ē (X, Y ) = ad([X,Y ]).

We will now compute the sectional curvature when the Riemannian met-
ric on M = G/K is induced by the scalar product on p defined by the
Killing form Bg. The sectional curvature is a real function κ defined on the
Grassmannian Gr2(TM) of 2-dimensional vector subspaces of TM (see []).
If S ⊂ TēM is generated by two orthogonal vectors X, Y ∈ p we have

κ(S) =
Bg(R

LC
ē (X, Y )X, Y )

‖X‖2‖Y ‖2
[1]

=
Bg([[X,Y ], X], Y )

‖X‖2‖Y ‖2
[2]

= − ‖[X,Y ]‖2

‖X‖2‖Y ‖2
[3].

[1] is the definition of the sectional curvature. [2] is due to Proposition
5.12, and [3] follows from the g-invariance of the Killing form and also to the
fact that −Bg defines a scalar product on k.
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Conclusion : The homogeneous manifold G/K, when equipped with
the Riemannian metric induced by the Killing form, is a completed Rie-
mannian manifold with negative sectional curvature.

5.5 Flats on symmetric spaces of the non-compact type

Let M be a Riemmannian manifold and N a connected submanifold of M .
The submanifold N is called totally geodesic if for each geodesic γ : I → M
of M we have for t0 ∈ I

(
γ(t0) ∈ N and γ′(t0) ∈ Tγ(t0)N

)
=⇒ γ(t) ∈ N for all t ∈ I.

We consider now the case of the symmetric space G/K equipped with
the Levi-Civita connection ∇0.

Theorem 5.13 The set of totally geodesic submanifold of G/K contain-
ing ē is in one to one correspondence with the subspaces8 s ⊂ p satisfying
[s, [s, s]] ⊂ s.

For a proof see [2][Section IV.7]. The correspondence works as follows. If
S is a totally geodesic submanifold of G/K, one has RLC

n (u, v)w ∈ TnS for
each n ∈ S and u, v, w ∈ TnS. Then when ē ∈ S one takes s := TēS : the
last condition becomes [[u, v], w] ∈ s for u, v, w ∈ s.

In the other direction, if s is a Lie triple system one sees that gs := [s, s]⊕s

is a Lie subalgebra of g. Let Gs be the connected Lie subgroup of G associated
to gs. One can prove that the orbit S := Gs · ē is a closed submanifold of
G/K which is totally geodesic.

We are interested now in the ”flats” of G/K. These are the totally geo-
desic submanifold with a curvature tensor that vanishes identically. If we use
the last Theorem one sees that the set of flats in G/K passing through ē is
in one to one correspondence with the set of abelian subspaces of p.

We will conclude this section with the

Lemma 5.14 Let s, s′ be two maximal abelian subspaces of p. Then there
exists ko ∈ K such that Ad(ko)s = s′. In particular the subspaces s and s′

have the same dimension.

Proof: first step. Let us show that for any maximal abelian subspace
s there exists X ∈ s such that the stabilizer gX := {Y ∈ g | [X, Y ] = 0}
satisfies gX ∩ p = s. We look at the commuting family ad(X), X ∈ s of

8Such subspace of p are called Lie triple system.
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linear map on g. All these maps are symmetric relative to the scalar product
Bθ := −Bg(·, θ(·)), so they can be diagonalized all together : there exists a
finite set α1, · · · , αr of non-zero linear maps from s to R such that

g = g0 ⊕
r∑

i=1

gαi
,

with gαi
= {X ∈ g | [Z, X] = αi(Z)X, ∀Z ∈ s}. Here the subspace s

belongs to g0 = {X ∈ g | [Z,X] = 0, ∀Z ∈ s}. Since we have assume that s

is maximal abelian in p we have g0∩p = s. For any X ∈ s we have obviously

gX = g0 ⊕
∑

αi(X)=0

gαi
.

If we take X ∈ s such that αi(X) 6= 0 for all i, then gX = g0, hence
gX ∩ p = g0 ∩ p = s.

Second step. Take X ∈ s and X ′ ∈ s′ such that gX ∩ p = s and
gX′ ∩ p = s′. We define the function f(k) = Bg(X

′, Ad(k)X), k ∈ K. Let
k0 be a critical point of f (which exits since Ad(K) is compact). If we
differentiate f at ko we get Bg(X

′, [Y, Ad(ko)X]) = 0, ∀ Y ∈ k. Since Bg is
g-invariant we get Bg([X

′, Ad(ko)X], Y ) = 0, ∀ Y ∈ k, so [X ′, Ad(ko)X] = 0.
Since gAd(ko)X ∩ p = Ad(ko)(g

X ∩ p) = Ad(ko)s, the last equality gives
X ′ ∈ Ad(ko)s. And since Ad(ko)s is an abelian subspace of p we have then

Ad(ko)s ⊂ gX′ ∩ p

⊂ s′.

Finally since s, s′ are two maximal abelian subspaces, the last equality insures
that Ad(ko)s = s′. ¤
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