Symmetric spaces of the non-compact type : Lie groups Université Joseph Fourier, June 2004

Paul-Emile PARADAN

February 13, 2006

Contents

1	Introduction	1
2	Lie groups and Lie algebras: an overview	1
3	Semi-simple Lie groups	20
4	Invariant connections	29
5	Invariant connections on homogeneous spaces	32

1 Introduction

This note is meant to give an introduction to the subjects of Lie groups and equivariant connections on homogeneous spaces. The final goal is the study of the Levi-Civita connection on a symmetric space of the non-compact type. An introduction to the subject of "symmetric space" from the point of view of differential geometry is given in the course of J. Maubon [5].

2 Lie groups and Lie algebras: an overview

In this section, we review the basic notions concerning the Lie groups and the Lie algebras. For a more completed exposition, the reader is invited to consult standard textbook, for example [6], [1] and [3]. **Definition 2.1** A Lie group G is a differentiable manifold¹ which is also endowed with a group structure such that the mappings

$$\begin{array}{cccc} G \times G \longrightarrow & G & , \ (x,y) \longmapsto xy & {
m multiplication} \\ G \longrightarrow & G & , \ x \longmapsto x^{-1} & {
m inversion} \end{array}$$

are smooth.

We can define in the same way the notion of a *topological group*: it is a topological space² which is also endowed with a group structure such that 'multiplication' and 'inversion' mappings are continuous.

The most basic examples of Lie groups are $(\mathbb{R}, +)$, $(\mathbb{C} - \{0\}, \times)$, and the general linear group $\operatorname{GL}(V)$ of a finite dimensional (real or complex) vector space V. The classical groups like

$$\begin{aligned} \mathrm{SL}(n,\mathbb{R}) &= \{g \in \mathrm{GL}(\mathbb{R}^n), \ \mathrm{det}(g) = 1\}, \\ \mathrm{O}(n,\mathbb{R}) &= \{g \in \mathrm{GL}(\mathbb{R}^n), \ {}^t gg = \mathrm{Id}_n\}, \\ \mathrm{U}(n) &= \{g \in \mathrm{GL}(\mathbb{C}^n), \ {}^t \overline{g}g = \mathrm{Id}_n\}, \\ \mathrm{O}(p,q) &= \{g \in \mathrm{GL}(\mathbb{R}^{p+q}), \ {}^t g\mathrm{I}_{p,q}g = \mathrm{I}_{p,q}\}, \ \mathrm{where} \ \mathrm{I}_{p,q} = \begin{pmatrix} \mathrm{Id}_p & 0 \\ 0 & -\mathrm{Id}_q \end{pmatrix} \\ \mathrm{Sp}(\mathbb{R}^{2n}) &= \{g \in \mathrm{GL}(\mathbb{R}^{2n}), \ {}^t gJg = J\}, \ \mathrm{where} \ J = \begin{pmatrix} 0 & -\mathrm{Id}_n \\ \mathrm{Id}_n & 0 \end{pmatrix} \end{aligned}$$

are all Lie groups. It can be proved by hand, or one can use an old Theorem of E. Cartan.

Theorem 2.2 Let G be a closed subgroup of GL(V). Then G is a embedded submanifold of GL(V), and equipped with this differential structure it is a Lie group.

The identity element of any group G will be denote by e. We denote the tangent space of the Lie groups G, H, K at the identity element respectively by: $\mathfrak{g} = \mathbf{T}_e G$, $\mathfrak{h} = \mathbf{T}_e H$, $\mathfrak{k} = T_e K$.

EXAMPLE : The tangent space at the identity element of the Lie groups $GL(\mathbb{R}^n)$, $SL(n, \mathbb{R})$, $O(n, \mathbb{R})$ are respectively

$$\begin{split} \mathfrak{gl}(\mathbb{R}^n) &= \{ \text{endomorphism of } \mathbb{R}^n \}, \\ \mathfrak{sl}(n, \mathbb{R}) &= \{ X \in \mathfrak{gl}(\mathbb{R}^n), \ \operatorname{Tr}(X) = 0 \}, \\ \mathfrak{o}(n, \mathbb{R}) &= \{ X \in \mathfrak{gl}(\mathbb{R}^n), \ {}^tX + X = 0 \}, \\ \mathfrak{o}(p, q) &= \{ X \in \mathfrak{gl}(\mathbb{R}^n), \ {}^tX \operatorname{Id}_{p,q} + \operatorname{Id}_{p,q} X = 0 \}, \text{ where } p + q = n. \end{split}$$

¹All manifolds are second countable.

²Here "topological space" means Hausdorff and locally compact.

2.1 Group action

A morphism $\phi: G \to H$ of groups is by definition a map that preserves the product : $\Phi(g_1g_2) = \Phi(g_1)\phi(g_2)$.

Exercise 2.3 Show that $\phi(e) = e$ and $\phi(g^{-1}) = \phi(g)^{-1}$.

Definition 2.4 An (left) action of a group G on a set M is a mapping

$$\alpha: G \times M \longrightarrow M \tag{2.1}$$

such that $\alpha(e,m) = m, \forall m \in M$, and $\alpha(g,\alpha(h,m)) = \alpha(gh,m)$ for all $m \in M$ and $g, h \in G$.

Let $\operatorname{Bij}(M)$ be the group of all bijective maps from M onto M. The conditions on α are equivalent to saying that the map $G \to \operatorname{Bij}(M), g \to \alpha_g$ defined by $\alpha_g(m) = \alpha(g, m)$ is a group morphism.

If G is a Lie (resp. topological) group and M is a manifold (resp. topological space), the action of G on M is said to be smooth (resp. continuous) if the map (2.1) is smooth (resp. continuous). When the notations are understood we will write $g \cdot m$, or simply gm for $\alpha(g, m)$.

A representation of a group G on a real vector space (resp. complex) V is a group morphism $\phi : G \to \operatorname{GL}(V)$: the group G acts on V through linear endomorphism.

NOTATION : If $\phi : M \to N$ is a smooth map between differentiable manifolds, we denote by $\mathbf{T}_m \phi : \mathbf{T}_m M \to \mathbf{T}_{\phi(m)} N$ the differential of ϕ at $m \in M$.

2.2 Adjoint representation

Let G be a Lie group and let \mathfrak{g} be the tangent space of G at e. We consider the conjugation action of G on itself defined by

$$c_g(h) = ghg^{-1}, \quad g,h \in G.$$

The mappings $c_g : G \to G$ are smooth and $c_g(e) = e$ for all $g \in G$, so one can consider the differential of c_g at e

$$\operatorname{Ad}(g) = \mathbf{T}_e c_g : \mathfrak{g} \to \mathfrak{g}.$$

Since $c_{gh} = c_g \circ c_h$ we have $\operatorname{Ad}(gh) = \operatorname{Ad}(g) \circ \operatorname{Ad}(h)$. That is, the mapping

$$\mathrm{Ad}: G \longrightarrow \mathrm{GL}(\mathfrak{g}) \tag{2.2}$$

is a smooth group morphism which is called the *adjoint representation* of G.

The next step is to consider the differential of the map Ad at e:

$$\operatorname{ad} = \mathbf{T}_e \operatorname{Ad} : \mathfrak{g} \longrightarrow \mathfrak{gl}(\mathfrak{g}).$$
 (2.3)

It is the *adjoint representation of* \mathfrak{g} . In (2.3), the vector space $\mathfrak{gl}(\mathfrak{g})$ denotes the vector space of all linear endomorphism of \mathfrak{g} , and is equal to the tangent space of $\mathrm{GL}(\mathfrak{g})$ at the identity.

Lemma 2.5 . We have the fundamental relations

- $\operatorname{ad}(\operatorname{Ad}(g)X) = \operatorname{Ad}(g) \circ \operatorname{ad}(X) \circ \operatorname{Ad}(g)^{-1}$ for $g \in G, X \in \mathfrak{g}$.
- $\operatorname{ad}(\operatorname{ad}(Y)X) = \operatorname{ad}(Y) \circ \operatorname{ad}(X) \operatorname{ad}(X) \circ \operatorname{ad}(Y)$ for $X, Y \in \mathfrak{g}$.
- $\operatorname{ad}(X)Y = -\operatorname{ad}(Y)X$ for $X, Y \in \mathfrak{g}$.

PROOF : Since Ad is a group morphism we have $\operatorname{Ad}(ghg^{-1}) = \operatorname{Ad}(g) \circ \operatorname{Ad}(h) \circ \operatorname{Ad}(g)^{-1}$. If we differentiate this relation at h = e we get the first point, and if we differentiate it at g = e we get the second one.

For the last point consider two smooth curves a(t), b(s) on G with a(0) = b(0) = e, $\frac{d}{dt} [a(t)]_{t=0} = X$, and $\frac{d}{dt} [b(t)]_{t=0} = Y$. We will now compute the second derivative $\frac{\partial^2 f}{\partial t \partial s}(0,0)$ of the map $f(t,s) = a(t)b(s)a(t)^{-1}b(s)^{-1}$. Since f(t,0) = f(0,s) = e, the term $\frac{\partial^2 f}{\partial t \partial s}(0,0)$ is defined in an intrinxsic manner as an element of \mathfrak{g} . For the first partial derivatives we get $\frac{\partial f}{\partial t}(0,s) = X - \operatorname{Ad}(b(s))X$ and $\frac{\partial f}{\partial s}(t,0) = \operatorname{Ad}(a(t))Y - Y$. So $\frac{\partial^2 f}{\partial t \partial s}(0,0) = \operatorname{ad}(X)Y = -\operatorname{ad}(Y)X$. \Box

Definition 2.6 If G is a Lie group, one defines a bilinear map, $[-,-]_{\mathfrak{g}}$: $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ by $[X,Y]_{\mathfrak{g}} = \operatorname{ad}(X)Y$. It is the Lie bracket of \mathfrak{g} . The vector space \mathfrak{g} equipped with $[-,-]_{\mathfrak{g}}$ is called the Lie algebra of G. We have the fundamental relations

- anti symmetry : $[X, Y]_{\mathfrak{g}} = -[Y, X]_{\mathfrak{g}}$
- Jacobi identity : $\operatorname{ad}([Y,X]_{\mathfrak{g}}) = \operatorname{ad}(Y) \circ \operatorname{ad}(X) \operatorname{ad}(X) \circ \operatorname{ad}(Y).$

On $\mathfrak{gl}(\mathfrak{g})$, a direct computation shows that $[X, Y]_{\mathfrak{gl}(\mathfrak{g})} = XY - YX$. So the Jacobi identity can be rewritten as $\operatorname{ad}([X, Y]_{\mathfrak{g}}) = [\operatorname{ad}(X), \operatorname{ad}(Y)]_{\mathfrak{gl}(\mathfrak{g})}$ or equivalently as

$$[X, [Y, Z]_{\mathfrak{g}}]_{\mathfrak{g}} + [Y, [Z, X]_{\mathfrak{g}}]_{\mathfrak{g}} + [Z, [X, Y]_{\mathfrak{g}}]_{\mathfrak{g}} = 0 \quad \text{for all } X, Y, Z \in \mathfrak{g}.$$
(2.4)

Definition 2.7 • A Lie algebra \mathfrak{g} is a real vector space equipped with the antisymmetric bilinear map $[-, -]_{\mathfrak{g}} : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ satisfying the Jacobi identity.

• A linear map $\phi : \mathfrak{g} \to \mathfrak{h}$ between two Lie algebras is a morphism of Lie algebras if

$$\phi([X,Y]_{\mathfrak{g}}) = [\phi(X),\phi(Y)]_{\mathfrak{h}}.$$
(2.5)

Remark 2.8 We have defined the notion of real Lie algebra. The definitions goes through on any field k, in particular when $k = \mathbb{C}$ we speak of complex Lie algebras. For example, if \mathfrak{g} is a real Lie algebra, the complexified vector space $\mathfrak{g}_{\mathbb{C}} := \mathfrak{g} \otimes \mathbb{C}$ inherits a canonical structure of complex Lie algebra.

The map ad : $\mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ is the typical example of a morphism of Lie algebras. This example generalizes as follows.

Lemma 2.9 Consider a smooth morphism $\Phi : G \to H$ between two Lie groups. Let $\phi : \mathfrak{g} \to \mathfrak{h}$ be its differential at e. Then:

- The map ϕ is Φ -equivariant: $\phi \circ \operatorname{Ad}(g) = \operatorname{Ad}(\Phi(g)) \circ \phi$.
- ϕ is a morphism of Lie algebras.

The proof works as in Lemma 2.5.

EXAMPLE : If G is a closed subgroup of GL(V), the inclusion $\mathfrak{g} \hookrightarrow \mathfrak{gl}(V)$ is a morphism of Lie algebra. In other words, if $X, Y \in \mathfrak{g}$ then $[X, Y]_{\mathfrak{gl}(V)} = XY - YX$ belongs to \mathfrak{g} and corresponds to the Lie bracket $[X, Y]_{\mathfrak{g}}$.

2.3 Vectors fields and Lie bracket

Here we review the typical example of Lie bracket : those of vectors fields.

Let M be a smooth manifold. We denote by Diff(M) the group formed by the diffeomorphism of M, and by Vect(M) the vector space of smooth vectors fields. Even if Diff(M) is not a Lie group (it's not finite dimensional), many aspects discuss earlier apply here, with Vect(M) in the role of the Lie algebra of Diff(M). If a(t) is a smooth curve in Diff(M) passing through the identity at t = 0, the derivative $V = \frac{d}{dt}[a]_{t=0}$ is a vectors field on M.

The "adjoint" action of Diff(M) on Vect(M) is defined as follows. If $V = \frac{d}{dt}[a]_{t=0}$ one takes $Ad(g)V = \frac{d}{dt}[g \circ a \circ g^{-1}]_{t=0}$ for every $g \in Diff(M)$. The definition of Ad extends to any $V \in Vect(M)$ through the following expression

$$\operatorname{Ad}(g)V|_m = \mathbf{T}_{g^{-1}m}(g)(V_{g^{-1}m}), \qquad m \in M.$$
 (2.6)

We can now define the adjoint action by differentiating (2.6) at the identity. If $W = \frac{d}{dt}[b]_{t=0}$ and $V \in \operatorname{Vect}(M)$, we take

$$\operatorname{ad}(W)V|_{m} = \frac{d}{dt} \left[\mathbf{T}_{b(t)^{-1}m}(b(t))(V_{b(t)^{-1}m}) \right]_{t=0}, \qquad m \in M.$$
 (2.7)

If we take any textbook on differential geometry we see that ad(W)V = -[W, V], where [-, -] is the usual Lie bracket on Vect(M). To explain why

we get this minus sign, consider the group morphism

$$\Phi : \operatorname{Diff}(M) \longrightarrow \operatorname{Aut}(\mathcal{C}^{\infty}(M))$$

$$g \longmapsto \underline{g}$$

$$(2.8)$$

defined by $\underline{g} \cdot f(m) = f(g^{-1}m)$ for $f \in \mathcal{C}^{\infty}(M)$. Here $\operatorname{Aut}(\mathcal{C}^{\infty}(M))$ is the group of automorphism of the algebra $\mathcal{C}^{\infty}(M)$. If b(t) is a smooth curve in $\operatorname{Aut}(\mathcal{C}^{\infty}(M))$ passing through the identity at t = 0, the derivative $u = \frac{d}{dt}[b]_{t=0}$ belongs to the vector space $\operatorname{Der}(\mathcal{C}^{\infty}(M))$ of derivations of $\mathcal{C}^{\infty}(M)$: $u : \mathcal{C}^{\infty}(M) \to \mathcal{C}^{\infty}(M)$ is a linear map and u(fg) = u(f)g + fu(g). So the Lie algebra of $\operatorname{Aut}(\mathcal{C}^{\infty}(M))$ as a natural identification with $\operatorname{Der}(\mathcal{C}^{\infty}(M))$ equipped with the Lie bracket: $[u, v]_{\operatorname{Der}} = u \circ v - v \circ u$, for $u, v \in \operatorname{Der}(\mathcal{C}^{\infty}(M))$.

Let $\operatorname{Vect}(M) \xrightarrow{\sim} \operatorname{Der}(\mathcal{C}^{\infty}(M)), V \mapsto \widetilde{V}$ be the canonical identification defined by $\widetilde{V}f(m) = \langle df_m, V_m \rangle$ for $f \in \mathcal{C}^{\infty}(M)$ and $V \in \operatorname{Vect}(M)$.

For the differential at the identity of Φ we get

$$d\Phi(V) = -V$$
, for $V \in \operatorname{Vect}(M)$. (2.9)

Since $d\Phi$ is an algebra morphism we have $-\widetilde{\operatorname{ad}(V)W} = [\widetilde{V}, \widetilde{W}]_{\operatorname{Der}}$. Hence we see that $[V, W] = -\operatorname{ad}(V)W$ is the traditional Lie bracket on $\operatorname{Vect}(M)$ defined by posing $\widetilde{[V, W]} = \widetilde{V} \circ \widetilde{W} - \widetilde{V} \circ \widetilde{W}$.

2.4 Group actions and Lie bracket

Let M be a differentiable manifold equipped with a smooth action of a Lie group G. We can specialize (2.8) to a group morphism $G \to \operatorname{Aut}(\mathcal{C}^{\infty}(M))$. Its differential at the identity defines a map $\mathfrak{g} \to \operatorname{Der}(\mathcal{C}^{\infty}(M)) \xrightarrow{\sim} \operatorname{Vect}(M)$, $X \to X_M$ by $X_M|_m = \frac{d}{dt}[a(t)^{-1} \cdot m]_{t=0}, m \in M$. Here a(t) is a smooth curve on G such that $X = \frac{d}{dt}[a]_{t=0}$. This mapping is a morphism of Lie algebras:

$$[X,Y]_M = [X_M, Y_M]. (2.10)$$

EXAMPLE : Consider the actions of translations R, L of a Lie group G on itself:

$$R(g)h = hg^{-1}, \quad L(g)h = gh \text{ for } g, h \in G.$$
 (2.11)

Theses actions defines vectors field X^L, X^R on G for any $X \in \mathfrak{g}$, and (2.10) reads

$$[X, Y]^L = [X^L, Y^L], \quad [X, Y]^R = [X^R, Y^R].$$

Theses equations can be used to define the Lie bracket on \mathfrak{g} . Consider the subspaces $V^L = \{X^L, X \in \mathfrak{g}\}$ and $V^R = \{X^R, X \in \mathfrak{g}\}$ of $\operatorname{Vect}(G)$. First

we see that V^L (resp. V^R) coincides with the subspace of $\operatorname{Vect}(G)^R$ (resp. $\operatorname{Vect}(G)^L$ formed by the vectors fields invariant by the *R*-action of *G* (resp. L-action of G). Second we see that the subspaces $\operatorname{Vect}(G)^R$ and $\operatorname{Vect}(G)^L$ are invariant under the Lie bracket of Vect(G). Then for any $X, Y \in \mathfrak{g}$, the vectors field $[X^L, Y^L] \in \operatorname{Vect}(G)^R$, so there exist a unique $[X, Y] \in \mathfrak{g}$ such that $[X, Y]^{L} = [X^{L}, Y^{L}].$

2.5Exponential map

Consider the usual exponential map $e : \mathfrak{gl}(V) \to \operatorname{GL}(V): e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!}$. We have the fundamental property

Proposition 2.10 • For any $A \in \mathfrak{gl}(V)$, the map $\phi_A : \mathbb{R} \to \operatorname{GL}(V), t \mapsto e^{tA}$ is a smooth Lie group morphism with $\frac{d}{dt}[\phi_A]_{t=0} = A$. • If $\phi : \mathbb{R} \to \operatorname{GL}(V)$ is a smooth Lie group morphism we have $\phi = \phi_A$ for

 $A = \frac{d}{dt} [\phi]_{t=0}.$

Now, we will see that an exponential map together with Proposition 2.10 exists on all Lie group.

Let G be a Lie group with Lie algebra \mathfrak{g} . For any $X \in \mathfrak{g}$ we consider the vectors field $X^R \in \text{Vect}(G)$ defined by $X^R|_g = \frac{d}{dt}[ga(t)]_{t=0}, g \in G$. Here a(t) is a smooth curve on G such that $X = \frac{d}{dt}[a]_{t=0}$. The vectors fields X^R are invariant under the left translations, that is

$$\mathbf{\Gamma}_g(L(h))(X_g^R) = X_{hg}^R, \quad \text{for } g, h \in G.$$
(2.12)

We consider now the flow of the vectors field X^R . For any $X \in \mathfrak{g}$ we consider the differential equation

$$\frac{\partial}{\partial t}\phi(t,g) = X^{R}(\phi(t,g))$$

$$\phi(0,g) = g.$$
(2.13)

where $t \in \mathbb{R}$ belongs to an interval containing 0, and $q \in G$. Classical results assert that for any $g_0 \in G$ (2.13) admits a unique solution ϕ^X defined on $]-\varepsilon,\varepsilon[\times\mathcal{U}]$ where $\varepsilon > 0$ is small enough and \mathcal{U} is a neighborhood of g_0 . Since X^R is invariant under the left translations we have

$$\phi^X(t,g) = g\phi^X(t,e).$$
 (2.14)

The map $t \to \phi^X(t, -)$ is a 1-parameter subgroup of (local) diffeomorphisms of M: $\phi^X(t+s,m) = \phi^X(t,\phi^X(s,m))$ for t,s small enough. Eq. (2.14) give then

$$\phi^X(t+s,e) = \phi^X(t,e)\phi^X(s,e) \quad \text{for } t,s \text{ small enough.}$$
(2.15)

The map $t \mapsto \phi^X(t, e)$ initially defined on an interval $] -\varepsilon, \varepsilon[$ can be extended on \mathbb{R} thanks to (2.15). For any $t \in \mathbb{R}$ take $\Phi^X(t, e) = \phi^X(\frac{t}{n}, e)^n$ where n is an integer large enough so that $|\frac{t}{n}| < \varepsilon$. It is not difficult to see that our definition make sense and that $\mathbb{R} \to G$, $t \mapsto \Phi^X(t, e)$ is a Lie group morphism. Finally we have proved that the vectors field X^R is completed: its flow is defined on $\mathbb{R} \times G$.

Definition 2.11 For each $X \in \mathfrak{g}$, the element $\exp_G(X) \in G$ is defined as $\Phi^X(1, e)$. The mapping $\mathfrak{g} \to G, X \mapsto \exp_G(X)$ is called the exponential mapping from \mathfrak{g} into G.

Proposition 2.12 • $\exp_G(tX) = \Phi^X(t, e)$ for each $t \in \mathbb{R}$. • $\exp_G : \mathfrak{g} \to G$ is \mathcal{C}^{∞} and $\mathbf{T}_e \exp_G$ is the identity map.

PROOF : Let $s \neq 0$ in \mathbb{R} . The maps $t \to \Phi^X(t, e)$ and $t \to \Phi^{sX}(t\frac{X}{s}, e)$ are both solutions of the differential equation (2.13): so there are equal and a) is proved by taking t = s. To proved b) consider the vectors field V on $\mathfrak{g} \times G$ defined by $V(X,g) = (X^R(g),0)$. It is easy to see that the flow Φ^V of the vectors field V satisfies $\Phi^V(t,X,g) = (g \exp_G(tX),X)$, for $(t,X,g) \in$ $\mathbb{R} \times \mathfrak{g} \times G$. Since Φ^V is smooth (a general property concerning the flows), the exponential map is smooth. \Box

Proposition 2.10 take now the following form.

Proposition 2.13 If $\phi : \mathbb{R} \to G$ is a (\mathcal{C}^{∞}) one parameter subgroup, we have $\phi(t) = \exp_G(tX)$ with $X = \frac{d}{dt}[\phi]_{t=0}$.

PROOF : If we differentiate the relation $\phi(t+s) = \phi(t)\phi(s)$ at s = 0, we see that ϕ satisfies the differential equation (*) $\frac{d}{dt}[\phi]_t = X^R(\phi(t))$, where $X = \frac{d}{dt}[\phi]_{t=0}$. Since $t \to \Phi^X(t, e)$ is also solution of (*), and $\Phi^X(0, e) = \phi(0) = e$, we have $\phi = \Phi^X(-, e)$. \Box

We give now some easy consequences of Proposition 2.13.

Proposition 2.14 • If $\rho : G \to H$ is a morphism of Lie groups and $d\rho : \mathfrak{g} \to \mathfrak{h}$ is the corresponding morphism of Lie algebras, we have $\exp_H \circ d\rho = \rho \circ \exp_G$.

- For $\operatorname{Ad}: G \to \operatorname{GL}(\mathfrak{g})$ we have $\operatorname{Ad}(\exp_G(X)) = e^{\operatorname{ad}(X)}$.
- $\exp_G : \mathfrak{g} \to G$ is G-equivariant: $\exp_G(\operatorname{Ad}(g)X) = g \exp_G(X)g^{-1}$.

• If [X, Y] = 0, then $\exp_G(X) \exp_G(Y) = \exp_G(Y) \exp_G(X) = \exp_G(X + Y)$.

PROOF: We use in each case the same type of proof. We consider two 1-parameters subgroup $\Phi_1(t)$ and $\Phi_2(t)$. After we verify that $\frac{d}{dt}[\Phi_1]_{t=0} =$ $\frac{d}{dt}[\Phi_2]_{t=0}$, and from Proposition 2.13 we conclude that $\Phi_1(t) = \Phi_2(t), \forall t \in \mathbb{R}$. The relation that we are looking for is $\Phi_1(1) = \Phi_2(1)$.

For the first point, we take $\Phi_1(t) = \exp_H(td\rho(X))$ and $\Phi_2(t) = \rho \circ \exp_G(tX)$: for the second point we take $\rho = \operatorname{Ad}$, and for the third one we take $\Phi_1(t) = \exp_G(t\operatorname{Ad}(g)X)$ and $\Phi_2(t) = g \exp_G(tX)g^{-1}$.

From the second and third point we have $\exp_G(X) \exp_G(Y) \exp_G(-X) = \exp_G(\mathrm{e}^{\mathrm{ad}(X)}Y)$. Hence $\exp_G(X) \exp_G(Y) \exp_G(-X) = \exp_G(Y)$ if $\mathrm{ad}(X)Y = 0$. We consider after the 1-parameters subgroups $\Phi_1(t) = \exp_G(tX) \exp_G(tY)$ and $\Phi_2(t) = \exp_G(t(X+Y))$ to prove the second equality of the last point. \Box

Exercise 2.15 We consider the Lie group $SL(2,\mathbb{R})$ with Lie algebra $sl(2,\mathbb{R}) = \{X \in End(\mathbb{R}^2), Tr(X) = 0\}$. Show that the image of the exponential map $exp: sl(2,\mathbb{R}) \to SL(2,\mathbb{R})$ is equal to $\{g \in SL(2,\mathbb{R}), Tr(g) \geq -2\}$

Remark 2.16 The map $\exp_G : \mathfrak{g} \to G$ is in general not surjective. Nevertheless the set $U = \exp_G(\mathfrak{g})$ is a neighborhood of the identity, and $U = U^{-1}$. The subgroup of G generated by U, which is equal to $\bigcup_{n\geq 1} U^n$, is then a connected open subgroup of G. Hence $\bigcup_{n\geq 1} U^n$ is equal to the connected component of the identity, usually denoted G^o .

Exercise 2.17 For any Lie group G, show that $\exp_G(X) \exp_G(Y) = \exp_G(X + Y + \frac{1}{2}[X,Y] + o(|X|^2 + |Y|^2))$ in a neighborhood of $(0,0) \in \mathfrak{g}^2$. Afterward show that

$$\lim_{n \to \infty} (\exp_G(X/n) \exp_G(Y/n))^n = \exp_G(X+Y) \quad \text{and}$$

 $\lim_{n \to \infty} (\exp_G(X/n) \exp_G(Y/n) \exp_G(-X/n) \exp_G(-Y/n))^{n^2} = \exp([X,Y]).$

2.6 Lie subgroups and Lie subalgebras

Before giving the precise definition of a *Lie subgroup*, we look at the infinitesimal side. A *Lie subalgebra* of a Lie algebra \mathfrak{g} is a subspace $\mathfrak{h} \subset \mathfrak{g}$ stable under the Lie bracket : $[X, Y]_{\mathfrak{g}} \in \mathfrak{h}$ whenever $X, Y \in \mathfrak{h}$.

We have a natural extension of Theorem 2.2

Theorem 2.18 Let H be a closed subgroup of a Lie group G. Then H is a imbedded submanifold of G, and equipped with this differential structure it is a Lie group. The Lie algebra of H, which is equal to $\mathfrak{h} = \{X \in \mathfrak{g} \mid \exp_G(tX) \in H \text{ for all } t \in \mathbb{R}\}$, is a subalgebra of \mathfrak{g} .

PROOF : The two limits given in the exercise 2.17 show that \mathfrak{h} is a subalgebra of \mathfrak{g} (we use here that H is closed). Let \mathfrak{a} be any supplementary subspace of \mathfrak{h} : one shows that $(\exp(Y) \in H) \Longrightarrow (Y = e)$ if $Y \in \mathfrak{a}$ belongs to a small neighborhood of 0 in \mathfrak{a} . Now we consider the map $\phi : \mathfrak{h} \oplus \mathfrak{a} \to G$ given by $\phi(X + Y) = \exp_G(X) \exp_G(Y)$. Since $\mathbf{T}_e \phi$ is the identity map, ϕ defines a smooth diffeomorphism $\phi|_{\mathcal{V}}$ from a neighborhood \mathcal{V} of $0 \in \mathfrak{g}$ to a neighborhood \mathcal{W} of e in G. If \mathcal{V} is small enough we see that ϕ map $\mathcal{V} \cap \{Y = 0\}$ onto $\mathcal{W} \cap H$, hence H is a submanifold near e. Near any point $h \in H$ we use the map $\phi_h : \mathfrak{h} \oplus \mathfrak{a} \to G$ given by $\phi_h(Z) = h\phi(Z)$: we prove in the same way that H is a submanifold near h. Finally H is an imbedded submanifold of G. We now look to the group operations $m_G : G \times G \to G$ (multiplication), $i_G : G \to G$ (inversion) and their restrictions $m_G|_{H \times H} : H \times H \to G$ and $i_G|_H : H \to G$ which are smooth maps. Here we are interested in the group operations m_H and i_H of H. Since $m_G|_{H \times H}$ and $i_G|_H$ are smooth we have the equivalence:

 m_H and i_H are smooth $\iff m_H$ and i_H are continuous.

The fact that m_H and i_H are continuous follows easily from the fact that $m_G|_{H \times H}$ and $i_G|_H$ are continuous and that H is closed. \Box

Theorem 2.18 has the following important corollary

Corollary 2.19 If $\phi : G \to H$ is a continuous group morphism between two Lie groups, then ϕ is smooth.

PROOF :Consider the graph $L \subset G \times H$ of the map $\phi : L = \{(g, h) \in G \times H \mid h = \phi(g)\}$. Since ϕ is a continuous L is a closed subgroup of $G \times H$. Following Theorem 2.18, L is an imbedded submanifold of $G \times H$. Consider now the morphism $p_1 : L \to G$ (resp. $p_2 : L \to H$) equals respectively to the composition of the inclusion $L \hookrightarrow G \times H$ with the projection $G \times H \to G$ (resp. $G \times H \to H$): p_1 and p_2 are smooth, p_1 is bijective, and $\phi = p_2 \circ (p_1)^{-1}$. Since $(p_1)^{-1}$ is smooth (see Exercise 2.24), the map ϕ is smooth. \Box

We have just seen the archetype of a Lie subgroup : a closed subgroup of a lie group. But this notion is too restrictive.

Definition 2.20 (H, ϕ) is a Lie subgroup of a Lie group G if

- *H* is a Lie group,
- $\phi: H \to G$ is a group morphism,
- $\phi: H \to G$ is a one-to-one immersion.

In the next example we consider the 1-parameter Lie subgroups of $S^1 \times S^1$: either they are closed or dense. EXAMPLE : Consider the group morphisms $\phi_{\alpha} : \mathbb{R} \to S^1 \times S^1$, $\phi_{\alpha}(t) = (e^{it}, e^{i\alpha t})$, defined for $\alpha \in \mathbb{R}$. Then :

• If $\alpha \notin \mathbb{Q}$, $\operatorname{Ker}(\phi_{\alpha}) = 0$ and $(\mathbb{R}, \phi_{\alpha})$ is a Lie subgroup of $S^1 \times S^1$ which is dense.

• If $\alpha \in \mathbb{Q}$, $\operatorname{Ker}(\phi_{\alpha}) \neq 0$, and ϕ_{α} factorizes in a smooth morphism $\widetilde{\phi_{\alpha}}$: $S^1 \to S^1 \times S^1$. Here $\phi_{\alpha}(\mathbb{R})$ is a closed subgroup of $S^1 \times S^1$ diffeomorphic to the Lie subgroup $(S^1, \widetilde{\phi_{\alpha}})$.

Let (H, ϕ) is a Lie subgroup of G, and let $\mathfrak{h}, \mathfrak{g}$ be their respective Lie algebras. Since ϕ is an immersion, the differential at the identity, $d\phi : \mathfrak{h} \to \mathfrak{g}$, is an injective morphism of Lie algebras : \mathfrak{h} is isomorphic with the subalgebra $d\phi(\mathfrak{h})$ of \mathfrak{g} . In practice we often "forget" ϕ in our notations, and speak of a Lie subgroup $H \subset G$ with Lie subalgebra $\mathfrak{h} \subset \mathfrak{g}$. We have to be careful : when H is not closed in G, the topology of H is not the induced topology.

We state now the fundamental

Theorem 2.21 Let G be a Lie group with Lie algebra \mathfrak{g} , and let $\mathfrak{h} \subset \mathfrak{g}$ be a subalgebra. Then there exists a unique connected Lie subgroup H of G with Lie algebra equal to \mathfrak{h} . Moreover H is generated by $\exp_G(\mathfrak{h})$, where \exp_G is the exponential map of G.

The proof uses Frobenius Theorem (see [6][Theorem 3.19]). This Theorem has an important corollary.

Corollary 2.22 Let G, H be two connected Lie groups with Lie algebras \mathfrak{g} and \mathfrak{h} . Let $\phi : \mathfrak{g} \to \mathfrak{h}$ be a morphism of Lie algebras. If G is simply connected there exits a (unique) Lie group morphism $\Phi : G \to H$ such that $d\Phi = \phi$.

PROOF : Consider the graph $\mathfrak{l} \subset \mathfrak{g} \times \mathfrak{h}$ of the map $\phi : \mathfrak{l} := \{(X,Y) \in \mathfrak{g} \times \mathfrak{h} \mid \phi(X) = Y\}$. Since ϕ is morphism of Lie algebras \mathfrak{l} is a Lie subalgebra of $\mathfrak{g} \times \mathfrak{h}$. Let (L, ψ) be the connected Lie subgroup of $G \times H$ associated to \mathfrak{l} . Consider now the morphism $p_1 : L \to G$ (resp. $p_2 : L \to H$) equals respectively to the composition of $\phi : L \to G \times H$ with the projection $G \times H \to G$ (resp. $G \times H \to H$). The group morphism $p_2 : L \to G$ is onto with a discrete kernel since G is connected and $dp_2 : \mathfrak{l} \to \mathfrak{g}$ is an isomorphism. Hence $p_2 : L \to G$ is a covering map (see Exercise 2.24). Since G is simply connected, this covering map is a diffeomorphism. The group morphism $p_1 \circ (p_2)^{-1} : G \to H$ answers to the question. \Box

EXAMPLE : The Lie group SU(2) is composed by the 2 × 2 complex matrices of the form $\begin{pmatrix} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{pmatrix}$ with $|\alpha|^2 + |\beta|^2 = 1$. Hence SU(2) is simply connected since it is diffeomorphic to the 3-dimensional sphere. Since SU(2)

is a maximal compact subgroup of $SL(2, \mathbb{C})$, the Cartan decomposition (see Section 3.4) tells us that $SL(2, \mathbb{C})$ is also simply connected.

A subset A of a topological space M is *path-connected* if any points $a, b \in A$ can be joined by a continuous path $\gamma : [0, 1] \to M$ with $\gamma(t) \in A$ for all $t \in [0, 1]$. Any connected Lie subgroup of a Lie group is path-connected. We have the following characterization of the connected Lie subgroups.

Theorem 2.23 Let G be a Lie group, and let H be a path-connected subgroup of G. Then H is a Lie subgroup of G.

Exercise 2.24 Let $\rho : G \to H$ be a smooth morphism of Lie groups, and let $d\rho : \mathfrak{g} \to \mathfrak{h}$ be the corresponding morphism of Lie algebras.

• Show that $\operatorname{Ker}(\rho) := \{g \in G \mid \rho(g) = e\}$ is a closed (normal) subgroup with lie algebra $\operatorname{Ker}(d\rho) := \{X \in \mathfrak{g} \mid d\rho(X) = 0\}.$

• If $\operatorname{Ker}(d\rho) = 0$, show that $\operatorname{Ker}(\rho)$ is discrete in G. If furthermore ρ is onto, then show that ρ is a covering map.

• If $\rho: G \to H$ is bijective, then show that ρ^{-1} is smooth.

2.7 Ideals

A subalgebra \mathfrak{h} of a Lie algebra is called an *ideal* in \mathfrak{g} if $[X, Y]_{\mathfrak{g}} \in \mathfrak{h}$ whenever $X \in \mathfrak{h}$ and $Y \in \mathfrak{g}$: in other words \mathfrak{h} is a stable subspace of \mathfrak{g} under the endomorphism $\operatorname{ad}(Y), Y \in \mathfrak{g}$. A Lie subgroup H of the Lie group G is a *normal subgroup* if $gHg^{-1} \subset H$ for all $g \in G$.

Proposition 2.25 Let H be the connected Lie subgroup of G associated to the subalgebra \mathfrak{h} of \mathfrak{g} . The following assertions are equivalent.

1) H is a normal subgroup of G° .

2) \mathfrak{h} is an ideal of \mathfrak{g} .

PROOF: 1) \Longrightarrow 2). Let $X \in \mathfrak{h}$ and $g \in G^{o}$. For every $t \in \mathbb{R}$, the element $g \exp_{G}(tX)g^{-1} = \exp_{G}(t\operatorname{Ad}(g)X)$ belongs to H: if we take the derivative at t = 0 we get (*) $\operatorname{Ad}(g)X \in \mathfrak{h}, \forall g \in G^{o}$. If we take the differential of (*) at g = e we have $\operatorname{ad}(Y)X \in \mathfrak{h}$ whenever $X \in \mathfrak{h}$ and $Y \in \mathfrak{g}$.

2) \Longrightarrow **1)**. If $X \in \mathfrak{h}$ and $Y \in \mathfrak{g}$, we have $\exp_G(Y) \exp_G(X) \exp_G(Y)^{-1} = \exp_G(\mathrm{e}^{\mathrm{ad}Y}X) \in H$. Since H is generated by $\exp_G(\mathfrak{h})$, we have $\exp_G(Y)H\exp_G(Y)^{-1} \subset H$ for all $Y \in \mathfrak{g}$ (see Remark 2.16 and Proposition 2.21). Since $\exp_G(\mathfrak{g})$ generates G^o we have finally that $gHg^{-1} \subset H$ for all $g \in G^o$. \Box

EXAMPLES OF IDEALS : The center of \mathfrak{g} : $Z_{\mathfrak{g}} := \{X \in \mathfrak{g} \mid [X, \mathfrak{g}] = 0\}$. The commutator ideal $[\mathfrak{g}, \mathfrak{g}]$. The kernel ker (ϕ) of a morphism of lie algebra $\phi : \mathfrak{g} \to \mathfrak{h}$. We can associate to any Lie algebra \mathfrak{g} two sequences $\mathfrak{g}_i, \mathfrak{g}^i$ of ideals of \mathfrak{g} . The *commutator series* of \mathfrak{g} is the non increasing sequence of ideals \mathfrak{g}^i with

$$\mathfrak{g}^0 = \mathfrak{g} \quad \text{and} \quad \mathfrak{g}^{i+1} = [\mathfrak{g}^i, \mathfrak{g}^i].$$
 (2.16)

The *lower central series* of \mathfrak{g} is the non increasing sequence of ideals \mathfrak{g}_i with

$$\mathfrak{g}_0 = \mathfrak{g} \quad \text{and} \quad \mathfrak{g}_{i+1} = [\mathfrak{g}, \mathfrak{g}_i].$$
 (2.17)

Exercise 2.26 Show that the $\mathfrak{g}_i, \mathfrak{g}^i$ are ideals of \mathfrak{g} .

Definition 2.27 We say that \mathfrak{g} is

- solvable if $\mathfrak{g}^i = 0$ for *i* large enough,
- nilpotent if $\mathfrak{g}_i = 0$ for *i* large enough,
- abelian if $[\mathfrak{g}, \mathfrak{g}] = 0$.

Exercise 2.28 Let V be a finite dimensional vector space, and let $\{0\} = V_0 \subset V_1 \subset \cdots \lor V_n = V$ be a strictly increasing sequence of subspaces. Let \mathfrak{g} be the Lie subalgebra of $\mathfrak{gl}(V)$ defined by $\mathfrak{g} = \{X \in \mathfrak{gl}(V) \mid X(V_{k+1}) \subset V_k\}$.

• Show that the Lie algebra g is nilpotent.

• Suppose now that dim $V_k = k$ for any k = 0, ..., n. Show then that the Lie algebra of $\mathfrak{h} = \{X \in \mathfrak{gl}(V) \mid X(V_k) \subset V_k\}$ is solvable.

Exercise 2.29 For a group G, the subgroup generated by the commutators $ghg^{-1}h^{-1}$, $g, h \in G$ is the derived subgroup, and is denoted by G'.

• Show that G' is a normal subgroup of G.

• If G is a connected Lie group, show that G' is the connected Lie subgroup associated to the ideal $[\mathfrak{g}, \mathfrak{g}]$.

Exercise 2.30 • For any Lie group G, show that its center $Z_G := \{g \in G | hg = hg \ \forall h \in G\}$ is a closed normal subgroup with Lie algebra $Z_{\mathfrak{g}} := \{X \in \mathfrak{g} | [X, Y] = 0, \ \forall Y \in \mathfrak{g}\}.$

• Show that a lie algebra \mathfrak{g} is solvable if and only if $[\mathfrak{g}, \mathfrak{g}]$ is solvable.

• Let \mathfrak{h} be the Lie algebra of the group H defined in Exercise 2.28. Show that $[\mathfrak{h}, \mathfrak{h}]$ is nilpotent, and that \mathfrak{h} is not nilpotent.

2.8 Group actions and quotients

Let M be a set equipped with an action of group G. For each $m \in M$ the *G*-orbit through m is defined as the subset

$$G \cdot m = \{g \cdot m \mid g \in G\}. \tag{2.18}$$

For each $m \in M$, the *stabilizer group* at m is

$$G_m = \{ g \in G \mid g \cdot m = m \}.$$
 (2.19)

The G-action is free if $G_m = \{e\}$ for all $m \in M$. The G-action is transitive if $G \cdot m = M$ for some $m \in M$. The set-theoretic quotient M/G corresponds to the quotient of M by the equivalence relation $m \sim n \iff G \cdot m = G \cdot n$. Let $\pi : M \to M/G$ be the canonical projection.

TOPOLOGICAL SIDE : Suppose now that M is a topological space equipped with a continuous action of a topological³ group G. Note that in this situation the stabilizers G_m are closed in G. We define for any subsets A, B of M the set

$$G_{A,B} = \{ g \in G \mid (g \cdot A) \cap B \neq \emptyset \}.$$

Exercise 2.31 Show that $G_{A,B}$ is closed in G when A, B are compact in M.

We take on M/G the quotient topology: $\mathcal{V} \subset M/G$ is open if $\pi^{-1}(\mathcal{V})$ is open in M. It is the smallest topology that makes π continuous. Note that $\pi: M \to M/G$ is then an open map : if \mathcal{U} is open in $M, \pi^{-1}(\pi(\mathcal{U})) = \bigcup_{g \in G} g \cdot \mathcal{U}$ is also open in M, which means that $\pi(\mathcal{U})$ is open in M/G.

Definition 2.32 The (topological) G-action on M is proper when the subsets $G_{A,B}$ are compact in G whenever A, B are compact subsets of M.

This definition of proper action is equivalent to the condition that the map $\psi: G \times M \to M \times M, (g, m) \mapsto (g \cdot m, m)$ is proper, i.e. $\psi^{-1}(\text{compact}) = \text{compact}$. Note that the action of a compact group is always proper.

Proposition 2.33 If a topological space M is equipped with a proper continuous action of a topological group G. The quotient topology is Hausdorff, locally compact.

The proof is left to the reader. The main result is the following

Theorem 2.34 Let M be a manifold equipped with a smooth, proper and free action of a Lie group. Then the quotient M/G equipped with the quotient topology carries the structure of a smooth manifold. Moreover the projection $\pi: M \to M/G$ is smooth, and any $n \in M/G$ has an open neighborhood \mathcal{U} such that

$$\begin{array}{rcl} \pi^{-1}(\mathcal{U}) & \stackrel{\sim}{\longrightarrow} & \mathcal{U} \times G \\ m & \longmapsto & (\pi(m), \phi_{\mathcal{U}}(m)) \end{array}$$

is a G-equivariant diffeomorphism. Here $\phi_{\mathcal{U}} : \pi^{-1}(\mathcal{U}) \to G$ is an equivariant map $: \phi_{\mathcal{U}}(g \cdot m) = g\phi_{\mathcal{U}}(m).$

³Here the topological spaces are Hausdorff and locally compact.

For a proof see [1][Section 2.3].

Remark 2.35 Suppose that G is a discrete group. For a proper and free action of G on M we have: any $m \in M$ has an neighborhood \mathcal{V} such that $g\mathcal{V} \cap \mathcal{V} = \emptyset$ for every $g \in G$, $g \neq e$. Theorem 2.34 is true when G is a discrete group. The quotient map $\pi : M \to M/G$ is then a covering map.

The typical example we are interested in is the action of translation of a closed subgroup H of a Lie group G: the action of $h \in H$ is $G \to G, g \to gh^{-1}$. Its an easy exercise to see that this action is free and proper. The quotient space G/H is a smooth manifold and the action of translation $g \to ag$ of G on itself descend to a smooth action of G on G/H. The manifolds G/H are called homogeneous manifolds : these are the manifold with a transitive action of a Lie group G.

STIEFEL MANIFOLDS, GRASSMANIANS : Let V be a (real) vector space of dimension n. for any integer $k \leq n$, let $\operatorname{Hom}(\mathbb{R}^k, V)$ be the vector space of homomorphism equipped with the following (smooth) $\operatorname{GL}(V) \times \operatorname{GL}(\mathbb{R}^k)$ -action: for $(g,h) \in \operatorname{GL}(V) \times \operatorname{GL}(\mathbb{R}^k)$ and $f \in \operatorname{Hom}(\mathbb{R}^k, V)$, we take $(g,h) \cdot f(x) =$ $g(f(h^{-1}x))$ for any $x \in \mathbb{R}^k$. Let $S_k(V)$ be the open subset of $\operatorname{Hom}(\mathbb{R}^k, V)$ formed by the one-to-one linear map : we have a natural identification of $S_k(V)$ with the set of families $\{v_1, \ldots, v_k\}$ of linearly independent vectors of V. Moreover $S_k(V)$ is stable under the $\operatorname{GL}(V) \times \operatorname{GL}(\mathbb{R}^k)$ -action : the $\operatorname{GL}(V)$ action on $S_k(V)$ is transitive, and the $\operatorname{GL}(\mathbb{R}^k)$ -action on $S_k(V)$ is free and proper. The manifold $S_k(V)/\operatorname{GL}(\mathbb{R}^k)$ admit a natural identification with the set $\{E \text{ subspace of } V \mid \dim E = k\}$: it is the grassmanian manifold $\operatorname{Gr}_k(V)$. On the other hand the action of $\operatorname{GL}(V)$ on $\operatorname{Gr}_k(V)$ is transitive so that

$$\operatorname{Gr}_k(V) \cong \operatorname{GL}(V)/H$$

where H is the closed Lie subgroup of GL(V) that fixes a subspace $E \subset V$ of dimension k.

2.9 Adjoint group

Let \mathfrak{g} be a (real) Lie algebra. The automorphism group of \mathfrak{g} is

$$\operatorname{Aut}(\mathfrak{g}) := \{ \phi \in \operatorname{GL}(\mathfrak{g}) \, | \, \phi([X, Y]) = [\phi(X), \phi(Y)], \, \forall X, Y \in \mathfrak{g} \}$$
(2.20)

It is a closed subgroup of $GL(\mathfrak{g})$ with Lie algebra equal to

$$Der(\mathfrak{g}) := \{ D \in \mathfrak{gl}(\mathfrak{g}) \mid D([X,Y]) = [D(X),Y] + [X,D(Y)], \ \forall X,Y \in \mathfrak{g} \}$$
(2.21)

The subspace $\operatorname{Der}(\mathfrak{g}) \subset \mathfrak{gl}(\mathfrak{g})$ is called the set of *derivations* of \mathfrak{g} . Thanks to the Jacobi identity we know that $\operatorname{ad}(X) \in \operatorname{Der}(\mathfrak{g})$ for all $X \in \mathfrak{g}$. So the image of the adjoint map $\operatorname{ad} : \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$, that we denote $\operatorname{ad}(\mathfrak{g})$, is a Lie subalgebra of $\operatorname{Der}(\mathfrak{g})$.

Definition 2.36 The adjoint group $\operatorname{Ad}(\mathfrak{g})$ is the connected Lie subgroup of $\operatorname{Aut}(\mathfrak{g})$ associated to the Lie subalgebra of $\operatorname{ad}(\mathfrak{g}) \subset \operatorname{Der}(\mathfrak{g})$. As an abstract group, it is the subgroup of $\operatorname{Aut}(\mathfrak{g})$ generated by the elements $\operatorname{e}^{\operatorname{ad}(X)}$, $X \in \mathfrak{g}$.

Consider now a connected Lie group G, with Lie algebra \mathfrak{g} , and the adjoint map $\operatorname{Ad} : G \to \operatorname{GL}(\mathfrak{g})$. In this case, $\operatorname{e}^{\operatorname{ad}(X)} = \operatorname{Ad}(\operatorname{exp}_G(X))$ for any $X \in \mathfrak{g}$, so the image of G by Ad is equal to the group $\operatorname{Ad}(\mathfrak{g})$. If $g \in G$ belongs to the kernel of Ad , we have $g \operatorname{exp}_G(X)g^{-1} = \operatorname{exp}_G(\operatorname{Ad}(g)X) = \operatorname{exp}_G(X)$, so gcommutes with all the element of $\operatorname{exp}_G(\mathfrak{g})$. But since G is connected, $\operatorname{exp}_G(\mathfrak{g})$ generates G. Finally we have proved that the kernel of Ad is equal to the center Z_G of the Lie group G.

It is worth to keep in mind the exact sequence of Lie group

$$0 \longrightarrow Z_G \longrightarrow G \longrightarrow \operatorname{Ad}(\mathfrak{g}) \longrightarrow 0 \tag{2.22}$$

2.10 The Killing form

We have already defined the notions of solvable and nilpotent Lie algebra (see Def. 2.27). We have the following "opposite" notion.

Definition 2.37 Let \mathfrak{g} be (real) Lie algebra.

• \mathfrak{g} is simple if \mathfrak{g} is not abelian and does not contains ideals different from $\{0\}$ and \mathfrak{g} .

• \mathfrak{g} is semi-simple if $\mathfrak{g} = \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_r$ where the \mathfrak{g}_i are ideals of \mathfrak{g} which are simple (as Lie algebras).

The following remarks follows directly from the definition and give a first idea of the difference between "solvable" and "semi-simple".

Exercise 2.38 Let \mathfrak{g} be a (real) Lie algebra.

• Suppose that \mathfrak{g} is solvable. Show that $[\mathfrak{g},\mathfrak{g}] \neq \mathfrak{g}$, and that \mathfrak{g} possess a non-zero abelian ideal.

• Suppose that \mathfrak{g} is semi-simple. Show that $[\mathfrak{g},\mathfrak{g}] = \mathfrak{g}$, and show that \mathfrak{g} does not possess non-zero abelian ideals : in particular the center $Z_{\mathfrak{g}}$ is reduced to $\{0\}$.

In order to give the characterization of semi-simplicity we define the Killing form of a Lie algebra \mathfrak{g} . It is the symmetric \mathbb{R} -bilinear map $B_{\mathfrak{g}}$: $\mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ defined by

$$B_{\mathfrak{g}}(X,Y) = \operatorname{Tr}(\operatorname{ad}(X)\operatorname{ad}(Y)), \qquad (2.23)$$

where $\operatorname{Tr} : \mathfrak{gl}(\mathfrak{g}) \to \mathbb{R}$ is the canonical trace map.

Proposition 2.39 For $\phi \in Aut(\mathfrak{g})$ and $D \in Der(\mathfrak{g})$ we have

- $B_{\mathfrak{g}}(\phi(X),\phi(Y)) = B_{\mathfrak{g}}(X,Y)$, and
- B_g(DX,Y) + B_g(X,DY) = 0 for all X, Y ∈ g.
 We have B_g([X,Z],Y) = B_g(X,[Z,Y]) for all X, Y, Z ∈ g.

PROOF : If ϕ is an automorphism of \mathfrak{g} , we have $\operatorname{ad}(\phi(X)) = \phi \circ \operatorname{ad}(X) \circ \phi^{-1}$ for all $X \in \mathfrak{g}$ (see (2.20)). Then a) follows and b) comes from the derivative of a) at $\phi = e$. For c) take $D = \operatorname{ad}(Z)$ in b). \Box

We recall now the basic interaction between the Killing form and the ideals of \mathfrak{g} . If \mathfrak{h} is an ideal of \mathfrak{g} , then

- the restriction of the Killing form of \mathfrak{g} on $\mathfrak{h} \times \mathfrak{h}$ is the Killing form of \mathfrak{h} ,
- the subspace $\mathfrak{h}^{\perp} = \{X \in \mathfrak{g} \mid B_{\mathfrak{q}}(X, \mathfrak{h}) = 0\}$ is an ideal of \mathfrak{g} .

• the intersection $\mathfrak{h} \cap \mathfrak{h}^{\perp}$ is an ideal of \mathfrak{g} with a Killing form identically equal to 0.

It was shown by E. Cartan that the Killing form gives criterion for semisimplicity and solvability.

Theorem 2.40 (Cartan's Criterion for Semisimplicity) Let g be a (real) Lie algebra. The following statements are equivalent

- g is semi-simple,
- the Killing form $B_{\mathfrak{g}}$ is non degenerate,
- g does not have non-zero abelian ideals.

The proof of Theorem 2.40 need the following characterization of the solvable Lie algebra. The reader will find a proof of the following theorem in [3][Section I].

Theorem 2.41 (Cartan's Criterion for Solvability) Let g be a (real) Lie algebra. The following statements are equivalent

- g is solvable,
- $B_{\mathfrak{g}}(\mathfrak{g}, [\mathfrak{g}, \mathfrak{g}]) = 0.$

We will not prove Theorem 2.41, but only use the following easy corollary.

Corollary 2.42 If \mathfrak{g} is a (real) Lie algebra with $B_{\mathfrak{g}} = 0$, then $[\mathfrak{g}, \mathfrak{g}] \neq \mathfrak{g}$.

Before giving a proof of Theorem 2.40 let us show how Corollary 2.42 gives the implication $b) \Rightarrow a$ in Theorem 2.41.

If \mathfrak{g} is a Lie algebra with $B_{\mathfrak{g}} = 0$, then Corollary 2.42 tell us that $\mathfrak{g}^1 = [\mathfrak{g}, \mathfrak{g}]$ is an ideal of \mathfrak{g} different from \mathfrak{g} with $B_{\mathfrak{g}^1} = 0$. If $\mathfrak{g}^1 \neq 0$, we do it again: $\mathfrak{g}^2 = [\mathfrak{g}^1, \mathfrak{g}^1]$ is an ideal of \mathfrak{g}^1 different from \mathfrak{g}^1 with $B_{\mathfrak{g}^2} = 0$. This induction ends after finite steps: let $i \geq 0$ such that $\mathfrak{g}^i \neq 0$ and $\mathfrak{g}^{i+1} = 0$. Then \mathfrak{g}^i is an abelian ideal of \mathfrak{g} , and \mathfrak{g} is solvable. In the situation b) of Theorem 2.41, we have then that $[\mathfrak{g}, \mathfrak{g}]$ is solvable, so \mathfrak{g} is also solvable.

PROOF OF THEOREM 2.40 USING COROLLARY 2.42 :

 $c) \Longrightarrow b$). The ideal $\mathfrak{g}^{\perp} = \{X \in \mathfrak{g} \mid B_{\mathfrak{g}}(X, \mathfrak{g}) = 0\}$ of \mathfrak{g} as a zero Killing form. If $\mathfrak{g}^{\perp} \neq 0$ we know from the preceding remark that there exists $i \geq 0$ such that $(\mathfrak{g}^{\perp})^i \neq 0$ and $(\mathfrak{g}^{\perp})^{i+1} = 0$. We see easily that $(\mathfrak{g}^{\perp})^i$ is also an ideal of \mathfrak{g} (which is abelian). It gives a contradiction, then $\mathfrak{g}^{\perp} = 0$: the Killing form $B_{\mathfrak{g}}$ is non-degenerate.

 $b) \Longrightarrow a$). We suppose now that $B_{\mathfrak{g}}$ is non-degenerate. It gives first that \mathfrak{g} is not abelian. After we use the following dichotomy:

i) either \mathfrak{g} does not have ideals different from $\{0\}$ and \mathfrak{g} , hence \mathfrak{g} is simple, *ii*) either \mathfrak{g} have an ideal \mathfrak{h} different from $\{0\}$ and \mathfrak{g} .

In case *i*) we have finish. In case *ii*), let us show that $\mathfrak{h} \cap \mathfrak{h}^{\perp} \neq 0$: since $B_{\mathfrak{g}}$ is non-degenerate, it will implies that $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{h}^{\perp}$. If $\mathfrak{a} := \mathfrak{h} \cap \mathfrak{h}^{\perp} \neq 0$, the Killing form on \mathfrak{a} is equal to zero. Following Corollary 2.42 there exists $i \geq 0$ such that $\mathfrak{a}^i \neq 0$ and $\mathfrak{a}^{i+1} = 0$. Moreover since \mathfrak{a} is an ideal of \mathfrak{g} , \mathfrak{a}^i is also an ideal of \mathfrak{g} . By considering a supplementary F of \mathfrak{a}^i in \mathfrak{g} , every endomorphism $\mathrm{ad}(X), X \in \mathfrak{g}$ as the following matricial expression

$$\operatorname{ad}(X) = \left(\begin{array}{cc} A & B\\ 0 & D \end{array}\right),$$

with $A : \mathfrak{a}^i \to \mathfrak{a}^i$, $B : F \to \mathfrak{a}^i$, and $D : F \to F$. The zero term is due to the fact that \mathfrak{a}^i is an ideal of \mathfrak{g} . If $X_o \in \mathfrak{a}^i$, then

$$\operatorname{ad}(X_o) = \left(\begin{array}{cc} 0 & * \\ 0 & 0 \end{array}\right).$$

because \mathfrak{a}^i is an abelian ideal. Finally for every $X \in \mathfrak{g}$,

$$\operatorname{ad}(X)\operatorname{ad}(X_o) = \left(\begin{array}{cc} 0 & * \\ 0 & 0 \end{array}\right)$$

and then $B_{\mathfrak{g}}(X, X_o) = 0$. It is a contradiction since $B_{\mathfrak{g}}$ is non-degenerate.

So if \mathfrak{h} is an ideal different from $\{0\}$ and \mathfrak{g} , we have the $B_{\mathfrak{g}}$ -orthogonal decomposition $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{h}^{\perp}$. Since $B_{\mathfrak{g}}$ is non-degenerate we see that $B_{\mathfrak{h}}$ and $B_{\mathfrak{h}^{\perp}}$ are non-degenerate, and we apply the dichotomy to the Lie algebras \mathfrak{h} and \mathfrak{h}^{\perp} . After finite steps we obtain a decomposition $\mathfrak{g} = \mathfrak{g}_1 \oplus \ldots \oplus \mathfrak{g}_r$ where the \mathfrak{g}_k are simple ideals of \mathfrak{g} .

a) \Longrightarrow c). Let $p_k : \mathfrak{g} \to \mathfrak{g}_k$ be the projections relative to a decomposition $\mathfrak{g} = \mathfrak{g}_1 \oplus \ldots \oplus \mathfrak{g}_r$ in simple ideals: the p_k are Lie algebras morphims. If \mathfrak{a} is an abelian ideal of \mathfrak{g} , each $p_k(\mathfrak{a})$ is an abelian ideal of \mathfrak{g}_k which is equal to $\{0\}$ since \mathfrak{g}_k is simple. It proves that $\mathfrak{a} = 0$. \Box

Exercise 2.43 • For the Lie algebra $\mathfrak{sl}(n,\mathbb{R})$ show that $B_{\mathfrak{sl}(n,\mathbb{R})}(X,Y) = 2n \operatorname{Tr}(XY)$. Conclude that $\mathfrak{sl}(n,\mathbb{R})$ is a semi-simple Lie algebra.

• For the Lie algebra $\mathfrak{su}(n)$ show that $B_{\mathfrak{su}(n)}(X,Y) = 2n\operatorname{Re}(\operatorname{Tr}(XY))$. Conclude that $\mathfrak{su}(n)$ is a semi-simple Lie algebra.

Exercise 2.44 $\mathfrak{sl}(n,\mathbb{R})$ is a simple Lie algebra.

Let $(E_{i,j})_{1\leq i,j\leq n}$ be the canonical basis of $\mathfrak{gl}(\mathbb{R}^n)$. Consider a non-zero ideal \mathfrak{a} of $\mathfrak{sl}(n,\mathbb{R})$. Up to a change of \mathfrak{a} in \mathfrak{a}^{\perp} we can assume that $\dim(\mathfrak{a}) \geq \frac{n^2-1}{2}$.

• Show that a possess an element X which is not diagonal.

• Compute $[[X, E_{i,j}], E_{i,j}]$ and conclude that some $E_{i,j}$ with $i \neq j$ belongs to \mathfrak{a} .

• Show that $E_{k,l}, E_{k,k} - E_{l,l} \in \mathfrak{a}$ when $k \neq l$. Conclude.

2.11 Complex Lie algebras

We worked out the notions of solvable, nilpotent, simple and semi-simple *real* Lie algebras. The definitions go through for Lie algebras defined over any field k, and all the result of section 2.10 are true for $k = \mathbb{C}$.

Let \mathfrak{h} be a *complex* Lie algebra. The Killing form is here a symmetric \mathbb{C} -bilinear map $B_{\mathfrak{h}} : \mathfrak{h} \times \mathfrak{h} \to \mathbb{C}$ defined by (2.23), where $\operatorname{Tr} : \mathfrak{gl}_{\mathbb{C}}(\mathfrak{h}) \to \mathbb{C}$ is the trace defined on the \mathbb{C} -linear endomorphism of \mathfrak{h} .

Theorem 2.40 is valid for the complex Lie algebras: a *complex* Lie algebra is direct sum of simple ideals if and only if its Killing form is non-degenerate.

A usefull toll is the complexification of *real* Lie algebras. If \mathfrak{g} is a real Lie algebra, the complexified vector space $\mathfrak{g}_{\mathbb{C}} := \mathfrak{g} \otimes \mathbb{C}$ carries a canonical structure of complex Lie algebras. We see easily that the Killing forms $B_{\mathfrak{g}}$ and $B_{\mathfrak{g}_{\mathbb{C}}}$ coincide on \mathfrak{g} :

$$B_{\mathfrak{g}_{\mathbb{C}}}(X,Y) = B_{\mathfrak{g}}(X,Y) \quad \text{for all } X,Y \in \mathfrak{g}.$$

$$(2.24)$$

With (2.24) we see that a real Lie algebra \mathfrak{g} is semi-simple if and only if the complex Lie algebra $\mathfrak{g}_{\mathbb{C}}$ is semi-simple.

3 Semi-simple Lie groups

Definition 3.1 A connected Lie group G is semi-simple (resp. simple) if its Lie algebra \mathfrak{g} is semi-simple (resp. simple).

If we use Theorem 2.40 and Proposition 2.25 we have the following equivalent characterization of semi-simple Lie group that will be used in the lecture of J. Maubon (see Proposition 6.3).

Proposition 3.2 A connected Lie group G is semi-simple if and only if G does not have non-trivial connected normal abelian Lie subroup.

In particular the center Z_G of a semi-simple Lie group is discrete. We have the following refinement for the simple Lie groups.

Proposition 3.3 A normal subgroup A of a (connected) simple Lie Group G which is not equal to G belongs to the center Z of G.

PROOF : Let A_o be subset of A defined as follow : $a \in A_o$ if there exits a continuous curve c(t) in A with c(0) = e and c(1) = a. Obviously A_o is a path-connected subgroup of G, so according to Theorem 2.23 A_o is a Lie subgroup of G. If c(t) is continuous curve in A, $gc(t)g^{-1}$ is also a continuous curve in A for all $g \in G$, and then A_o is a normal subgroup of G. From Proposition 2.25 we know that the Lie algebra of A_o is an ideal of \mathfrak{g} , hence is equal to $\{0\}$ since \mathfrak{g} is simple and $A \neq G$. We have proved that $A_o = \{e\}$, which means that every continuous curve in A is constant. For every $a \in A$ and all continous curve $\gamma(t)$ in G, the continuous curve $\gamma(t)a\gamma(t)^{-1}$ in A must be constant. It proves that A belongs to the center of G. \Box

We come back to the exact sequence (2.22).

Lemma 3.4 If \mathfrak{g} is a semi-simple Lie algebra, the vector space of derivation $\operatorname{Der}(\mathfrak{g})$ is equal to $\operatorname{ad}(\mathfrak{g})$.

PROOF : Let D be a derivation of \mathfrak{g} . Since $B_{\mathfrak{g}}$ is non-degenerate there exist a unique $X_D \in \mathfrak{g}$ such that $\operatorname{Tr}(\operatorname{Dad}(Y)) = B_{\mathfrak{g}}(X_D, Y)$, for all $Y \in \mathfrak{g}$.

Now we compute

$$B_{\mathfrak{g}}([X_D, Y], Z]) = B_{\mathfrak{g}}(X_D, [Y, Z]) = \operatorname{Tr}(Dad([Y, Z]))$$

= $\operatorname{Tr}(D[ad(Y), ad(Z)])$
= $\operatorname{Tr}([D, ad(Y)]ad(Z))$ (1)
= $\operatorname{Tr}(ad(DY)ad(Z))$ (2)
= $B_{\mathfrak{g}}(DY, Z).$

(1) is a general fact about the trace: $\operatorname{Tr}(A[B,C]) = \operatorname{Tr}([A,B]C)$ for any $A, B, C \in \mathfrak{gl}(\mathfrak{g})$. (2) uses the definition of a derivation (see (2.21)). Using now the non-degeneracy of $B_{\mathfrak{g}}$ we get $D = \operatorname{ad}(X_D)$. \Box

The equality of Lie algebras $\operatorname{ad}(\mathfrak{g}) = \operatorname{Der}(\mathfrak{g})$ tells us that the adjoint group is equal to identity component of the automorphism group: $\operatorname{Ad}(\mathfrak{g}) = \operatorname{Aut}(\mathfrak{g})_o$.

Lemma 3.5 If G is a (connected) semi-simple Lie group, it's center Z_G is discrete and the adjoint group as zero center.

PROOF: The center Z(G) is discrete because the semi-simple Lie algebra \mathfrak{g} as zero center. Let $\mathrm{Ad}(g)$ be an element of the center of $\mathrm{Ad}(\mathfrak{g})$: we have

$$\operatorname{Ad}(\exp_G(X)) = \operatorname{Ad}(g)\operatorname{Ad}(\exp_G(X))\operatorname{Ad}(g)^{-1} = \operatorname{Ad}(g \exp_G(X)g^{-1})$$
$$= \operatorname{Ad}(\exp_G(\operatorname{Ad}(g)X))$$

for any $X \in \mathfrak{g}$. So $\exp_G(-X) \exp_G(\operatorname{Ad}(g)X) \in Z(G)$, $\forall X \in \mathfrak{g}$. But since Z(G) is discrete it implies that $\exp_G(X) = \exp_G(\operatorname{Ad}(g)X)$, $\forall X \in \mathfrak{g} : g$ commutes with any element of $\exp_G(\mathfrak{g})$. Since $\exp_G(\mathfrak{g})$ generates G, we have finally that $g \in Z(G)$ and so $\operatorname{Ad}(g) = 1$. \Box

The important point here is that a (connected) semi-simple Lie group is a central extension by a discrete subgroup of a quasi-algebraic group. The Lie group $\operatorname{Aut}(\mathfrak{g})$ is defined by finite polynomial identities in $\operatorname{GL}(\mathfrak{g})$: it is an algebraic group. And $\operatorname{Ad}(\mathfrak{g})$ is a connected component of $\operatorname{Aut}(\mathfrak{g})$: it is a quasi-algebraic group. There is an important case where the Lie algebra structure impose some restriction on the center.

Theorem 3.6 (Weyl) Let G be a connected Lie group such that $B_{\mathfrak{g}}$ is negative definite. Then G is a compact semi-simple Lie group and the center Z_G is finite.

There are many proofs, for example [2][Section II.6], [1][Section 3.9]. Here we only stress that the condition " $B_{\mathfrak{g}}$ is negative definite" imposes that $\operatorname{Aut}(\mathfrak{g})$ is a compact subgroup of $\operatorname{GL}(\mathfrak{g})$, hence $\operatorname{Ad}(\mathfrak{g})$ is compact. Now if we consider the exact sequence $0 \to Z_G \to G \to \operatorname{Ad}(\mathfrak{g}) \to 0$ we see that G is compact if and only if Z_G is finite. **Definition 3.7** A real Lie algebra is compact if its Killing form is negative definite.

3.1 Cartan decomposition on subgroups of $GL(\mathbb{R}^n)$

Let Sym_n be the vector subspace of $\mathfrak{gl}(\mathbb{R}^n)$ formed by the symmetric endomorphisms, and let Sym_n^+ be the open subspace of Sym_n formed by the positive definite symmetric endomorphisms. Consider the exponential e : $\mathfrak{gl}(\mathbb{R}^n) \to \operatorname{GL}(\mathbb{R}^n)$. We compute its differential.

Lemma 3.8 For any $X \in \mathfrak{gl}(\mathbb{R}^n)$, the tangent map $\mathbf{T}_X e : \mathfrak{gl}(\mathbb{R}^n) \to \mathfrak{gl}(\mathbb{R}^n)$ is equal to $e^X\left(\frac{1-e^{-\operatorname{ad}(X)}}{\operatorname{ad}(X)}\right)$. In particular, $\mathbf{T}_X e$ is a singular map if and only if the adjoint map $\operatorname{ad}(X) : \mathfrak{gl}(\mathbb{R}^n) \to \mathfrak{gl}(\mathbb{R}^n)$ has a non-zero eigenvalue belonging to $2i\pi\mathbb{Z}$.

PROOF: Consider the smooth functions $F(s,t) = e^{s(X+tY)}$, and $f(s) = \frac{\partial F}{\partial t}(s,0)$: we have f(0) = 0 and $f(1) = \mathbf{T}_X e(Y)$. If we differentiate F first with respect to t, and after with respect to s, we find that f satisfies the differential equation $f'(s) = Y e^{sX} + X f(s)$ which equivalent to

$$(e^{-sX}f)' = e^{-sX}Ye^{-sX} = e^{-s\operatorname{ad}(X)}Y.$$

Finally we find $f(1) = e^X (\int_0^1 e^{-s \operatorname{ad}(X)} ds) Y$. \Box

It is easy exercise to show that exponential map realize a one-to-one map from Sym_n onto Sym_n^+ . The last Lemma tells us that \mathbf{T}_X is not singular for every $X \in \operatorname{Sym}_n$. So we have prove the

Lemma 3.9 The exponential map $A \mapsto e^A$ realizes a smooth diffeomorphism from Sym_n onto Sym_n^+ .

Let $O(\mathbb{R}^n)$ the orthogonal group : $k \in O(\mathbb{R}^n) \iff {}^tkk = Id$. Every $g \in GL(\mathbb{R}^n)$ decomposes in a unique manner as g = kp where $k \in O(\mathbb{R}^n)$ and $p \in \operatorname{Sym}_n^+$ is the square root of tgg . The map $(k, p) \mapsto kp$ defines a smooth diffeomorphism from $O(\mathbb{R}^n) \times \operatorname{Sym}_n^+$ onto $GL(\mathbb{R}^n)$. If we use Lemma 3.9, we get the following

Proposition 3.10 (Cartan decomposition) The map

$$\begin{array}{rcl}
\mathcal{O}(\mathbb{R}^n) \times \operatorname{Sym}_n &\longrightarrow & \operatorname{GL}(\mathbb{R}^n) \\ (k, X) &\longmapsto & k \mathrm{e}^X
\end{array} \tag{3.25}$$

is a smooth diffeomorphism.

We will now extend the Cartan decomposition to an algebraic⁴ subgroup G of $\operatorname{GL}(\mathbb{R}^n)$ which is stable under the *transpose map*. In other term G is stable under the automorphism $\Theta_o : \operatorname{GL}(\mathbb{R}^n) \to \operatorname{GL}(\mathbb{R}^n)$ defined by

$$\Theta_o(g) = {}^t g^{-1}.$$
 (3.26)

The classical groups like $\mathrm{SL}(n, \mathbb{R})$, $\mathrm{O}(p, q)$, $\mathrm{Sp}(\mathbb{R}^{2n})$ fall into this category. The Lie algebra $\mathfrak{g} \subset \mathfrak{gl}(\mathbb{R}^n)$ of G is stable under the transpose map, so we have $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ where $\mathfrak{k} = \mathfrak{g} \cap \mathfrak{o}(n, \mathbb{R})$ and $\mathfrak{p} = \mathfrak{g} \cap \mathrm{Sym}_n$.

Lemma 3.11 Let $X \in \text{Sym}_n$ such that $e^X \in G$. Then $e^{tX} \in G$ for every $t \in \mathbb{R}$: in other word $X \in \mathfrak{p}$.

PROOF : The element e^X can be diagonalized : there exist $g \in GL(\mathbb{R}^n)$ and a sequence of real number $\lambda_1 \ldots \lambda_n$ such that $e^{tX} = g \operatorname{Diag}(e^{t\lambda_1}, \ldots, e^{t\lambda_n})g^{-1}$ for all $t \in \mathbb{R}$ (here $\operatorname{Diag}(e^{t\lambda_1}, \ldots, e^{t\lambda_n})$ is a diagonal matrix). From the hypothesis we have that $\operatorname{Diag}(e^{t\lambda_1}, \ldots, e^{t\lambda_n})$ belongs to the algebraic group $g^{-1}Gg$ when $t \in \mathbb{Z}$. Now it an easy fact that for any polynomial in *n*-variables *P*, if $\phi(t) = P(e^{t\lambda_1}, \ldots, e^{t\lambda_n}) = 0$ for all $t \in \mathbb{Z}$, then ϕ is identically equal to 0. So we have prove that $e^{tX} \in G$ for every $t \in \mathbb{R}$ whenever $e^X \in G$. \Box

Consider the Cartan decomposition $g = ke^X$ of an element $g \in G$. Since G is stable under the transpose map $e^{2X} = {}^tgg \in G$. From Lemma 3.11 we get that $X \in \mathfrak{p}$ and $k \in G \cap O(\mathbb{R}^n)$. Finally, if we restrict the diffeomorphism 3.25 to the submanifold $(G \cap O(\mathbb{R}^n)) \times \mathfrak{p} \subset O(\mathbb{R}^n) \times \operatorname{Sym}_n$ we get a diffeomorphism

$$(G \cap \mathcal{O}(\mathbb{R}^n)) \times \mathfrak{p} \xrightarrow{\sim} G. \tag{3.27}$$

Let K be the connected Lie subgroup of G associated to the subalgebra \mathfrak{k} : K is equal to the identity component of the compact Lie group $G \cap O(\mathbb{R}^n)$ hence K is compact. If we restrict the diffeomorphism (3.27) to the identity component G_o of G we get the diffeomorphism

$$K \times \mathfrak{p} \xrightarrow{\sim} G_o.$$
 (3.28)

3.2 Cartan involutions

We start again with the situation of a closed subgroup G of $GL(\mathbb{R}^n)$ stable under the transpose map $A \mapsto {}^tA$. Then the lie algebra $\mathfrak{g} \subset \mathfrak{gl}(\mathbb{R}^n)$ of G is also stable under the transpose map.

⁴i.e. defined by a finite number of polynomial equalities.

Proposition 3.12 If the Lie algebra \mathfrak{g} as a center reduced to 0, then \mathfrak{g} is semi-simple. In particular, the bilinear map $(X,Y) \mapsto B_{\mathfrak{g}}(X,^{t}Y)$ defines a scalar product on \mathfrak{g} . Moreover if we consider the transpose map $D \mapsto {}^{t}D$ on $\mathfrak{gl}(\mathfrak{g})$ defined by this scalar product, we have $\operatorname{ad}({}^{t}X) = {}^{t}\operatorname{ad}(X)$ for all $X \in \mathfrak{g}$.

PROOF : Consider the scalar product on \mathfrak{g} defined by $(X, Y)_{\mathfrak{g}} := \operatorname{Tr}({}^{t}XY)$ where Tr is the canonical trace on $\mathfrak{gl}(\mathbb{R}^{n})$. With the help of $(-, -)_{\mathfrak{g}}$, we have a transpose map $D \mapsto {}^{\mathrm{T}}D$ on $\mathfrak{gl}(\mathfrak{g})$: $(D(X), Y)_{\mathfrak{g}} = (X, {}^{\mathrm{T}}D(Y))_{\mathfrak{g}}$ for all $X, Y \in \mathfrak{g}$ and $D \in \mathfrak{gl}(\mathfrak{g})$. A small computation shows that ${}^{\mathrm{T}}\mathrm{ad}(X) = \mathrm{ad}({}^{t}X)$, and then $B_{\mathfrak{g}}(X, {}^{t}Y) = \operatorname{Tr}'(\mathrm{ad}(X) {}^{\mathrm{T}}\mathrm{ad}(Y))$ is a symmetric bilinear map on $\mathfrak{g} \times \mathfrak{g}$ (here Tr' is the trace map on $\mathfrak{gl}(\mathfrak{g})$). If \mathfrak{g} as zero center then $B_{\mathfrak{g}}(X, {}^{t}X) > 0$ if $X \neq 0$. Let $D \mapsto {}^{t}D$ be the transpose map on $\mathfrak{gl}(\mathfrak{g})$ defined by this scalar product. We have

$$B_{\mathfrak{g}}(\mathrm{ad}(X)Y, {}^{t}Z) = -B_{\mathfrak{g}}(Y, [X, {}^{t}Z]) = B_{\mathfrak{g}}(Y, {}^{t}[{}^{t}X, Z]),$$

for all $X, Y, Z \in \mathfrak{g}$: in other terms $\operatorname{ad}({}^{t}X) = {}^{t}\operatorname{ad}(X)$. \Box

Definition 3.13 A linear map $\tau : \mathfrak{g} \to \mathfrak{g}$ on a Lie algebra is an involution if τ is an automorphism of the Lie algebra \mathfrak{g} and $\tau^2 = 1$.

When τ is an involution of \mathfrak{g} , we define the bilinear map

$$B^{\tau}(X,Y) := -B_{\mathfrak{g}}(X,\tau(Y)) \tag{3.29}$$

which is symmetric. We have the decomposition

$$\mathfrak{g} = \mathfrak{g}_1^\tau \oplus \mathfrak{g}_{-1}^\tau \tag{3.30}$$

where $\mathfrak{g}_{\pm 1}^{\tau} = \{X \in \mathfrak{g} \mid \tau(X) = \pm X\}$. Since $\tau \in \operatorname{Aut}(\mathfrak{g})$ we have

$$[\mathbf{g}_{\varepsilon}^{\tau}, \mathbf{g}_{\varepsilon'}^{\tau}] \subset \mathbf{g}_{\varepsilon\varepsilon'}^{\tau} \quad \text{for all} \quad \varepsilon, \varepsilon' \in \{1, -1\},$$
(3.31)

and

 $B_{\mathfrak{g}}(X,Y) = 0 \quad \text{for all} \quad X \in \mathfrak{g}_{1}^{\tau}, \ Y \in \mathfrak{g}_{-1}^{\tau}.$ (3.32)

The subspace⁵ \mathfrak{g}^{τ} is a sub-algebra of \mathfrak{g} , \mathfrak{g}_{-1}^{τ} is a module for \mathfrak{g}^{τ} through the adjoint action, and the subspace \mathfrak{g}^{τ} and \mathfrak{g}_{-1}^{τ} are *orthogonal* with respect to B^{τ} .

Definition 3.14 An involution θ on a Lie algebra \mathfrak{g} is a Cartan involution if the symmetric bilinear map B^{θ} defines a scalar product on \mathfrak{g} .

⁵We will just denote by \mathfrak{g}^{τ} the subalgebra \mathfrak{g}_{1}^{τ} .

Note that the existence of a Cartan involution implies the semi-simplicity of the Lie algebra.

EXAMPLE : $\theta_o(X) = -{}^t X$ is an involution on the Lie algebra $\mathfrak{gl}(\mathbb{R}^n)$. We prove in Proposition 3.12 that if a Lie sub-algebra $\mathfrak{g} \subset \mathfrak{gl}(\mathbb{R}^n)$ is stable under the transpose map and has zero center, then the linear θ_o restricted to \mathfrak{g} is a Cartan involution. It is the case, for example, of the subalgebras $\mathfrak{sl}(n,\mathbb{R})$ and $\mathfrak{o}(p,q)$.

In the other direction, if a semi-simple Lie algebra \mathfrak{g} is equipped with a Cartan involution θ , a small computation shows that

$${}^{t}\operatorname{ad}(X) = -\operatorname{ad}(\theta(X)), \quad X \in \mathfrak{g},$$

where $A \mapsto {}^{t}A$ is the transpose map on $\mathfrak{gl}(\mathfrak{g})$ defined by the scalar product B^{θ} . So the subalgebra $\operatorname{ad}(\mathfrak{g}) \subset \mathfrak{gl}(\mathfrak{g})$, which is isomorphic to \mathfrak{g} , is stable under the transpose map. Conclusion : for a real Lie algebra \mathfrak{g} with zero center, the following statements are equivalent :

• \mathfrak{g} can be realized as a subalgebra of matrices stable under the transpose map,

• \mathfrak{g} is a semi-simple Lie algebra equipped with a Cartan involution.

In the next section, we will see that any real semi-simple Lie algebra has a Cartan involution.

3.3 Compact real forms

We have seen the notion of *complexification* of a real Lie algebra. In the other direction, a complex Lie algebra \mathfrak{h} can be consider as a *real* Lie algebra and we denote it by $\mathfrak{h}^{\mathbb{R}}$. The behavior of the Killing form with respect to this operation is

$$B_{\mathfrak{h}^{\mathbb{R}}}(X,Y) = 2\operatorname{Re}(B_{\mathfrak{h}}(X,Y)) \quad \text{for all } X,Y \in \mathfrak{h}.$$
(3.33)

For a complex Lie algebra \mathfrak{h} , we speak of *anti-linear involutions*: it is the involutions of $\mathfrak{h}^{\mathbb{R}}$ which anti-commute with the complex multiplication. If τ is an anti-linear involution of \mathfrak{h} then $\mathfrak{h}_{-1}^{\tau} = i\mathfrak{h}^{\tau}$, i.e.

$$\mathfrak{h} = \mathfrak{h}^{\tau} \oplus i\mathfrak{h}^{\tau}. \tag{3.34}$$

Definition 3.15 A real form of a complex Lie algebra \mathfrak{h} is a real subalgebra $\mathfrak{a} \subset \mathfrak{h}^{\mathbb{R}}$ such that $\mathfrak{h} = \mathfrak{a} \oplus i\mathfrak{a}$, *i.e.* $\mathfrak{a}_{\mathbb{C}} \simeq \mathfrak{h}$. A compact real form of a complex Lie algebra is a real form which is a compact Lie algebra (see Def. 3.7).

For any real form \mathfrak{a} of \mathfrak{h} , there exist a unique anti-linear involution τ such that $\mathfrak{h}^{\tau} = \mathfrak{a}$. Equation (3.34) tells us that $\tau \mapsto \mathfrak{h}^{\tau}$ is a one-to-one correspondence between the *anti-linear involutions* of \mathfrak{h} and the *real forms* of \mathfrak{h} . If \mathfrak{a} is a real form of a complex Lie algebra \mathfrak{h} , we have like in (2.24) that

$$B_{\mathfrak{a}}(X,Y) = B_{\mathfrak{h}}(X,Y) \quad \text{for all } X,Y \in \mathfrak{a}$$
(3.35)

In particular $B_{\mathfrak{h}}$ take real values on $\mathfrak{a} \times \mathfrak{a}$.

Lemma 3.16 Let θ an anti-linear involution of a complex Lie algebra \mathfrak{h} . θ is a Cartan involution of the real Lie algebra $\mathfrak{h}^{\mathbb{R}}$ if and only if \mathfrak{h}^{θ} is a compact real form of \mathfrak{h} .

PROOF: Consider the decomposition $\mathfrak{h} = \mathfrak{h}^{\theta} \oplus i\mathfrak{h}^{\theta}$ and X = a + ib with $a, b \in \mathfrak{h}^{\theta}$. We have

$$B_{\mathfrak{h}^{\mathbb{R}}}(X,\theta(X)) = 2(B_{\mathfrak{h}}(a,a) + B_{\mathfrak{h}}(b,b)) \qquad (1)$$

= $2(B_{\mathfrak{h}^{\theta}}(a,a) + B_{\mathfrak{h}^{\theta}}(b,b)) \qquad (2).$

(1) and (2) are consequence of (3.33) and (3.35). So we see that $-B^{\theta}_{\mathfrak{h}^{\mathbb{R}}}$ is positive definite on $\mathfrak{h}^{\mathbb{R}}$ if and only if the Killing form $B_{\mathfrak{h}^{\theta}}$ is negative definite. \Box

EXAMPLE : the Lie algebra $sl(n, \mathbb{R})$ is a real form of $sl(n, \mathbb{C})$. The complex Lie algebra $sl(n, \mathbb{C})$ as other real forms like

• $\operatorname{su}(n) = \{ X \in \operatorname{sl}(n, \mathbb{C}) \mid {}^{t}\overline{X} + X = 0 \},$

•
$$\operatorname{su}(p,q) = \{X \in \operatorname{sl}(n,\mathbb{C}) \mid {}^{t}\overline{X}\operatorname{I}_{p,q} + \operatorname{I}_{p,q}X = 0\}, \text{ where } \operatorname{I}_{p,q} = \begin{pmatrix} \operatorname{Id}_{p} & 0\\ 0 & -\operatorname{Id}_{q} \end{pmatrix}$$

Here the anti-linear involutions are respectively $\sigma(X) = \overline{X}$, $\sigma_a(X) = -t\overline{X}$, and $\sigma_b(X) = -I_{p,q} \overline{X}I_{p,q}$. Among the real forms $\mathrm{sl}(n,\mathbb{R})$, $\mathrm{su}(n)$, $\mathrm{su}(p,q)$ of $\mathrm{sl}(n,\mathbb{C})$, $\mathrm{su}(n)$ is the only one which is compact.

Let \mathfrak{g} be a real Lie algebra, and let σ be the anti-linear involution of $\mathfrak{g}_{\mathbb{C}}$ associated to the real form \mathfrak{g} . We have a one-to-one correspondence

$$\tau \mapsto \mathfrak{u}(\tau) := (\mathfrak{g}_{\mathbb{C}})^{\tau \circ \sigma} \tag{3.36}$$

between the set of involution of \mathfrak{g} and the set of real forms of $\mathfrak{g}_{\mathbb{C}}$ which are σ -stable. If τ is an involution of \mathfrak{g} , we consider its \mathbb{C} -linear extension to $\mathfrak{g}_{\mathbb{C}}$ (that we still denote by τ). The composite $\tau \circ \sigma = \sigma \circ \tau$ is then an anti-linear involution of $\mathfrak{g}_{\mathbb{C}}$ which commutes with σ : hence the real form $\mathfrak{u}(\tau) := (\mathfrak{g}_{\mathbb{C}})^{\tau \circ \sigma}$ is stable under σ . If \mathfrak{a} is a real form on $\mathfrak{g}_{\mathbb{C}}$ defined by a anti-linear involution ρ which commutes with σ , then $\sigma \circ \rho$ is a \mathbb{C} -linear involution on $\mathfrak{g}_{\mathbb{C}}$ which commutes with σ , then a stable under τ on \mathfrak{g} , and we have $\mathfrak{a} = \mathfrak{u}(\tau)$.

Proposition 3.17 Let \mathfrak{g} be a real semi-simple Lie algebra. Let τ be an involution of \mathfrak{g} and let $\mathfrak{u}(\tau)$ be the real form of $\mathfrak{g}_{\mathbb{C}}$ defined by (3.36). The following statements are equivalents

- τ is a Cartan involution of \mathfrak{g} ,
- $\mathfrak{u}(\tau)$ is compact real form of $\mathfrak{g}_{\mathbb{C}}$ (which is σ -stable).

PROOF : If $\mathfrak{g} = \mathfrak{g}^{\tau} \oplus \mathfrak{g}_{-1}^{\tau}$ is the decomposition related to the eigen-spaces of τ then $\mathfrak{u}(\tau) = \mathfrak{g}^{\tau} \oplus i \mathfrak{g}_{-1}^{\tau}$. Take $X = a + ib \in \mathfrak{u}(\tau)$ with $a \in \mathfrak{g}^{\tau}$ and $b \in \mathfrak{g}_{-1}^{\tau}$. We have

$$B_{\mathfrak{u}(\tau)}(X,X) = B_{\mathfrak{g}_{\mathbb{C}}}(X,X) \quad (1)$$

= $B_{\mathfrak{g}}(a,a) - B_{\mathfrak{g}}(b,b) \quad (2)$
= $-B_{\mathfrak{g}}^{\tau}(\tilde{X},\tilde{X}),$

where $X = a + b \in \mathfrak{g}$. (1) is due to (3.35). In (2) we use (2.24) and the fact that \mathfrak{g}^{τ} and \mathfrak{g}_{-1}^{τ} are $B_{\mathfrak{g}}$ -orthogonal. Then we see that $B_{\mathfrak{u}(\tau)}$ is negative definite if and only if $B_{\mathfrak{g}}^{\tau}$ is positive definite. \Box

Now we give the way we can prove that a real semi-simple Lie algebra \mathfrak{g} has a Cartan involution. Let $\mathfrak{g}_{\mathbb{C}}$ be the complexification of \mathfrak{g} and let σ the anti-linear involution of $\mathfrak{g}_{\mathbb{C}}$ corresponding to the real form \mathfrak{g} . We now from Proposition 3.17 that it is equivalent to look to the σ -stable compact real forms of $\mathfrak{g}_{\mathbb{C}}$. We use first the following fundamental fact.

Theorem 3.18 Any complex semi-simple Lie algebra has a compact real form.

A proof can be found in [3][Section 7.1]. The existence of a σ -stable compact real form is given by the following

Lemma 3.19 Let $\tau : \mathfrak{g}_{\mathbb{C}} \to \mathfrak{g}_{\mathbb{C}}$ be anti-linear involution corresponding to a compact real form of $\mathfrak{g}_{\mathbb{C}}$. There exists $\phi \in \operatorname{Aut}(\mathfrak{g}_{\mathbb{C}})$ such that the anti-linear involution $\phi \tau \phi^{-1}$ commutes with σ . Hence $\phi \tau \phi^{-1}|_{\mathfrak{g}}$ is a Cartan involution of to \mathfrak{g} .

PROOF: The complex vector space $\mathfrak{g}_{\mathbb{C}}$ is equipped with the hermitian metric : $(X, Y) \to B_{\mathfrak{g}_{\mathbb{C}}}(X, \tau(Y))$. It easy to check that $\tau \sigma$ belongs to the intersection

$$\operatorname{Aut}(\mathfrak{g}_{\mathbb{C}}) \cap \{\operatorname{hermitian endomorphism}\} = \{\phi \in \operatorname{Aut}(\mathfrak{g}_{\mathbb{C}}) \mid \tau \phi \tau = \phi^{-1}\}$$
(3.37)

 $\rho = (\tau \sigma)^2$ is positive definite. Following Lemma 3.11, the one parameter subgroup $r \in \mathbb{R} \mapsto \rho^r$ belongs to the identity component $\operatorname{Aut}(\mathfrak{g}_{\mathbb{C}})_o$ (since $\operatorname{Aut}(\mathfrak{g}_{\mathbb{C}})$ is an algebraic subgroup of $\operatorname{GL}((\mathfrak{g}_{\mathbb{C}})^{\mathbb{R}})$). We leave as an exercise to check that ρ^r commutes with $\tau \sigma$ for all $r \in \mathbb{R}$. Since $\tau \rho^r \tau = \rho^{-r}$ (see (3.37)) it is easy to see that $\rho^r \tau \rho^{-r}$ commutes with σ if $r = \frac{-1}{4}$. \Box

3.4 Cartan decomposition at the group level

Let G be a connected semi-simple Lie group with Lie algebra \mathfrak{g} . Let θ be a Cartan involution of \mathfrak{g} . So we have $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ where $\mathfrak{k} = \mathfrak{g}^{\theta}$ is a subalgebra of \mathfrak{g} and $\mathfrak{p} = \mathfrak{g}_{-1}^{\theta}$ is a \mathfrak{k} -module. Let K be the connected Lie subgroup of G associated to \mathfrak{k} . This section is devoted to the proof of the following

Theorem 3.20 (a) K is a closed subgroup of G

(b) the mapping $K \times \mathfrak{p} \to G$ given by $(k, X) \mapsto k \exp_G(X)$ is a diffeomorphism onto

(c) K contains the center Z of G

(d) K is compact if and only if Z is finite

(e) there exists a Lie group automorphism Θ of G, with $\Theta^2 = 1$ and with differential θ

(f) the subgroup of G fixed by Θ is K.

PROOF : The Lie group $\widehat{G} = \operatorname{Ad}(\mathfrak{g})$ which is equal to the image of G by the adjoint action is the identity component of $\operatorname{Aut}(\mathfrak{g})$. The Lie algebra $\widehat{\mathfrak{g}}$ of \widehat{G} which is equal to the subspace of derivations $\operatorname{Der}(\mathfrak{g}) \subset \mathfrak{gl}(\mathfrak{g})$ is stable under the transpose map $A \mapsto {}^{t}A$ on $\mathfrak{gl}(\mathfrak{g})$ associated to the scalar product B_{θ} on \mathfrak{g} (since $-{}^{t}\operatorname{ad}(X) = \operatorname{ad}(\theta(X))$). Since \widehat{G} is generated by $\operatorname{e}^{\operatorname{ad}(X)}$, $X \in \mathfrak{g}$, \widehat{G} is stable under the group morphism $A \mapsto {}^{t}A^{-1}$. We have $\widehat{\mathfrak{g}} = \widehat{\mathfrak{k}} \oplus \widehat{\mathfrak{p}}$ where $\widehat{\mathfrak{k}} = \{A \in \widehat{\mathfrak{g}} \mid {}^{t}A = -A\}$ and $\widehat{\mathfrak{p}} = \{A \in \widehat{\mathfrak{g}} \mid {}^{t}A = A\}$. We have of course $\widehat{\mathfrak{g}} = \operatorname{ad}(\mathfrak{g}), \ \widehat{\mathfrak{k}} = \operatorname{ad}(\mathfrak{k})$ and $\widehat{\mathfrak{p}} = \operatorname{ad}(\mathfrak{p})$. Let \widehat{K} be the compact Lie group equal to $\widehat{G} \cap O(\mathfrak{g})$: its Lie algebra is $\widehat{\mathfrak{k}}$. Since $\operatorname{Aut}(\mathfrak{g})$ is an algebraic subgroup of $\operatorname{GL}(\mathfrak{g}), (3.28)$ applies here and gives the diffeomorphism

$$\begin{array}{rcl}
\widehat{K} \times \widehat{\mathfrak{p}} & \longrightarrow & \widehat{G} \\
(k, A) & \longmapsto & k \mathrm{e}^{A}.
\end{array}$$
(3.38)

We consider the *closed* Lie subgroup

$$K := \mathrm{Ad}^{-1}(\widehat{K})$$

of G: its Lie algebra is \mathfrak{k} . By definition K contains the center $Z = \mathrm{Ad}^{-1}(\mathrm{Id})$ of G. If we take the pull-back of (3.38) trough $\mathrm{Ad} : G \to \widehat{G}$ we get the diffeomorphism

$$\begin{array}{rccc} K \times \mathfrak{p} & \longrightarrow & G \\ (k, X) & \longmapsto & k \exp_G(X), \end{array} \tag{3.39}$$

which proves that K is connected since G is connected : hence K is the connected Lie subgroup of G associated to the Lie subalgebra \mathfrak{k} . Finally Z

belongs to K and $K/Z \simeq \widehat{K}$ is compact: the point (a), (b), (c) and (d) are proved.

Let $\Theta: G \to G$ defined by $\Theta(k \exp_G(X)) = k \exp_G(-X)$ for $k \in K$ and $X \in \mathfrak{p}$. We have obviously $\Theta^2 = 1$ and $\operatorname{Ad}(\Theta(g)) = {}^t\operatorname{Ad}(g)^{-1}$. If we take g_1, g_2 in G we see that

$$\operatorname{Ad}(\Theta(g_1g_2)\Theta(g_2)^{-1}\Theta(g_1)^{-1}) = ({}^t(\operatorname{Ad}(g_1)\operatorname{Ad}(g_2))^{-1}) ({}^t\operatorname{Ad}(g_2)^{-1}) {}^t (\operatorname{Ad}(g_1)^{-1})$$

= 1.

So $\Theta(g_1g_2)\Theta(g_2)^{-1}\Theta(g_1)^{-1}) \in Z$ for every g_1, g_2 in G. Since G is connected and Z is discrete it gives $\Theta(g_1g_2)\Theta(g_2)^{-1}\Theta(g_1)^{-1} = 1$: (e) and (f) are proved. \Box

4 Invariant connections

A connection ∇ on the tangent bundle $\mathbf{T}M$ of a manifold M is a differential linear operator

$$\nabla: \Gamma(\mathbf{T}M) \longrightarrow \Gamma(\mathbf{T}^*M \otimes \mathbf{T}M) \tag{4.40}$$

satisfying th Leibnitz's rule: $\nabla(fs) = df \otimes s + f \nabla s$ for every $f \in \mathcal{C}^{\infty}(M)$ and $s \in \Gamma(\mathbf{T}M)$. Here $\Gamma(-)$ denotes the space of sections of the corresponding bundle. The contraction of ∇s by $v \in \Gamma(\mathbf{T}M)$ is a vectors field on M denoted $\nabla_v s$.

The torsion of a connection ∇ on $\mathbf{T}M$ is the (2,1)-tensor T^{∇} defined by

$$T^{\nabla}(u,v) = \nabla_u v - \nabla_v u - [u,v], \qquad (4.41)$$

for all vectors fields u, v on M. The *curvature* of a connection ∇ on $\mathbf{T}M$ is the (3, 1)-tensor R^{∇} defined by

$$R^{\nabla}(u,v) = [\nabla_u, \nabla_v] - \nabla_{[u,v]}, \qquad (4.42)$$

for all vectors fields u, v on M. Here $R^{\nabla}(u, v)$ is a differential operator acting on $\Gamma(\mathbf{T}M)$ which commutes with the multiplication by functions on M: so it is defined by the action of an element of $\Gamma(\operatorname{End}(\mathbf{T}M))$. For convenience we denote $R^{\nabla}(u, v) \in \Gamma(\operatorname{End}(\mathbf{T}M))$ this element. We can specialize the curvature tensor R^{∇} at each $m \in M$: $R_m^{\nabla}(U, V) \in \operatorname{End}(\mathbf{T}_m M)$ for each $U, V \in \mathbf{T}_m M$.

4.1 Connections invariant under a group action

Suppose now that a lie group G acts smoothly on a manifold M. The corresponding action of G on the vectors spaces $\mathcal{C}^{\infty}(M)$, $\Gamma(\mathbf{T}M)$ and $\Gamma(\mathbf{T}^*M)$

$$\underline{g} \cdot f(m) = f(g^{-1}m), \quad m \in M,$$
$$\underline{g} \cdot s(m) = \mathbf{T}_{g^{-1}m}g(s(g^{-1}m)), \quad m \in M$$

and

$$\underline{g} \cdot \xi(m) = \xi(g^{-1}m) \circ \mathbf{T}_m g^{-1}, \quad m \in M,$$

for every $f \in \mathcal{C}^{\infty}(M)$, $s \in \Gamma(\mathbf{T}M)$), $\xi \in \Gamma(\mathbf{T}^*M)$ and $g \in G$. Here we denote $\mathbf{T}_n g$ the differential at $n \in M$ of the smooth map $m \mapsto gm$. Note that the *G*-action is compatible with the canonical bracket $\langle -, - \rangle :$ $\Gamma(\mathbf{T}^*M) \times \Gamma(\mathbf{T}M) \to \mathcal{C}^{\infty}(M)$: $\langle \underline{g} \cdot \xi, \underline{g} \cdot s \rangle = \underline{g} \cdot \langle \xi, s \rangle$. We still denote \underline{g} the action of $g \in G$ on $\Gamma(\mathbf{T}^*M \otimes \mathbf{T}M)$.

Definition 4.1 A connection ∇ on the tangent bundle **T**M is G-invariant if

$$\underline{g}\nabla \underline{g}^{-1} = \nabla, \quad \text{for every } g \in G.$$
 (4.43)

This condition is equivalent to asking that $\nabla_{\underline{g}\cdot v}(\underline{g}\cdot s) = \underline{g}\cdot (\nabla_v s)$ for every vectors fields s, v on M and $g \in G$.

For every $X \in \mathfrak{g}$, the differential of $t \to \exp_G(tX)$ at t = 0 defines linear operators on $\mathcal{C}^{\infty}(M)$, $\Gamma(\mathbf{T}M)$ and $\Gamma(\mathbf{T}^*\overline{M})$, all denoted $\mathcal{L}(X)$. For $f \in \mathcal{C}^{\infty}(M)$ and $s \in \Gamma(M)$ we have $\mathcal{L}(X)f = X_M(f)$ and $\mathcal{L}(X)s = [X_M, s]$ where X_M is the vectors field on M defined at Section 2.4. The map $X \mapsto \mathcal{L}(X)$ is a Lie algebra morphism :

$$[\mathcal{L}(X), \mathcal{L}(Y)] = \mathcal{L}([X, Y]), \quad \text{for all} \quad X, Y \in \mathfrak{g}.$$
(4.44)

Definition 4.2 The moment of a G-invariant connection ∇ on **T**M is the linear endomorphism of $\Gamma(\mathbf{T}M)$ defined by

$$\Lambda(X) = \mathcal{L}(X) - \nabla_{X_M}, \quad X \in \mathfrak{g}.$$
(4.45)

Since the $\Lambda(X)$, $X \in \mathfrak{g}$ commute with the multiplication by functions on M, we can and we will see the $\Lambda(X)$ as element of $\Gamma(\operatorname{End}(\mathbf{T}M))$. The invariance condition (4.43) tells us that the map $\Lambda : \mathfrak{g} \to \Gamma(\operatorname{End}(\mathbf{T}M))$ is G-equivariant:

$$\Lambda(\operatorname{Ad}(g)Y) = \underline{g}\Lambda(Y)\underline{g}^{-1}, \quad \text{for every} \quad (g,Y) \in G \times \mathfrak{g}.$$
(4.46)

If we differentiate (4.46) at g = 1, we get

$$\Lambda([X,Y]) = [\mathcal{L}(X), \Lambda(Y)], \text{ for every } X, Y \in \mathfrak{g}.$$
(4.47)

We finish this section by computing the values of the torsion and curvature on vectors fields generated by the G-action. A direct computation gives

$$T^{\nabla}(X_M, Y_M) = [X, Y]_M - \Lambda(X)Y_M + \Lambda(Y)X_M.$$
(4.48)

for every $X, Y \in \mathfrak{g}$. Now using (4.44) and (4.47) we have for the curvature

$$R^{\nabla}(X_M, Y_M) = [\Lambda(X), \Lambda(Y)] - \Lambda([X, Y]), \qquad (4.49)$$

for every $X, Y \in \mathfrak{g}$.

4.2 Invariant Levi-Civita connections

Suppose now that the manifold M carries a Riemannian structure invariant under the Lie group G. The scalar product of two vectors fields u, v is just denote (u, v). The invariance condition is that the equality

$$g \cdot (u, v) = (g \cdot u, g \cdot v) \tag{4.50}$$

holds in $\mathcal{C}^{\infty}(M)$ for $u, v \in \Gamma(\mathbf{T}M)$ and $g \in G$. If we differentiate (4.50) at g = e we get

$$X_M(u,v) = ([X_M, u], v) + (u, [X_M, v]).$$
(4.51)

Let ∇^{LC} the Levi-Civita connection on M relative to the Riemannian metric: it is the unique torsion free connection which preserve the Riemannian metric. Since the Riemannian metric is G-invariant, the connection $\underline{g}\nabla^{\text{LC}}\underline{g}^{-1}$ preserves also the Riemannian metric and is torsion free for every $g \in G$. Hence ∇^{LC} is a G-invariant connection. Recall that for $u, v \in \Gamma(\mathbf{T}M)$ the vectors field $\nabla^{\text{LC}}_{u}v$ is defined by the relations

$$2(\nabla_{u}^{\text{\tiny LC}}v, w) = ([u, v], w) - ([v, w], u) + ([w, u], v) + u(v, w) + v(u, w) - w(u, v).$$

$$(4.52)$$

If we take $u = X_M$ and $v = Y_M$ in the former relation we find with the help of (4.51) that

$$2(\nabla_{X_M}^{\rm LC} Y_M, w) = ([X, Y]_M, w) - w(X_M, Y_M).$$
(4.53)

So we have proved the

Proposition 4.3 For any $X, Y \in \mathfrak{g}$ we have

$$\nabla_{X_M}^{\scriptscriptstyle \rm LC} Y_M = \frac{1}{2} \Big([X, Y]_M - \overrightarrow{\operatorname{grad}}(X_M, Y_M). \Big)$$

5 Invariant connections on homogeneous spaces

The main references here are [2] and [4].

5.1 Existence of invariant connections

We work here with the homogeneous space M = G/H where H is a closed subgroup with Lie algebra \mathfrak{h} of a Lie group G. We denote by $\pi : G \to M$ the quotient map. The quotient vector space $\mathfrak{g}/\mathfrak{h}$ is equipped with the Haction induced by the adjoint action. We consider the space $G \times \mathfrak{g}/\mathfrak{h}$ with the following H-action: $h \cdot (g, \overline{X}) = (gh^{-1}, \overline{\mathrm{Ad}}(h)\overline{X})$. This action is proper and free so the quotient $G \times_H \mathfrak{g}/\mathfrak{h}$ is a smooth manifold: the class of (g, \overline{X}) in $G \times_H \mathfrak{g}/\mathfrak{h}$ is denoted $[g, \overline{X}]$. We use here the following G-equivariant isomorphism

$$\begin{array}{rccc} G \times_H \mathfrak{g}/\mathfrak{h} & \longrightarrow & \mathbf{T}M \\ [g, \overline{X}] & \longmapsto & \frac{d}{dt} \pi(g \exp_G(tX))|_{t=0}. \end{array}$$

$$(5.54)$$

Using the G-equivariant isomorphism (5.54) we have

$$\Gamma(\mathbf{T}M) \xrightarrow{\sim} (\mathcal{C}^{\infty}(G) \otimes \mathfrak{g}/\mathfrak{h})^{H}$$

$$s \mapsto \widetilde{s}$$
(5.55)

and

$$\Gamma(\operatorname{End}(\mathbf{T}M)) \xrightarrow{\sim} (\mathcal{C}^{\infty}(G) \otimes \operatorname{End}(\mathfrak{g}/\mathfrak{h}))^{H}$$

$$A \mapsto \widetilde{A}.$$
(5.56)

For example, the vectors field X_M , $X \in \mathfrak{g}$ give rise through the isomorphism (5.55) to the functions $\widetilde{X_M}(g) = -\operatorname{Ad}(g)^{-1}X \mod \mathfrak{g}/\mathfrak{h}$.

Let ∇ be a *G*-invariant connection on the tangent bundle $\mathbf{T}M$, and let $\Lambda : \mathfrak{g} \to \Gamma(\operatorname{End}(\mathbf{T}M))$ be the corresponding *G*-equivariant map defined by (4.45). Let $\tilde{\Lambda} : \mathfrak{g} \to (\mathcal{C}^{\infty}(G) \otimes \operatorname{End}(\mathfrak{g}/\mathfrak{h}))^H$ be the map Λ through the identifications (5.56). The mapping $\tilde{\Lambda}$ is *G*-equivariant and each $\tilde{\Lambda}(X), X \in \mathfrak{g}$ is a *H*-equivariant map from *G* to $\operatorname{End}(\mathfrak{g}/\mathfrak{h})$:

$$\widetilde{\Lambda}(\operatorname{Ad}(g)X)(g') = \widetilde{\Lambda}(X)(g^{-1}g')$$

$$\widetilde{\Lambda}(X)(gh^{-1}) = \operatorname{Ad}(h) \circ \widetilde{\Lambda}(X)(g) \circ \operatorname{Ad}(h)^{-1}$$
(5.57)

for every $g, g' \in G$, $h \in H$ and $X \in \mathfrak{g}$.

Definition 5.1 Let $\lambda : \mathfrak{g} \to \operatorname{End}(\mathfrak{g}/\mathfrak{h})$ the map defined by $\lambda(X) = \widetilde{\Lambda}(X)(e)$.

From (5.57), we see that λ is *H*-equivariant and determines completely Λ :

$$\tilde{\Lambda}(X)(g) = \lambda(\operatorname{Ad}(g)^{-1}X).$$
(5.58)

So we have proved that the *G*-invariant connection ∇ is uniquely determined by the mapping $\lambda : \mathfrak{g} \to \operatorname{End}(\mathfrak{g}/\mathfrak{h})$.

- **Proposition 5.2** (a) The linear map $\lambda : \mathfrak{g} \to \operatorname{End}(\mathfrak{g}/\mathfrak{h})$ is H-equivariant, and when restrict to \mathfrak{h} is equal to the adjoint action.
 - (b) A linear map λ satisfying the conditions of (a) determine a unique *G*-invariant connection on $\mathbf{T}(G/H)$.

PROOF : We have $\Lambda(X) = \mathcal{L}(X) - \nabla_{X_M}$. So if $X_M(m) = 0^6$, we have $\Lambda(X)_m = \mathcal{L}(X)_m$ as endomorphism of $\mathbf{T}_m M$. When $m = \overline{e} \in M$, $X_M(\overline{e}) = 0$ if and only if $X \in \mathfrak{h}$, and then the endomorphism $\mathcal{L}(X)_{\overline{e}}$ of $\mathbf{T}_{\overline{e}}M = \mathfrak{g}/\mathfrak{h}$ is equal to $\mathrm{ad}(X)$. So $\lambda(X) = \mathrm{ad}(X)$ for all $X \in \mathfrak{h}$. The first point is proved.

Let $\lambda : \mathfrak{g} \to \operatorname{End}(\mathfrak{g}/\mathfrak{h})$ be a linear map satisfying the conditions (a), and let $\Lambda : \mathfrak{g} \to \Gamma(\operatorname{End}(\mathbf{T}M))$ be the corresponding *G*-equivariant map defined by $\lambda :$ for $\overline{g} \in M$ and $X \in \mathfrak{g}$ the map $\Lambda(X)_{\overline{g}}$ is

$$\begin{array}{cccc} \mathbf{T}_{\overline{g}}M & \longrightarrow & \mathbf{T}_{\overline{g}}M \\ [g,Y] & \longmapsto & [g,\lambda(g^{-1}X)Y]. \end{array}$$

By definition we have $\Lambda(X)_{\overline{g}} = \mathcal{L}(X)_{\overline{g}}$ when $X_M(\overline{g}) = 0$. Finally we define a G-invariant connection ∇ on $\mathbf{T}M$ by posing for any vectors field v, s on M and $m \in M$:

$$(\nabla_v s)|_m = (\mathcal{L}(X)s)|_m - \Lambda(X)_m(s|_m),$$

where $X \in \mathfrak{g}$ is chosen so that $X_M(m) = s|_m$. \Box

COUNTER EXAMPLE : Consider the homogeneous space $M = SL(2, \mathbb{R})/H$ where

$$H = \left\{ \left(\begin{array}{cc} a & b \\ 0 & a^{-1} \end{array} \right) \mid a, b \in \mathbb{R}, a \neq 0 \right\}.$$

We are going to prove that the tangent bundle $\mathbf{T}M$ does not carry a Ginvariant connection. Consider the basis (e, f, g) of $\mathfrak{sl}(2, \mathbb{R})$, where

$$e = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad f = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad g = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

 $^{{}^{6}}X_{M}(m) = 0$ if and only if m is fixed by the 1-parameter subgroup $\exp_{G}(\mathbb{R}X)$

⁷The manifold M is diffeomophic to the circle

We have [e, f] = 2e, [g, f] = -2g, and [e, g] = -f. Since the Lie algebra of H is $\mathfrak{h} := \mathbb{R}f \oplus \mathbb{R}g$, we use the identifications $\mathfrak{sl}(2, \mathbb{R})/\mathfrak{h} \cong \mathbb{R}e$ and $\operatorname{End}(\mathfrak{sl}(2, \mathbb{R})/\mathfrak{h}) \cong \mathbb{R}$. For the induced adjoint action of \mathfrak{h} on $\mathbb{R}e$ we have : $\widehat{\mathrm{ad}}(f) = -2$ and $\widehat{\mathrm{ad}}(g) = 0$. We are interested in a map $\lambda : \mathfrak{sl}(2, \mathbb{R}) \to \mathbb{R}$ satisfying

- λ is *H*-equivariant, i.e. $\lambda([X, Y]) = 0$ whenever $X \in \mathfrak{h}$.
- $\lambda(X) = \operatorname{ad}(X)$ for $X \in \mathfrak{h}$.

Theses conditions can not be fulfilled since the first point gives $\lambda(f) = \lambda([g, e]) = 0$, and with the second point we have $\lambda(f) = \widehat{\mathrm{ad}}(f) = -2$.

The previous example shows that some homogeneous spaces do not have invariant connection. For the remaining of Section 5 we work with the following

Assumption 5.3 The subalgebra \mathfrak{h} has a H-invariant supplementary subspace \mathfrak{m} in \mathfrak{g} .

In [4] the homogeneous spaces G/H are called of *reductive type* when the assumption 5.3 is satisfied. This hypothesis garanties the existence of invariant connections as we will see now.

Let $X \mapsto X_{\mathfrak{m}}$ denotes the *H*-equivariant projection onto \mathfrak{m} relatively to \mathfrak{h} . This projection induces an *H*-equivariant isomorphism $\mathfrak{g}/\mathfrak{h} \simeq \mathfrak{m}$. Then a *G*-invariant connection on $\mathbf{T}(G/H)$ is determined uniquely by a linear *H*-equivariant mapping $\lambda : \mathfrak{g} \to \operatorname{End}(\mathfrak{m})$ which extends the adjoint action ad : $\mathfrak{h} \to \operatorname{End}(\mathfrak{m})$. So λ is completely determined by its restriction

$$\lambda|_{\mathfrak{m}}:\mathfrak{m}\to\mathrm{End}(\mathfrak{m})$$

The following definition defines a family ∇^a , $a \in \mathbb{R}$ of invariant connection when G/H is an homogeneous spaces of *reductive type*.

Definition 5.4 Let G/H be an homogeneous spaces of reductive type. For any $a \in \mathbb{R}$, we define a *H*-equivariant mapping $\lambda^a : \mathfrak{g} \to \operatorname{End}(\mathfrak{m})$ by $\lambda^a(X) = \operatorname{ad}(X)$ for $X \in \mathfrak{h}$ and

$$\lambda^a(X)Y = a[X,Y]_{\mathfrak{m}} \text{ for } X,Y \in \mathfrak{m}.$$

We denote ∇^a the G-invariant connection associated to λ^a .

The connection ∇^0 is called the *canonical* connection. Note that the connections $\nabla^a, a \in \mathbb{R}$ are distincts except when the bracket $[-, -]_{\mathfrak{m}} = 0$ is identically equal to 0.

We finish this section by looking to the torsion free invariant connections.

Proposition 5.5 Let ∇ be a *G*-invariant connection on $\mathbf{T}(G/H)$ and let $\lambda : \mathfrak{g} \to \operatorname{End}(\mathfrak{m})$ be the associated *H*-equivariant map. The connection ∇ is torsion free *if and only if we have*

$$[X,Y]_{\mathfrak{m}} = \lambda(X)Y - \lambda(Y)X \quad \text{for all} \quad X,Y \in \mathfrak{m}.$$
(5.59)

Condition (5.59) is equivalent to asking that

$$\lambda(X)Y = \frac{1}{2}[X,Y]_{\mathfrak{m}} + b(X,Y), \qquad (5.60)$$

where $b: \mathfrak{m} \times \mathfrak{m} \to \mathfrak{m}$ is a symmetric bilinear map.

PROOF: The vectors fields X_M , $X \in \mathfrak{g}$ generates the tangent space of M = G/H, hence the connection is torsion free if and only if $T^{\nabla}(X_M, Y_M) = 0$ for every $X, Y \in \mathfrak{g}$. Following (4.48) the condition is

$$[X,Y]_M = \Lambda(X)Y_M - \Lambda(Y)X_M \quad \text{for all} \quad X,Y \in \mathfrak{g}.$$
(5.61)

A small computations shows that the function $\widetilde{X_M} : G \to \mathfrak{m}$ associated to the vectors field X_M via the isomorphism (5.55) is defined by $\widetilde{X_M}(g) = -[\operatorname{Ad}(g)^{-1}X]_{\mathfrak{m}}$. For the function $\lambda(X)Y_M : G \to \mathfrak{m}$ we have

$$\widetilde{\lambda(X)Y_M(g)} = -\lambda(\operatorname{Ad}(g)^{-1}X)[\operatorname{Ad}(g)^{-1}Y]_{\mathfrak{m}}, \text{ for all } X, Y \in \mathfrak{g}.$$

So condition (5.61) is equivalent to

$$[X,Y]_{\mathfrak{m}} = \lambda(X)Y_{\mathfrak{m}} - \lambda(Y)X_{\mathfrak{m}} \quad \text{for all} \quad X,Y \in \mathfrak{g}.$$
(5.62)

It is now easy to see that (5.62) is equivalent to (5.59) and (5.60).

Corollary 5.6 Let ∇^a be the *G*-invariant connection introduced in Definition 5.4. After Proposition 5.5, we see that

if the bracket [-, -]_m is identically equal to 0 : ∇^a = ∇⁰ is torsion free.
if the bracket [-, -]_m is not equal to 0, ∇^a is torsion free if and only if a = ¹/₂.

5.2 Geodesics on an homogeneous spaces

Let ∇ be a *G*-invariant connection on M = G/H associated to a *H*-equivariant map $\lambda : \mathfrak{m} \to \operatorname{End}(\mathfrak{m})$. A smooth curve $\gamma : I \to M$ is a *geodesic* relarive to a ∇ if

$$\nabla_{\gamma'}(\gamma') = 0. \tag{5.63}$$

The last condition can be understood locally as follow. Let $t_0 \in I$ and let $\mathcal{U} \subset M$ be a neighborhood of $\gamma(t_0)$: if \mathcal{U} is small enough there exists a vectors field v on \mathcal{U} such that $v(\gamma(t)) = \gamma'(t)$ for $t \in I$ closed to t_0 . Then for t near t_0 , condition (5.63) is equivalent to

$$\nabla_v v|_{\gamma(t)} = 0. \tag{5.64}$$

Proposition 5.7 For $X \in \mathfrak{m}$, we consider the curve $\gamma_X(t) = \pi(\exp_G(tX))$ on G/H, where $\pi : G \to G/H$ denotes the canonical projection and \exp_G is the exponential map of the lie group G. The curve γ_X is a geodesic for the connection ∇ , if and only if $\lambda(X)X = 0$.

PROOF: The vectors field X_M , which is defined on M, satisfies $X_M(\gamma_X(t)) = \gamma'_X(t)$ for $t \in \mathbb{R}$. Since $\nabla_{X_M} X_M = \Lambda(X) X_M$ we get

$$abla_{X_M} X_M|_{\gamma_X(t)} = [\gamma_X(t), \lambda(X)X] \quad \text{in} \quad \mathbf{T}M \simeq G \times_H \mathfrak{m},$$

so the conclusion follows. \Box

Corollary 5.8 Let ∇^a be the connection on G/H defined in Def. (5.4). Then

• the maximal geodesic are the curves $\gamma(t) = \pi(g \exp_G(tX))$, where $g \in G$ and $X \in \mathfrak{m}$.

• the exponential mapping $\exp_{\bar{e}} : \mathfrak{m} \to G/H$ is defined by $\exp_{\bar{e}}(X) = \pi(\exp_G(X)).$

5.3 Levi-civita connection on homogeneous spaces

We suppose now that one has a Ad(H)-invariant scalar product on the supplementary subspace \mathfrak{m} of \mathfrak{h} , that we just denote (-, -).

We define a *G*-invariant Riemannian metric $(-, -)_M$ on M = G/H as follows. Using the identification $G \times_H \mathfrak{m} \simeq \mathbf{T}M$, we take $(v, w)_M = (X, Y)$ for the tangent vector v = [g, X] and w = [g, Y] of $\mathbf{T}_{\overline{g}}M$. Let ∇^{LC} the Levi-Civita connection on M relative to this Riemannian metric. Since the Riemannian metric is *G*-invariant, the connection ∇^{LC} is *G*-invariant (see Section 4.2). Let $\lambda^{\mathrm{LC}} : \mathfrak{g} \to \mathrm{End}(\mathfrak{m})$ the *H*-equivariant map associated to the connection ∇^{LC} . Since ∇^{LC} preserves the metric we have

$$\lambda^{\mathrm{LC}}(X) \in \mathrm{so}(\mathfrak{m}) \quad \text{for every} \quad X \in \mathfrak{g}.$$
 (5.65)

Here $so(\mathfrak{m})$ denotes the Lie algebra of the orthogonal group $SO(\mathfrak{m})$.

Proposition 5.9 The map λ^{LC} is determined by the following conditions: $\lambda^{LC}(X) = \operatorname{ad}(X)$ for $X \in \mathfrak{h}$ and $\lambda^{LC}(X)Y = \frac{1}{2}[X,Y]_{\mathfrak{m}} + b^{LC}(X,Y)$ for $X, Y \in \mathfrak{m}$, where $b^{LC} : \mathfrak{m} \times \mathfrak{m} \to \mathfrak{m}$ is the symmetric bilinear map defined by

$$2(b^{\rm LC}(X,Y),Z) = ([Z,X]_{\mathfrak{m}},Y) + ([Z,Y]_{\mathfrak{m}},X) \quad X,Y,Z \in \mathfrak{m}.$$
 (5.66)

PROOF : We uses the decomposition (5.60) together with the fact that $(\lambda^{LC}(X)Y, Z) = -(Y, \lambda^{LC}(X)Z)$ for $X, Y, Z \in \mathfrak{m}$. It gives

$$(b^{\rm LC}(X,Y),Z) + (b^{\rm LC}(Z,X),Y) = \frac{-1}{2} \Big(([X,Y]_{\mathfrak{m}},Z) + ([X,Z]_{\mathfrak{m}},Y) \Big).$$
(5.67)

Now if we interchange X, Y, Z in Z, X, Y and after in Y, Z, X, we get two other equalities. If we sum them with alternative sign we get on the LHS the term $2(b^{LC}(X, Y), Z)$ and on the RHS we get $-([X, Z]_m, Y) - ([Y, Z]_m, X)$. \Box

EXAMPLE. Suppose that G is a compact Lie group and H is a closed subgroup. Let $(-, -)_{\mathfrak{g}}$ be a G-invariant scalar product on \mathfrak{g} . We take \mathfrak{m} as the orthogonal subspace of \mathfrak{h} . We take on G/H the G-invariant Riemannian metric coming from the scalar product $(-, -)_{\mathfrak{g}}$ restricted to \mathfrak{m} . In this situation we see that the bilinear map b^{LC} vanishes. So, the Levi-Civita connection on G/H is equal to the connection $\nabla^{1/2}$ (see Definition 5.4). Then we know after Corollary 5.8 that the geodesics on G/H are of the form $\gamma(t) = \pi(g \exp_G(tX))$ with $X \in \mathfrak{m}$.

5.4 Levi-civita connection on symmetric spaces of the non-compact type.

We come back to the situation of section 3.4. Let G be a connected semisimple Lie group with algebra \mathfrak{g} . Let $\Theta : G \to G$ be an involution of G such that $\theta = d\Theta$ is a Cartan involution of \mathfrak{g} . At the Lie algebra level we have the decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ where \mathfrak{k} is the Lie algebra of the closed connected subgroup $K = G^{\Theta}$ and $\mathfrak{p} = \{X \in \mathfrak{g} \mid \theta(X) = -X\}$. We denote by $X \mapsto X_{\mathfrak{k}}$ and $X \mapsto X_{\mathfrak{p}}$ the projections such that $X = X_{\mathfrak{k}} + X_{\mathfrak{p}}$ for $X \in \mathfrak{g}$.

We consider here the homogeneous space M = G/K. Since Ad(K) is compact, the vector subspace $\mathfrak{p} \simeq \mathbf{T}_{\bar{e}}M$ carries Ad(K)-invariant scalar product that induces *G*-invariant Rieamannian metric on *M*. One of them is of particular interest : the Killing form $B_{\mathfrak{g}}$.

Proposition 5.10 The Levi-Civita connection ∇^{LC} on G/K associated to any Ad(K)-invariant scalar product on \mathfrak{p} coincides with the canonical connection ∇^0 (see Definition 5.4). PROOF : Since $[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k}$, we have $[X, Y]_{\mathfrak{p}} = 0$ when $X, Y \in \mathfrak{p}$. After Proposition 5.9, we have then $\lambda^{\mathrm{LC}}(X) = \mathrm{ad}(X_{\mathfrak{k}})$ for $X \in \mathfrak{p}$, which means that $\nabla^{\mathrm{LC}} = \nabla^0$. \Box

In this setting Corollary 5.8 gives

Corollary 5.11 • All the maximal geodesic on G/K are defined over \mathbb{R} : the Riemannian manifold G/K is completed.

• the exponential mapping $\exp_{\bar{e}} : \mathfrak{p} \to G/K$ is defined by $\exp_{\bar{e}}(X) = \pi(\exp_G(X)).$

We will now compute the curvature tensor R^{LC} of ∇^{LC} . By definition R^{LC} is a 2-form on M with values in $\text{End}(\mathbf{T}M)$. We take $X, Y \in \mathfrak{g}$ and look at $R^{\text{LC}}(X_M, Y_M) \in \Gamma(\text{End}(\mathbf{T}M))$ or equivalently at the function $R^{\text{LC}}(\widetilde{X_M}, Y_M)$: $G \to \text{End}(\mathfrak{p})$: (4.49) gives

$$\begin{split} \widetilde{R^{\text{LC}}(X_M, Y_M)}(g) &= -[\lambda^{\text{LC}}(g^{-1}X), \lambda^{\text{LC}}(g^{-1}X)] + \lambda^{\text{LC}}([g^{-1}X, g^{-1}Y]) \\ &= -[\text{ad}((g^{-1}X)_{\mathfrak{k}}), \text{ad}((g^{-1}X)_{\mathfrak{k}})] + \text{ad}([g^{-1}X, g^{-1}Y]_{\mathfrak{k}}) \\ &= \text{ad}([(g^{-1}X)_{\mathfrak{p}}, (g^{-1}Y)_{\mathfrak{p}}]). \end{split}$$

At the point $\bar{e} \in M$, the curvature tensor R^{LC} specializes in a map $R_{\bar{e}}^{\text{LC}}$: $\mathfrak{p} \times \mathfrak{p} \to \text{End}(\mathfrak{p}).$

Proposition 5.12 For $X, Y \in \mathfrak{p}$, we have

$$R^{\mathrm{LC}}_{\bar{e}}(X,Y) = \mathrm{ad}([X,Y]).$$

We will now compute the sectional curvature when the Riemannian metric on M = G/K is induced by the scalar product on \mathfrak{p} defined by the Killing form $B_{\mathfrak{g}}$. The sectional curvature is a real function κ defined on the Grassmannian $Gr_2(\mathbf{T}M)$ of 2-dimensional vector subspaces of $\mathbf{T}M$ (see []). If $S \subset \mathbf{T}_{\bar{e}}M$ is generated by two *orthogonal* vectors $X, Y \in \mathfrak{p}$ we have

$$\kappa(S) = \frac{B_{\mathfrak{g}}(R_{\overline{e}}^{\mathrm{LC}}(X,Y)X,Y)}{\|X\|^{2}\|Y\|^{2}} \qquad [1]$$

$$= \frac{B_{\mathfrak{g}}([[X,Y],X],Y)}{\|X\|^{2}\|Y\|^{2}} \qquad [2]$$

$$= -\frac{\|[X,Y]\|^{2}}{\|X\|^{2}\|Y\|^{2}} \qquad [3].$$

[1] is the definition of the sectional curvature. [2] is due to Proposition 5.12, and [3] follows from the \mathfrak{g} -invariance of the Killing form and also to the fact that $-B_{\mathfrak{g}}$ defines a scalar product on \mathfrak{k} .

CONCLUSION : The homogeneous manifold G/K, when equipped with the Riemannian metric induced by the Killing form, is a completed Riemannian manifold with negative sectional curvature.

5.5 Flats on symmetric spaces of the non-compact type

Let M be a Riemmannian manifold and N a connected submanifold of M. The submanifold N is called *totally geodesic* if for each geodesic $\gamma : I \to M$ of M we have for $t_0 \in I$

$$(\gamma(t_0) \in N \text{ and } \gamma'(t_0) \in \mathbf{T}_{\gamma(t_0)}N) \Longrightarrow \gamma(t) \in N \text{ for all } t \in I.$$

We consider now the case of the symmetric space G/K equipped with the Levi-Civita connection ∇^0 .

Theorem 5.13 The set of totally geodesic submanifold of G/K containing \bar{e} is in one to one correspondence with the subspaces⁸ $\mathfrak{s} \subset \mathfrak{p}$ satisfying $[\mathfrak{s}, [\mathfrak{s}, \mathfrak{s}]] \subset \mathfrak{s}$.

For a proof see [2][Section IV.7]. The correspondence works as follows. If S is a totally geodesic submanifold of G/K, one has $R_n^{\text{LC}}(u, v)w \in T_nS$ for each $n \in S$ and $u, v, w \in \mathbf{T}_nS$. Then when $\bar{e} \in S$ one takes $\mathfrak{s} := \mathbf{T}_{\bar{e}}S$: the last condition becomes $[[u, v], w] \in \mathfrak{s}$ for $u, v, w \in \mathfrak{s}$.

In the other direction, if \mathfrak{s} is a Lie triple system one sees that $\mathfrak{g}_{\mathfrak{s}} := [\mathfrak{s}, \mathfrak{s}] \oplus \mathfrak{s}$ is a Lie subalgebra of \mathfrak{g} . Let $G_{\mathfrak{s}}$ be the connected Lie subgroup of G associated to $\mathfrak{g}_{\mathfrak{s}}$. One can prove that the orbit $S := G_{\mathfrak{s}} \cdot \overline{e}$ is a closed submanifold of G/K which is totally geodesic.

We are interested now in the "flats" of G/K. These are the totally geodesic submanifold with a curvature tensor that vanishes identically. If we use the last Theorem one sees that the set of flats in G/K passing through \bar{e} is in one to one correspondence with the set of *abelian* subspaces of \mathfrak{p} .

We will conclude this section with the

Lemma 5.14 Let $\mathfrak{s}, \mathfrak{s}'$ be two maximal abelian subspaces of \mathfrak{p} . Then there exists $k_o \in K$ such that $\operatorname{Ad}(k_o)\mathfrak{s} = \mathfrak{s}'$. In particular the subspaces \mathfrak{s} and \mathfrak{s}' have the same dimension.

PROOF: FIRST STEP. Let us show that for any maximal abelian subspace \mathfrak{s} there exists $X \in \mathfrak{s}$ such that the stabilizer $\mathfrak{g}^X := \{Y \in \mathfrak{g} \mid [X,Y] = 0\}$ satisfies $\mathfrak{g}^X \cap \mathfrak{p} = \mathfrak{s}$. We look at the *commuting* family $\operatorname{ad}(X), X \in \mathfrak{s}$ of

⁸Such subspace of \mathfrak{p} are called Lie triple system.

linear map on \mathfrak{g} . All these maps are *symmetric* relative to the scalar product $B^{\theta} := -B_{\mathfrak{g}}(\cdot, \theta(\cdot))$, so they can be diagonalized all together : there exists a finite set $\alpha_1, \dots, \alpha_r$ of non-zero linear maps from \mathfrak{s} to \mathbb{R} such that

$$\mathfrak{g} = \mathfrak{g}_0 \oplus \sum_{i=1}^r \ \mathfrak{g}_{lpha_i},$$

with $\mathfrak{g}_{\alpha_i} = \{X \in \mathfrak{g} \mid [Z, X] = \alpha_i(Z)X, \forall Z \in \mathfrak{s}\}$. Here the subspace \mathfrak{s} belongs to $\mathfrak{g}_0 = \{X \in \mathfrak{g} \mid [Z, X] = 0, \forall Z \in \mathfrak{s}\}$. Since we have assume that \mathfrak{s} is maximal abelian in \mathfrak{p} we have $\mathfrak{g}_0 \cap \mathfrak{p} = \mathfrak{s}$. For any $X \in \mathfrak{s}$ we have obviously

$$\mathfrak{g}^X = \mathfrak{g}_0 \oplus \sum_{lpha_i(X)=0} \ \mathfrak{g}_{lpha_i}.$$

If we take $X \in \mathfrak{s}$ such that $\alpha_i(X) \neq 0$ for all i, then $\mathfrak{g}^X = \mathfrak{g}_0$, hence $\mathfrak{g}^X \cap \mathfrak{p} = \mathfrak{g}_0 \cap \mathfrak{p} = \mathfrak{s}$.

SECOND STEP. Take $X \in \mathfrak{s}$ and $X' \in \mathfrak{s}'$ such that $\mathfrak{g}^X \cap \mathfrak{p} = \mathfrak{s}$ and $\mathfrak{g}^{X'} \cap \mathfrak{p} = \mathfrak{s}'$. We define the function $f(k) = B_{\mathfrak{g}}(X', \operatorname{Ad}(k)X), \ k \in K$. Let k_0 be a critical point of f (which exits since $\operatorname{Ad}(K)$ is compact). If we differentiate f at k_o we get $B_{\mathfrak{g}}(X', [Y, \operatorname{Ad}(k_o)X]) = 0, \ \forall Y \in \mathfrak{k}$. Since $B_{\mathfrak{g}}$ is \mathfrak{g} -invariant we get $B_{\mathfrak{g}}([X', \operatorname{Ad}(k_o)X], Y) = 0, \ \forall Y \in \mathfrak{k}$, so $[X', \operatorname{Ad}(k_o)X] = 0$. Since $\mathfrak{g}^{\operatorname{Ad}(k_o)X} \cap \mathfrak{p} = \operatorname{Ad}(k_o)(\mathfrak{g}^X \cap \mathfrak{p}) = \operatorname{Ad}(k_o)\mathfrak{s}$, the last equality gives $X' \in \operatorname{Ad}(k_o)\mathfrak{s}$. And since $\operatorname{Ad}(k_o)\mathfrak{s}$ is an abelian subspace of \mathfrak{p} we have then

$$\operatorname{Ad}(k_o)\mathfrak{s} \subset \mathfrak{g}^{X'} \cap \mathfrak{p} \\ \subset \mathfrak{s}'.$$

Finally since $\mathfrak{s}, \mathfrak{s}'$ are two maximal abelian subspaces, the last equality insures that $\operatorname{Ad}(k_o)\mathfrak{s} = \mathfrak{s}'$. \Box

References

- [1] J.J. DUISTERMAAT and J.A. KOLK, Lie groups, Springer, 1999, Universitext.
- [2] S. HELGASON, Differential geometry and symmetric spaces, Academic Press INC, 1962.
- [3] W. KNAPP, Lie groups beyond an introduction, Birkhuser, 2002 (Second Edition), Progress in Mathematics, Volume 140.
- [4] S. KOBAYASHI and K. NOMIZU, Foundations of differential geometry. Volumes I and II, Interscience Tracts in Pure and Applied Mathematics, 1969.

- [5] J. MAUBON, Riemannian symmetric spaces of the non-compact type : differential geometry, these proceedings.
- [6] F.W. WARNER, Foundations of differentiable manifolds and Lie groups, Springer-Verlag, 1983, Graduate texts in Mathematics.