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Introduction

Mirror symmetry is a phenomenon which inspired fundamental progress in a wide range of disciplines in mathe-
matics and physics in the last twenty years; we will review here a number of results going from the enumerative
geometry of curves to homological algebra. These advances justify the introduction of new techniques, which
are interesting in their own right. Among them, Gromov–Witten theory and its variants allow us to provide a
refined statement of mirror symmetry. Of course this leads to further open questions (despite much effort and
progress, Gromov–Witten theory remains unknown in high genus for the quintic threefold). In this course, we
will illustrate the natural problem of moving beyond the local mirror symmetry statement and completing a
framework of global mirror symmetry which is gradually taking shape. We will show how the missing piece in
this picture comes unexpectedly from a classical subject in algebraic geometry: the theory of curves with level
structures.

Plan of the course. These notes cover the material of the course of the summer school and more; they also
contain a detailed discussion of several crucial points and many examples. Lecture 1 will present the problem
of stating mirror symmetry beyond the local setup. Level structures are introduced as the geometric object
completing the picture; they will be preliminarily approached via examples. Lecture 2 will present some of
the material covered in Chapter I of the notes: the compactification of moduli of curves with level structures,
the enumerative geometry, the Grothendieck–Riemann–Roch formula (this is interesting in its own right and is
related to the first week course by Gavril Farkas). Lecture 3 will fit the theory of level curves into the mirror
symmetry framework; this is the so-called Landau–Ginzburg model set up in Chapter II. Finally, Lecture 4 will
provide a more general treatment of this global mirror symmetry framework, beyond the case of Calabi–Yau
hypersurfaces, moving from a construction due to Berglund, Hübsch and Krawitz (Chapters III and IV).

———————

A first example. The phenomenon inspiring mirror symmetry consists of a pair of three-dimensional varieties
X and X∨ of Calabi–Yau type (CY), satisfying the relations

h1,1(X) = h2,1(X∨) and h2,1(X) = h1,1(X∨). (1)

The most elementary example is that of a complex smooth hypersurface X of dimension three defined by the
Fermat polynomial

x5
1 + x5

2 + x5
3 + x5

4 + x5
5 = 0

in the projective space P4(C). The canonical bundle ωX = det(T∨X) is trivial. In fact X is a Calabi–Yau (CY)
variety, which — in this introduction — will simply mean ωX ∼= OX or equivalently deg(X) = dim(P4(C)) + 1.
Its Hodge numbers hp,q = dimHp,q(X) are given by

h0,0 = 1
h1,0 = 0 h0,1 = 0

h2,0 = 0 h1,1 = 1 h0,2 = 0
h3,0 = 1 h2,1 = 101 h1,2 = 101 h0,3 = 1

h1,3 = 0 h2,2 = 1 h3,1 = 0
h2,3 = 0 h3,2 = 0

h3,3 = 1 .

(2)

The mirror Calabi–Yau variety X∨ satisfying (1) can be regarded as X modulo the action of the group (Z/5)3

spanned (for instance) by the diagonal matrices Diag(ξ5, 1, 1, 1, ξ
4
5), Diag(1, ξ5, 1, 1, ξ

4
5), Diag(1, 1, ξ5, 1, ξ

4
5) acting

3



4 CHAPTER . INTRODUCTION

on P4(C). The quotient is singular, but has a minimal desingularization, which we will denote by X∨. This is
again a of CY type, and the Hodge numbers are equal to

h0,0 = 1
h1,0 = 0 h0,1 = 0

h2,0 = 0 h1,1 = 101 h0,2 = 0
h3,0 = 1 h2,1 = 1 h1,2 = 1 h0,3 = 1

h1,3 = 0 h2,2 = 101 h3,1 = 0
h2,3 = 0 h3,2 = 0

h3,3 = 1 .

(3)

A and B models. At a less elementary level, mirror symmetry predicts an isomorphisms involving two types
of invariants attached to each CY variety X: AX and BX . These are both spaces equipped with a vector bundle
with flat connection, we usually refer to them as the A model and the B model. Here, we illustrate how they
are constructed in this case. The numerical equalities of (1) are simply identities between dimensions deriving
from AX ∼= BX∨ and AX∨ ∼= BX .

On can define BX∨ using the space of deformations of X∨. This is may be regarded as the space of
deformations of X stable with respect to the (Z/5)3-action used above. We get in this way the Dwork family{

x5
1 + x5

2 + x5
3 + x5

4 + x5
5 + 5ψ

5∏
i=1

xi = 0

}
where ψ is a parameter of an open subset Ω of the projective line

Fψ

��

// F

��
�

ψ // Ω ⊂ P1.

The group (Z/5)3 preserves the fibers. The quotient followed by the desingularization F yields, as before, a
family of varieties X∨ψ for ψ varying in Ω ⊂ P1. We recall that the odd cohomology of this family is locally
trivial and yields a complex vector bundle V of rank four, naturally equipped with the so-called Gauss–Manin
connections 1. Indeed, if we write π for the total space of the family over the base scheme Ω and we consider the
local system R3π∗Z, then the vector bundle V = OΩ⊗R3π∗Z is equipped with a flat connection corresponding
to the local system. We define in this way a complex projective line equipped, on a Zariski open subset Ω,
with a rank-four vector bundle with flat connection. In the literature, the B model is given by this structure
restricted to a disc, neighborhood of ψ = ∞ in the complex projective line. We point out that ψ = ∞ does
not belong to Ω and that the rank-four vector bundle with connection is supported on the punctured disk. The
above construction suggests the notation

B∞X∨
highlighting the restriction to a neighborhood of infinity.

As we shall illustrate in Chapter IV one can define another rank-four vector bundle with flat connection
over a punctured disc. We consider a one parameter complex disc

A+
X ,

neighborhood of the origin in H1,1(X;C) ∼= C, equipped with a trivial rank-four vector bundle Heven(X;C) ⊗
O. Gromov–Witten theory allows us to define Dubrovin connection over the punctured disc: it encodes the
enumerative geometry of rational curves of X (genus-zero Gromov–Witten invariants, see (IV.9)).

The mirror symmetry statement 1 can be refined by requiring an isomorphism between A+
X and B∞X∨ identi-

fying the respective vector bundles with connection. In this way, (1) is just a preliminary of mirror symmetry;
its proof was given in the case of the quintic three-fold by Givental [56] and Lian–Liu–Yau [92]. More precisely,
there exist an isomorphism

B∞X∨

∼=
��
A+
X

OO (4)

compatible with the two local systems.

1In intuitive terms one can describe easily the flat sections of this connection: since the family is locally trivial on Ω, the
cohomology classes defined on a fiber of V → Ω can be constantly continued as soon as we trivialize (V,R3π∗Z) over an open
contractible set. These continuations are the flat section with respect to Gauss–Manin connection.
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Beyond the local statement. It is natural to observe that, on the B side we only retained the information
at a neighborhood of the point at infinity of the local system (V,R3π∗Z) naturally defined over the Zariski open
set Ω of P1. Indeed it is natural to define BX∨ as the above structure without any restriction. More precisely
BX∨ is the entire projective line equipped, over the open subspace Ω, with the local system (V,R3π∗Z). We
ask the natural question of extending mirror symmetry by defining a mathematical object AX matching BX∨ .
The first step in this direction is the identification of an A model invariant attached to the quintic three-fold X
mirror to the the restriction of BX∨ to a chart near 0 in the projective line. In [31] we identify this object as
the enumerative geometry of curves equipped with a level structure. In complete analogy with Gromov–Witten
theory we can define a local system on a disc, which we denote A−X . In Theorem IV/2.2.1 of [31] we provide a
mirror map

B0
X∨

∼=
��
A−X

OO
(5)

compatible with the local systems. We extend in this way the local mirror symmetry statement.

B0
X∨

∼=
��

// P1 B∞X∨oo

∼=
��

A−X

OO

A+
X

OO

.

(6)

The idea of completing a mirror image is a crucial motivation of a number of important papers in mathematics
and physics. This completion is often called Landau–Ginzburg model. As discussed above, A+

X ,B∞X∨ and B0
X∨ ,

are clearly identified: they arise from the CY geometry of X, the geometry of X∨ψ for ψ → ∞, and that of
X∨ψ for ψ → 0. The missing piece is the Landau–Ginzburg model, which allows us to define the bundle with

connection on A−X . This text provides a detailed presentation of this object. Up to this point our main goal
has been to explain as clearly as possible this natural effort to extend a mirror image. This seems a good spot
to reproduce a quotation inspired by the title of Morrison’s paper “Through the looking glass” [102].

“I’ll tell you all my ideas about Looking-glass House. First, there’s the room you can see through
the glass — that’s just the same as our drawing room, only the things go the other way. I can see
all of it when I get upon a chair — all but the bit behind the fireplace. Oh! I do so wish I could see
that bit! I want so much to know whether they’ve a fire in the winter: you never can tell, you know,
unless our fire smokes, and then smoke comes up in that room too? but that may be only pretence,
just to make it look as if they had a fire.” Through the Looking Glass, by Lewis Carroll.

Higher genus

The correspondence between Landau–Ginzburg (LG) model and the enumerative geometry of Calabi–Yau (CY)
varieties follows from the global mirror symmetry described above. Via mirror symmetry, it reflects the corre-
spondence between B∞X∨ and B0

X∨ , two restriction of the same geometrical object. It deserves special attention,
independently of mirror symmetry, because it provides us with a new approach to the computation of Gromov–
Witten of CY varieties.

LG-CY as an approach to Gromov–Witten theory. We recall that the enumeration of curves of any
genus traced on CY varieties — i.e. the Gromov–Witten theory of CY varieties — has been a central problem
in mathematics and physics for the last twenty years. Many techniques have been developed, but the actual
computation still eludes both mathematicians and physicists. Consider the above example of the smooth CY
quintic three-fold X. Here, the most advanced effort is Huang, Klemm, and Quackenbush’s speculation [69], via
a physical argument, on Gromov–Witten invariants in high genus; it is striking however that, even with these far-
reaching techniques, there is no prediction beyond g = 52. We should also mention that in mathematics several
general methods have been recently found [93, 97] and can in principle determine Gromov–Witten invariants
in a wide range of cases. These methods, however, are hard to put into practice both when calculating a single
invariant and when one needs to effectively compute the full higher genus Gromov–Witten theory. For the above
quintic three-fold, after the famous genus-zero computations [59, 92], the genus-one theory has been determined
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after a great deal of hard work by Zinger [126]. Computations in higher genera remain out of mathematicians’
reach for the moment.

In this current unsatisfactory state of affairs, a natural idea is to push through the LG-CY correspondence as
a precise mathematical statement in terms of enumerative geometry of curves and use the computational power
of the LG model as an effective method for determining the higher genus Gromov–Witten invariants of the CY
manifold. Providing a rigorous definition of the LG counterpart to Gromov–Witten theory of CY manifolds is
a first step towards establishing a geometric LG-CY correspondence and is likely to be interesting in its own
right. For instance, in a different context, the LG-CY correspondence led to identify matrix factorization as the
LG counterpart of the derived category of complexes of coherent sheaves — Orlov’s equivalence [105] (see also
[67]).

Witten’s insight into the Landau–Ginzburg model. In [125] Witten provides a purely mathematical
introduction to the Landau–Ginzburg model. Its construction fits in the formalism of geometric invariant theory
and suggests an interpretation of the Landau–Ginzburg model as a quantum theory of the singularity at the
origin of the function C5 → C defined by x5

1 + x5
2 + x5

3 + x5
4 + x5

5. (The argument of Witten is reviewed in
Section IV/3.1.) The first instance of such a quantum singularity theory is Witten’s quantum theory [123] of
the simplest singularity; namely, the ramification point of x 7→ x2 (A1-singularity). This led to an enumerative
theory of curves paired with square roots of the canonical line bundle — theta characteristics. It was proven by
Kontsevich [81] that the quantitative theory set up by Witten is governed by the Korteweg–de Vries hierarchy
(the integrable hierarchy attached to the simple singularity of type A1). This was generalized to all type-A
singularities by Faber, Shadrin, and Zvonkine [50] using the theorem on universal relations of Y. P. Lee [90]
and the connection between KdV hierarchies and type-A singularities of Givental [58]. This result relies on a
great deal of work to set up an analogue of the A1 theory: we should quote the early papers of Witten himself
[123, 125] as well as [4, 22, 28, 25, 26, 49, 72, 75, 73, 74, 76, 89, 90, 87, 88, 99, 109, 108, 116].

In [51, 52, 53], Fan, Jarvis and Ruan constructed an enumerative theory of curves, which is expected to
provide a complete counterpart for Gromov–Witten theory in the context of singularity theory. The formulation
of this general Landau–Ginzburg setup presents some analogies with Gromov–Witten theory, but it involves a
radical change of perspective. Instead of enumerating curves equipped with maps to a target, in the Landau–
Ginzburg model, we study curves C equipped with line bundles L (level structures): L⊗l ∼= O, or more generally

L⊗l ∼= ω⊗s,

for integers l ≥ 1 and s ≥ 0.
In [26] and [28] we provide a systematic approach to the enumerative geometry of these structures. This leads

to Theorem I/3.2.1 generalizing Mumford’s theorem on stable curves to the case of curves with level structures.
Jointly with Yongbin Ruan, in genus zero and in the case of the quintic polynomial W , we use this result to
compute the the Landau–Ginzburg enumerative theory of curves defined in [51, 52, 53]. Furthermore, we show
that it is equivalent to that of Gromov–Witten invariants of the quintic three-fold, see Theorem IV/2.2.1 and
Corollary IV/2.3.1. We obtain in this way a conjectural formula relating the two theories in higher genera.

Structure of this text

In Chapter I we present the theory of level structures: their moduli and the compactified moduli space. In
Chapter II we use some of the results on level structures to set up the Landau–Ginzburg model. In Chapter III
we present the mirror symmetry framework at the level of cohomology. In Chapter IV we present the global
mirror symmetry beyond the cohomology level.
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Chapter I

Level structures

1 Prerequisites on moduli of curves

We recall the main definitions of the theory of moduli of curves. We refer to [8, 9] for more details.
We work with algebraic curves of genus g. More precisely, we only work with schemes over the complex

numbers, and we write nodal curve of genus g for a projective, one-dimensional scheme, reduced and geometri-
cally connected, having only ordinary double points as singularities. We will usually refer to these singularities
as nodes. A curve C has genus g when h0(ω) equals g.

The notion of normalization allows us to make the geometry of C more explicit. We recall that the nor-
malization of a curve at a node p ∈ C is a finite morphism νp : Cνp → C (invertible over C \ {p} and with two
distinct point in Cν mapping to p). The curve Cνp is either a nodal connected curve, or the disjoint union of two
curves: in the second case we will write that p is a separating node. The genus of C can be expressed explicitly
by considering the normalization of C; i.e. the morphism ν : Cν → C, from a smooth curve Cν to C, given by
normalizing C at all nodes. Let V be the set of connected components C1, . . . , Cv of Cν , let E be the set of

rr
curve C

r

r r
r

normalization Cν =
⊔
Cj

t
tB

B
BB

dual graph Γ

Figure I.1: the curves C, its normalization Cν , its dual graph Γ.

nodes of C; then, the two branches of each node indentify a non ordered pair of elements of V . Giving (V,E)
is the same as giving a graph Γ, which we call the dual graph of C. We have a genus formula

g(C) =

v∑
i=1

g(Ci) + b1(Γ),

where b1 is the first Betti number of the graph Γ.

The category of nodal curves. A family of nodal curves of genus g over a base scheme B is given by a
morphism C → B, which is flat and proper, and has as fiber on each geometric point b ∈ B a nodal curve Cb
of genus g. A morphism from the family C → B to the family C ′ → B′ is a morphism of schemes m : C → C ′

fitting in the fiber diagram

C
m //

��

C ′

��
�

B // B′.

In this way the families of nodal curves form a category, which is not represented by an algebraic space.
Indeed, due to the presence of curves with nontrivial automorphisms, the notion of algebraic space is not well
suited to represent moduli of nodal curves and, more generally, categories classifying families of varieties. Alge-
braic stacks are more general than algebraic spaces, and allow geometric points with nontrivial automorphism

7



8 CHAPTER I. LEVEL STRUCTURES

groups. Hence, they provide us with the suitable framework for representing moduli of curves. In particular,
the category of nodal curves is represented by an algebraic stack.

Algebraic stacks. There is a wide spectrum of types of algebraic stacks. Here we will limit ourself to algebraic
stacks which are locally isomorphic to quotient stacks [U/G], where U is an affine space and G is a finite group.
There are only two exceptions: the case of U = Spec(C[x, y]/(xy)) modulo G = Z/l (operating by multiplication
on each coordinate) and the case of U = Cn modulo G = C× (operating with weights w1, . . . , wn). We recall
that the stack [U/G] is the category of G-torsors T over a base scheme B equipped with a morphism T → U
compatible with the G-action, see [121]. We write BG in the special case where U = SpecC; i.e. for the category
of G-torsors.

Stability. The stack of nodal curve does not fit in the above local description. Furthermore, it is not separated,
which makes it very hard to study its enumerative geometry. In order to reduce it to a separated stack, Deligne
and Mumford have defined the notion of stable curve: a nodal curve is stable if its canonical bundle is ample.
Let us notice, to begin with, that there is no stable curve of genus g ≤ 1. On the other hand, as soon as g is
larger than 1, then this notion of stability identifies a subcategory containing the category of smooth curves,
and represented by a separated algebraic stack. This stack, which we will denote by Mg, is in fact smooth,
proper, and fits in the local description by quotient stacks [U/G] given above.

Deligne–Mumford stack. In fact, the algebraic stack Mg satisfies further geometric properties which have
been first stated and proven in [44]. Among these properties, the finiteness of the stabilizer group Aut(p) for
each point p. More precisely Mg is a category equipped with a functor to the category of schemes, a geometric
point p is an object over SpecC, and we write Aut(p) for the automorphism group of p as an object of the
fibred category over SpecC. We refer to [5, Defn. 2.1.(1-3)] for a concise list of the properties of [44]; in the
recent literature they are usually summarized by the words “the stack is Deligne–Mumford”. The notion of
Deligne–Mumford stack can be regarded as as the algebraic analogue of the notion of orbifold. We recall here
a fundamental property of Deligne–Mumford stacks.

Existence of the reification. If X is a Deligne–Mumford stack, we write X for the universal object with
respect to morphisms from X to algebraic spaces. By construction, this object is equipped with a morphism
εX : X → X. Explicitly, for all algebraic spaces Y and all h : X → Y , there exists X → Y commuting with
εX : X → X and h. By [82], X is represented by an algebraic space. As a consequence, if f is a morphism of
Deligne–Mumford stacks, we get a corresponding morphism of algebraic spaces, which we note by f . We write
X and f the reifications of X and f. (We point out that X is usually referred to as the coarse space in the
literature; here we prefer the term reification, which applies to f as well as to X.) In this way the stack Mg

admits a reification Mg represented by an algebraic space; Deligne and Mumford show that the algebraic space
Mg is in fact a projective scheme of dimension 3g − 3.

Marked points. There is a natural generalization of the notion of nodal curve of genus g: the notion of
nodal curve equipped with n distinct smooth points s1, . . . , sn. The genus is still given by h0(ω). A curve of
this type is stable if ω(

∑
i[si]) is ample; clearly there is no genus-g n-pointed curve for 2g − 2 + n ≤ 0. We

assume 2g − 2 + n > 0. We use the notation Mg,n for the stack classifying n-pointed genus-g stable curves. It
is a Deligne–Mumford stack, smooth, proper, of dimension 3g − 3 + n. Its substack Mg,n is the subcategory
n-pointed genus-g smooth curves.

Boundary morphisms. We recall the natural morphisms

Mg1,n1+1 ×Mg2,n2+1 −→ Mg1+g2,n1+n2

and

Mg−1,n+2 −→ Mg,n

naturally defined by identifying two points. These morphisms, which we will revisit in the context of level
structures, allow to study the boundary ∂Mg,n = Mg,n \Mg,n.
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2 Moduli of level structures

In this section we review the definition of the moduli space of level structures Rlg and its compactification. It

is natural to introduce Rlg as the reification of a Deligne–Mumford stack Rlg. We refer here to the terminology
introduced in the previous section.

Let us fix g ≥ 2 and l ≥ 1; then, Rlg is the category of smooth genus-g curves C equipped with a line

bundle L and an isomorphism φ : L⊗l → OC . We regard these data as triples (C,L, φ) and we refer to them
as level-l curves. A family of level-l genus-g curves is a flat family C → B of smooth curves equipped with L
and φ on C as above. There is a natural notion of morphism from a family (C → B,L, φ) to another family
(C ′ → B′, L′, φ′); this is given by a pair (s, ρ) where s fits into a fibre diagram

C
s //

��

C ′

���

B // B′

and ρ is an isomorphism of line bundles s∗L′′ → L′ satisfying φ′ ◦ ρ⊗l = s∗φ′′. The category Rlg is a Deligne–

Mumford stack. In particular, its points have finite stabilizers and there exists a reification Rlg and a morphism

ε : Rlg → Rlg.

Notice that the forgetful morphism f : Rlg → Mg is a finite morphism with constant fiber. The fiber (pullback
of f via a geometric point) is formed by l2g points; as many as the elements of Pic(C)[l] for any smooth curve C.
It is important to notice that each of these points is isomorphic to the stack BZ/l. This happens because each
point has quasi-trivial automorphisms acting on C as the identity (i.e., α equals idC), and scaling the fibers of
L by an lth root of unity (i.e., ρ : z 7→ ξlz). These automorphisms are forgotten in the reification f : Rlg →Mg.
The morphism f is still finite, but it may well be ramified.

2.1 The compactification: the problem.

The stack Rlg is not compact (it maps onto Mg which is not compact). As a first approach one may consider
allowing triples (Cst, L, φ) where Cst is a stable genus-g curve in the sense of Deligne–Mumford (a nodal curve
whose canonical bundle is ample). This does not work. Indeed, the proper forgetful morphism f : Rlg → Mg

extends to a morphism from a category of triples (Cst, L, φ) to the Deligne–Mumford moduli stack of stable
curves Mg; it is easy to see that this extended morphism is not proper.

Remark 2.1.1. The forgetful morphism f : Rlg → Mg as well as the extended morphism to Mg mentioned above
are étale1. Then properness holds as soon as the fiber is constant. Consider a one-parameter smoothing of a
one-noded irreducible curve. The following sequence shows

1 −→ C∗ −→ Pic0(C)
ν∗−→ Pic0(Cν) −→ 1, (I.1)

that for the smooth fibers there are l2g distinct lth roots of O, whereas for the singular fibre the number of
roots2 of O is l2g−1. Hence f is not proper.

2.2 Orbifold curves

The solution to this problem is remarkably simple, once we find the suitable notion of curve. This is the notion
of orbifold (or twisted) curve developed by Abramovich and Vistoli [5] in the context of stable maps to a stack.
Here by orbifold curve we mean a one-dimensional stack C of Deligne–Mumford type whose generic stabilizer is
trivial, whose singularities are ordinary double points and whose reification C is a stable curve. We also add an
extra condition to insure that a twisted curve can always be smoothed. Explicitly, locally at a node, consider
a stabilizer G ∼= Z/k and the local picture of the curve {xy = 0} ⊂ C2. In order for C to be smoothable, we
always require that k ∈ Z/l acts as k · (x, y) = (ξkl x, ξ

−k
l y).

Remark 2.2.1 (unmarked orbifold curves). Up to Section 2.5 we do not consider marked curves and we always
assume that all smooth points have trivial stabilizers.

1This happens because the relative cotangent complex of BC∗ → BC∗; λ 7→ λl is trivial.
2It is easy to generalize the above example and show that the number of points in the fiber of the morphism forgetting the l-level

structure drops by a factor lm every time we have a specialization where the Betti number of the dual graph increases by m.
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All basic notions used for stable curves extend word for word to twisted curves: the genus h0(ωC), the
normalization, and the dual graph (see Figure I.1). The vertices are in one-to-one correspondence with the
connected components of the normalization; the edges are in one-to-one correspondence with the nodes. We
have the classical genus formula g = b1(Γ) +

∑
j g(Cj).

Remark 2.2.2. Orbifold curves form a non-separated stack [106] (just as usual nodal curve do). Consider a
family of orbifold curves C → ∆, where ∆ may be thought as a one-dimensional scheme with a special point
(e.g. the spectrum of a discrete valuation ring R). On the generic point (the spectrum of the fraction field K)
we have a smooth curve C× → ∆× = SpecK. On the special point we assume that C is an orbifold curve with
nontrivial stabilizers. The reification C of C yields a family C → ∆ which differs from C→ ∆; by definition it is
still an orbifold curve (but a representable one). In other words there exists two distinct “models” of C× → ∆×:
the orbifold curves C′ = C→ ∆ and C → ∆. Hence, the stack of orbifold curve is non-separated.

As it already occurred for nodal curves, we need a notion of stability yielding a nicely behaved substack. In
[26] we describe all the stability conditions yielding a separated stack and we show that they all yield a proper and
even smooth compactification of Mg (these compactifications differ from the moduli space of Deligne–Mumford
stable curves only because of the stabilizers; the stack is an root construction over the normal crossings boundary
divisor, see discussion in [26, Thm. 4.1.6]). Throughout this text we will constantly use a canonical choice: we
simply impose that all stabilizers at all nodes have order l. In this way the stack of l-stable orbifold curves is
a proper Deligne–Mumford stack Mg(l-st) providing a new compactification of Mg; an enriched version of Mg

with extra Z/l-stabilizers on the boundary locus Mg \Mg. We conclude this digression by stating precisely the
notion of unmarked l-stable curve.

Definition 2.2.3. An l-stable orbifold curve is a proper and connected Deligne–Mumford stack of dimension
one with singularities of type nodes, trivial stabilizers on smooth points and stabilizers of order l at the nodes.

2.3 Compactified moduli of level-l curves

Now the same naive idea which failed with stable curves works: we can define level-l curves as triples (C, L, φ)
where C is an l-stable curve, L is line bundle on it, and φ is an isomorphism of line bundles L⊗l → O.

Definition 2.3.1. A stable level-l curve of genus g on a base scheme B consists of a triple (C→ B, L, φ), where
C → B is a family of genus-g l-stable curves, L is a line bundle, and φ : L⊗l → OC is an isomorphism of line
bundles.

We denote by Rg the category of stable l-level curves of genus g. It is a proper stack of dimension 3g − 3.

Furthermore it is étale over M
l-st

g (and fibered in finite groups over M
l-st

g , see [26]). The reification Rg of Rg is

isomorphic to the normalization of Mg in the function field of Rg.

Remark 2.3.2 (multiplicity of a level-l structures at a node). Consider a level-l curve (C, L, φ). Let us describe
the local picture of C and of L at a node p; the description depends on the choice of a branch of the node, which
plays a privileged role. The stabilizer G of p is a cyclic group of order l; we can choose a generator g acting
on the node {xy = 0}C2 = Spec(C[x, y]/(xy)) as g · (x, y) = (ξlx, ξ

−1
l y) where x is the local parameter on the

privileged branch. Then, let us regard L as a 2-dimensional stack (the total space of the bundle) and the local
picture at the node as {xy = 0}C3 =⊂ Spec(C[x, y, λ]/(xy)). The generator g of G operates on this space as

g · (x, y, λ) = (ξlx, ξ
−1
l y, ξMl λ) (we write 1

l (1, l − 1,M)).

Let us refer to M ∈ {0, . . . , l − 1} as the multiplicity index at the node of the l-level curve (with oriented
branches). In Section 4, we point out that the multiplicities M define a cycle in the dual graph, see Proposition
4.1.1.

Remark 2.3.3 (the reification of l-level curves). Consider a smooth component Z of the l-level curve (C, L, φ).
The points p1, . . . , pk where Z meets the rest of the curve are nodes of C with Z/l-stabilizer and multiplicities
M1, . . . ,Mk (the privileged branch here is the one lying in Z). The restrictions (N, ν) of (L, φ) yields a root of
O on Z. A natural question is to describe the direct image of (N, ν) via ε∗, where ε is the natural map from Z
to the reification Z

ε : Z→ Z.

For line bundles on smooth orbifold curves, we introduce the notation

bNc = ε∗N. (I.2)
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In fact, bNc is a line bundle because ε is flat. Via ε∗ν, we can regard it as an lth root. Explicitly, we have

ε∗ν : bNc⊗l −→ OZ
(
−
∑k
i=1Mi[pi]

)
, (I.3)

where p1, . . . , pk are the reifications of p1, . . . , pk.
We refer to [26] for a systematic discussion. The idea is the following: we can express N as a line bundle

associated to a divisor with rational coefficients

D ∈
∑
p∈Z

[p]

# Aut(p)
Z = Div(Z), (I.4)

where the summation runs on the geometric points of Z (which is is just the same as saying “the points of Z”).
Then, D can be written as

D = bDc+
M1

l
p1 + · · ·+ Mk

l
pk,

where bDc is the round-down divisor (in the sense of [80, 0.4.(14)]). Divisors with integer coefficients on Z can
be expressed as pullbacks of a divisor on Z (uniquely determined up to linear equivalence); let us identify in
this way bDc as a divisor on Z. The line bundle bNc can be written as OZ(bDc). The claim (I.3) follows easily.

In particular (I.3) means that
∑
iMi is a multiple of l and we have

#{i |Mi > 0} 6= 1. (I.5)

If Z is not smooth, the analogous statement holds after normalization of D (in this case a node of the component
Z lifts to two points in the normalization, with multiplicities in {0, . . . , l − 1} adding up to a multiple of l).

2.4 Examples of one-noded level curves

This section is devoted to examples, it does not provide any notation that will occur in the rest of the text,
but it allows us to get a feeling for nodal level curves and for the structure of the boundary divisor of the
moduli stack. We classify all possible one-noded level-2 curves; the reader may find a systematic discussion in
[29]. Notice that, in this process, one determines the components of the normal crossings divisor forming the

boundary locus R
l

g \Rlg, see 3.1.
First recall that Deligne and Mumford’s moduli of stable curves represent two types of one-noded curves:

those of irreducible type and those of compact type. In other words their dual graphs are a loop (b1 = 1) or a
one-edged tree (b1 = 0):

• , • • .

Irreducible one-noded curves (loop case) are parametrized by a connected locus in Mg; its closure forms a normal
crossings divisor Lst. The divisor Lst may be described as the category of curves with at least one nonseparating
node (a node n for which the normalization of the curve at n is connected).

The locus classifying one-noded curves of compact type (tree case) in Mg consists of bg/2c connected com-
ponents. Its closure T st is the category of curves with at least one separating node (a node n for which the
normalization of the curve at n has exactly two connected components).

In order to see this, and in view of later discussions, it is convenient to describe a two-folded étale cover of
T st. Consider the stack whose points represent curves with a choice of a node separating the curve into two
components and a privileged branch for such node. This cover is the disjoint union

Tst =
⊔

0≤i≤g

Tst
i

of connected loci labeled by the genus i of the subcurve containing the chosen branch (by Deligne–Mumford
stability condition requiring ampleness of ω the loci Tst

0 and Tst
g are empty).

The morphism forgetting the choice of the branch and of the node maps Tst to the divisor T st in R
l

g; it
sends Tst

i to T st
i so that the labellings i and g − i occur for the same divisor. The case of T st

g/2 is special, the

divisor is given by multiplying by 2 the image of Tst
g/2. In this way we have

T st =
1

2

∑
0<i<g

T st
i .
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Remark 2.4.1. All these facts generalize immediately to l-stable curves: the analogue loci Ll-st and T l-st

are normal crossings divisors. They are equipped with the same kind of two-folded étale cover classifying the
branches:

Ll-st → Ll-st, and Tl-st → T l-st.

The stacks Ll-st and Ll-st are connected. For Tl-st we have the same decomposition and T l-st = 1
2

∑g−1
i=1 T

l-st
i .

Example 2.4.2 (level-2 curves of compact type). Consider a one-nodal curve of compact type; i.e. let C =
C1 ∪ C2 be a union of two smooth orbifold curves C1 and C2 of genus i and g − i meeting transversally at a
orbifold point BZ/2. We use Remark 2.3.3, (I.5) to note that the multiplicity M at the node is 0. Since C1

identifies one branch, we may write the local structure as 1
2 (1, 1, 0).

The line bundle L on C is determined by the choice of two line bundles L1 and L2 satisfying L⊗2
1
∼= OC1

and L⊗2
2
∼= OC1

where C1 and C2 are the reifications of C1 and C2 (see (I.3)). In this way, L1 or L2 may be of
order 2 or of order 1 (trivial). In this way the stack T classifying 2-level curves with a choice of a separating
node and a the choice of a branch decomposes into 4 open and closed substacks

T =
⊔

a,b=1 or 2

T[a],[b].

This holds over each divisor T 2-st
i ; we have exactly four connected components lying over T 2-st

i

T
[1],[1]
i t T [2],[1]

i t T [1],[2]
i t T [2],[2]

i = f∗T 2-st
i ,

where f is the unramified forgetful morphism R
2

g → M
2-st

g .

Example 2.4.3 (irreducible one-nodal curves). If C is irreducible and has one node, then the node is of
nonseparating type: when we normalize at that point, the curve remains connected. As mentioned above, we
may regard these curves as loops, because the dual graph is a loop. We can describe the reification of C as
Cp1,p2 := N/p1 ∼ p2, where [N, p1, p2] if a smooth genus-(g − 1) 2-pointed curve.

The study of C allows us to provide a decomposition into irreducible components of the divisor L of singular

2-level curves with at least one nonseparating node. It lies over L2-st ⊂ M
2-st

g and we show that it consists of 4
connected components. Again, it is convenient to look first at L classifying l-level curves, with a choice of a node
of nonseparating type and a privileged branch for such node. In this way the multiplicity at the nonseparating
node is well defined. The natural forgetful map L → L turns out to preserve the four connected components,
which can be described as follows

1. Assume that the multiplicity M equals 0. The level structure is a pullback of a 2-torsion bundle on Cp1,p2 .
Let ν : N → Cp1,p2 be the normalization map, then there is the exact sequence (I.1). Thus L is determined
by a line bundle LN := ν∗(L) ∈ Pic0(C) together with an identification of the fibers LN (p1) and LN (p2).
If LN is trivial, there is a canonical identification induced by LN ∼= O. We get a trivial level structure.

2. The remaining nontrivial identification yields a second connected locus of level curves within L. This is
the locus of level curves corresponding to Wirtinger covers, see also [54, Exa. 1.4].

3. Assume LN 6∼= ON . For each such choice of LN ∈ Pic0(N)[l] there are 2 ways to glue LN (p1) and LN (p2).
This yields another connected component in L.

4. Finally we consider the case M = 1. The local picture at the node is given by 1/2(1, 1, 1) (the privileged
branch is the one identified by p1). The line bundle L is determined by a line bundle LN = ν∗(L) on
the normalization ν : N → C together with an identification of the fibers over the node. By [2, §7], the
automorphism group of the curve C is a Z/2-extension of Aut(Cp1,p2) and — due to these extra involutions
— any two identifications of the fibers over the node can be identified via a nontrivial involution of C (see
[26] and [29]).

By projecting on R
2

g, we have the following decomposition, with labellings referring to the above list of cases

Ltrivial t LWirtinger t LM=0,nontriv./N t LM 6= 0 = f∗L2-st.
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2.5 Variants

One of the main advantages of the above approach is that it applies systematically to lth roots of any line
bundle defined on the moduli space of curves. In order to introduce all possible variants in full generality for
n-pointed genus-g curves, we recall known facts about marked curves.

Assume that g and n are nonnegative integers satisfying 2g−2+n > 0. Consider a nodal curve with n ordered,
distinct, and smooth markings (C;σ1, . . . , σn). We recall that (C;σ1, . . . , σn) is stable if ωlog = ω(

∑n
i=1[σi]) is

ample.

Remark 2.5.1. So far we have only considered orbifold curves with trivial stabilizers on the smooth locus and
Z/l-stabilizers at the nodes. It is worth noticing that there is a unique way to add a Z/l-stabilizer at a marking
D ∈ C. This has been described by Cadman [20] and Vistoli [1] as the category classifying the l-roots of the
normal bundle OC(D).

Giving an l-stable (C; s1, . . . , sn), with Z/l-stabilizers only at the nodes, is equivalent to giving a one-
dimensional stack (C′; s1, . . . , sn) equipped of a morphism

p : C′ → C

invertible on C \ {s1, . . . , sn} mapping marked points s1, . . . , sn, each of them with Z/l-stabilizer, on the points
s1, . . . , sn.

Remark 2.5.2. We can compare the canonical bundles ωC = O(KC) and ωC′ = O(KC′). In the notation (I.4),
we have a Riemann–Hurwitz formula

KC′ = p∗KC +

n∑
i=1

l − 1

l
[si].

Hence p∗ωC differs from ωC′ . On the other handle, for all i, we have

OC′

(
[si]

# Aut(si)

)⊗l
= p∗OC

(
[si]

# Aut(si)

)
where # Aut(si) = 1 and # Aut(si) = l. The two equations above imply

ωC′

(
n∑
i=1

[si]

# Aut(si)

)
= p∗ωC

(
n∑
i=1

[si]

# Aut(si)

)
,

which we can write as
ωlog,C′ = p∗ωlog,C

once we identify ωlog,C′ with the left hand side of the previous equation. This shows why it is better to consider
ωlog in the context of orbifold marked curves.

Example 2.5.3. In fact, the above procedure applies also to families of curves (voir [20, Thm. 4.1]). One
should take into account, however, the following subtlety. Over a base scheme B we assume that C → B is a
family of scheme-theoretic curves, smooth and with only one marking. Then, clearly, it is equivalent to specify
a subscheme D in C on B determined by the marking in each fiber, or to specify a section B → C sending each
point of the base to the marking.

Conversely, let us suppose that C→ B is a family of smooth orbifold curves on a base scheme B, and with
only one marking with stabilizer Z/l (the curve without the marking will be represented by a scheme). In
this case it is not equivalent to specify the substack D specifying the marking in each fibre, or giving a section
B → C specifying for every b ∈ B the marking in Cb. Indeed D projects onto B via a morphisms locally given
by BZ/l → SpecC. We remark that D it is not necessarily trivial; i.e. of the form B × BZ/l. Giving a section
B → C specifying for all b the marking in Cb is equivalent to giving D ⊂ C over B alongside with a trivialisation
D ∼= B × BZ/l.

The above example motivated the usual definition of family of marked orbifold curves.

Definition 2.5.4 (orbifold markings). A family of orbifold curves C→ B is marked in n smooth points as soon
as we specify n disjoint substacks

Di ↪→ C, i = 1, . . . , n, (I.6)

mapping to the base B via a morphism locally isomorphic to BZ/l −→ pt (a Z/l-gerbe).
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Remark 2.5.5. Consider the stack M
l-st

g,n of orbifold curves with a stable reification, n smooth and distinct
markings, and Z/l stabilizers only at the nodes. As we showed, this stack can be also regarded as the stack
classifying nodal orbifold curves with stable reification and Z/l stabilizers at the nodes and at the markings.

We will always think of M
l-st

g,n equipped with a universal curve

p : Cl-st −→ M
l-st

g,n (I.7)

with Z/l stabilizers at the markings.

Via reification, above the moduli stack M
l-st

g,n, we also have a universal stable curve Cst whose fibers are
ordinary orbifold curves, stable in the sense of Deligne–Mumford. As noted above, the curve is equipped with
sections

Di
// Cst

��

M
l-st

g,n

=

aaBBBBBBBB

(I.8)

specifying the markings. For all i, there is a natural fiber diagram

Di //

��

Cl-st

ε

��
�

Di
// Cst,

where the horizontal arrows denote injective morphisms. We have the relation discussed above

ωlog,Cl-st = ε∗ωlog,Cst .

Definition 2.5.6 (psi classes). We define

ψi = c1(ωrel|Di) ∈ H
2(M

l-st

g,n;Q) ∀i = 1, . . . , n

via the identity Di = M
l-st

g,n of equation (I.8).

We could define psi classes in a different way, as Chern classes of the restrictions of ωrel on Cl-st to all each
substack Di for i = 1, . . . , n. One easily checks that this alternative definition boils down to dividing by l the
above classes ψi. We follow the established practice that privileges, on this issue, the scheme-theoretic curve,
see [3].

We can finally introduce a variant of level structures. For l = 2, s = 1, and mmm = 111 we obtain the classical
notion of theta characteristic or spin structure. Witten’s notion of r-spin curve corresponds to l = r, s = 1, and
mmm = 111.

Definition 2.5.7. An n-pointed genus-g stable level-l curve with respect to the line bundle ω⊗slog on a base
scheme S consists of a triple (C → B, L, φ), where C → B is a family of n-pointed genus-g l-stable (orbifold)

curves (in M
l-st

g,n), L is a line bundle, and φ : L⊗l → ω⊗slog is an isomorphism of line bundles.
For each fibre (Cs, Ls, φs), the local picture at the markings is the product of a complex line along the curve

C = SpecC[x] and a complex line C = SpecC[λ] along L with g ∈ Z/l acting as

g(x, λ) = (ξlx, ξ
m
l λ)

(
we write

1

l
(1,m)

)
for some m ∈ {0, . . . , l − 1}. We refer to m as the type (or multiplicity) of the level structure at the marking.

We write R
l,s

g,n(mmm) for the category of level-l curves with respect to ω⊗slog of type m1, . . . ,mn. The union over
all types mmm ⊔

0≤m1,...,mn<l

R
l,s

g,n(mmm) (I.9)

classifies level-l curves of any type with respect to ω⊗slog. Clearly, in the above union, the terms R
l,s

g,n(mmm) are
nonepty only if we have

(2g − 2)s−
n∑
i=1

(mi − s) ∈ lZ
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(see Remark 2.5.8).
We drop the indices s and mmm when s and mmm vanish (moduli of ordinary level-l curves). This is again a

smooth (3g − 3 + n)-dimensional stack (it is étale over M
l-st

g,n and equipped with a torsor structure with respect

to the previous group stack R
l

g,n, see [26]).

Remark 2.5.8. Unravelling the above definition and using Remark 2.3.3 we point out that R
l,s

g,n(mmm) classifies

lth roots of ω⊗slog(−
∑n
i=1miDi) on Cl-st with zero-multiplicities at the markings. Here, by a slight abuse of

notation, Di ⊂ Cst is regarded as a divisor on Cl-st.

3 Intersection theory

We work in the rational cohomology ring of the stacks R
l,s

g,n(mmm). We already introduced the most important
classes: the psi classes of (2.5.6), first Chern classes of the line bundles formed by cotangent lines at the markings.

We provide a systematic treatment of the boundary R
l,s

g,n(mmm) \Rl,sg,n(mmm). Then, via boundary morphisms and psi
classes, we compute the K theory pushforard of the level structure.

3.1 Boundary morphisms

Let S be the the singular locus in the universal curve Cst → R
l,s

g,n(mmm). Since the singularities are, fibre by fibre,
ordinary double points (nodes), we can define i : S→ S as the double étale covering whose geometric points are
nodes alongside with a choice of a branch. Section 2.4, can be regarded as an early example of this procedure.

The stack S is naturally equipped with two line bundles whose fibres are the cotangent lines to the chosen
branch of Cst and to the other branch. We write

ψ,ψ′ ∈ H2(S;Q) (I.10)

for their respective first Chern classes in S. Note that, following established notation, we are systematically
privileging the scheme-theoretic curve Cst: this happens because in this way the classes ψ and ψ′ are more
easily related to the classes ψi introduced in (2.5.6) (see Remark 3.1.2).

While in the case of moduli spaces of stable curves, the space S turns out to be a disjoint union of several
smaller moduli spaces, the picture here is more complicated: the space S is not isomorphic, but can be projected
to a disjoint union of smaller moduli spaces.

We can decompose S according to the topological type of the node. In this way we get the disjoint union

S =
⊔

0≤i≤g
I⊆[n]

Si,I t Sirr,

where the substacks Si,I and Sirr are determined as follows:
(1) a point of Si,I corresponds to a separating node and a branch lying on the connected component of genus i
of the desingularisation carrying the markings (sj)j∈I ,
(2) Sirr corresponds to a nonseparating node, i.e. a node whose desingularization is connected.

Another natural decomposition is the disjoint union

S =
⊔

0≤M≤l−1

SM ,

where a point of SM corresponds to a node and a branch on which L has multiplicity M . The following remark
illustrates how the two decompositions above are related to each other.

Remark 3.1.1. All points of Si,I have a common multiplicity index M ∈ {0, . . . , l − 1} satisfying

s(2i− 2)−
∑
I(mi − s) ≡M mod l. (I.11)

We denote this index by M(i, I). On the other hand, on Sirr the values of the index M range over the entire
set {0, . . . , l − 1}. Therefore, intersecting the above decompositions we get

S =
⊔

0≤l≤g
I⊆[n]

Si,I t
⊔

0≤M<l

SMirr.
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The restrictions of j = π ◦ i to these components yield the morphisms

ji,I : Si,I −→ R
l,s

g,n(mmm) and jqirr : SMirr −→ R
l,s

g,n(mmm)

as well as

jM : SM =

(⊔
M(i,I)=M

Si,I
)
t SMirr −→ R

l,s

g,n(mmm) (I.12)

There exist natural morphisms from Si,I and Sqirr to moduli stacks of level structures of smaller dimension.
For any i ∈ {0, . . . , g} and for any I ⊆ [n] write M for the integer M(i, I) defined above. We have a

morphism

Si,I
µi,I−−−−−→ R

l,s

g,|I|+1(mmmI ,M)× R
l,s

g,|I′|+1(mmmI′ ,M
′),

where I ′ = [n] \ I and M ′ ∈ {0, . . . , l − 1} is opposite to M mod l. First, recall that an object T → Si,I
specifies an l-stable curve LT → CT over T with a T -node; i.e. a section nT from T to the singular locus of the
reification CT of CT . Furthermore, giving an object T → Si,I lifting T → Si,I amounts to equip the above data
with a lifting of the T -node to the desingularisation of CT at nT .

The functor µi,I assigns to each object T → Si,I as above the pair of level curves

LT,1 → CT,1 and LT,2 → CT,2

induced by

1. the desingularisation CT,1 t CT,2 → CT of the l-stable curve CT at the node in CT overlying the T -node
in CT ,

2. the pullback of LT via the above normalization.

The above definition of µqirr applies mutatis mutandis to Sqirr. For any M ∈ {0, . . . , l − 1}, we have

SMirr
µMirr−−−−−→ R

l,s

g−1,n+2(mmm,M,M ′).

Remark 3.1.2. Clearly, the psi classes on R
l,s

g,n(mmm) of (2.5.6) and the psi classes on S of (I.10) are compatible;
we have

(µMirr)
∗(ψn+1) = ψ, (µMirr)

∗(ψn+2) = ψ′,

and
µ∗i,I(ψ|I|+1 ⊗ 111) = ψ, µ∗i,I(111⊗ ψ|I′|+1) = ψ′.

for all i, I,M .

We refer to [34] for an explicit description of the generic fibre of the morphisms introduced above.

3.2 The index K class

In this section, in Theorem 3.2.1, we provide a formula playing a crucial role in the intersection theory of the
moduli space of level curves.

On R
l,s

g,n(mmm), we have universal objects

L // Cl-st

p

��

R
l,s

g,n(mmm)

and a natural K class
Rp∗L =

∑
i

(−1)i[Rip∗L] ∈ K0

(
R
l,s

g,n(mmm)
)
.

We can compute the Chern character of Rπ∗L in terms of psi classes and Bernoulli polynomials Bh(x). We
recall that Bernoulli polynomials are defined by the following generating function

tetx

et − 1
=

∞∑
h=0

Bh(x)
tn

n!
.
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Theorem 3.2.1 ([28]). Consider the moduli stack R
l,s

g,n(mmm) of n-pointed genus-g level-l curves of type mmm with

respect to ω⊗slog. Let L be the univeral level structure and let p denote the universal curve. Then, the degree-2h

term of the Chern character of Rp∗L in H∗(R
l,s

g,n(mmm);Q) equals

Bh+1

(
s
l

)
(h+ 1)!

κh −
n∑
i=1

Bh+1

(
mi
l

)
(h+ 1)!

ψhi +
l

2

∑
0≤M<l

Bh+1

(
M
l

)
(h+ 1)!

(jM )∗
∑

a+a′=h−1

ψa(−ψ′)a
′
,

where jM is the morphism from (I.12) and κh is the standard kappa class p∗
(
c1(ωlog)h+1

)
.

Remark 3.2.2. The above formula generalizes Mumford formula for the Chern character of the Hodge bundle
[103].

Remark 3.2.3. It is well known that the kappa class may be regarded as a pushforward of the the (h + 1)st
power of the class ψn+1 from the universal stable curve; see for instance [7]. Therefore, the above formula
provides an expression of the Chern character exclusively in terms of psi classes (see also Remark 3.1.2).

3.3 Examples of index bundles

We study briefly by means of examples the properties of the index K class. This is not only motivated by
pedagogical reasons, but it is actually useful to appreciate the definition of the quantum theories in the next
section.

The case s = 0 is related to orbifold Gromov–Witten theory. This happens because moduli of level-l
structures with respect to O are stable maps to BZ/l (see [10, 37, 119] and see [11, Thm.] for an explicit
treatment).

Here, we focus on the case s = 1, the case of roots of ωlog, because it plays an important role in the
Landau–Ginzburg model.

Each geometric point pt ∈ R
l,1

g,n(mmm) determines a pair (Cpt, Lpt) and we can consider the vector spaces

H0(Cpt, Lpt) and H1(Cpt, Lpt), whose ranks define upper-semicontinuous functions on R
l,1

g,n(mmm) → Z/≥ 0. In
some special cases, we actually get continuous (locally constant) functions.

Example 3.3.1. Assume g = 0 and m1, . . . ,mn > 0. Then H0(Cpt, Lpt) vanishes at every point and R
l,1

g,n(mmm)
is equipped with a locally free sheaf R1p∗L. In these special cases ch(Rp∗L) equals (up to a sign) the Chern
character of the bundle R1p∗L.

This can be easily seen for a smooth curve genus-zero C. Indeed

Hi(C, L) = Hi(C, bLc) ∀i.

Then the condition H0(C, L) = 0 is an immediate consequence of the fact that deg(bLc) is negative when
L⊗l ∼= ωlog:

deg(ωlog)−
n∑
i=1

mi

l
= −2−

n∑
i=1

mi − 1

l
< 0.

If the genus-zero curve is nodal the same argument holds by reasoning by induction on the components (see
[31]).

Remark 3.3.2. It is immediate to point out that the claim above holds (in genus zero) even when all multi-
plicities but one are positive. This plays a special role in the study of the normalization of nodes, see Remark
3.3.6.

In general we have

h1(Cpt, Lpt)− h0(Cpt, Lpt) = (g − 1)

(
1− 2

l

)
+

N∑
i=1

mi − 1

l
. (I.13)

Let us discuss the above formula in the case of smooth curves, and in the case of one-noded curves with all
possible multiplicities. These cases allow us to introduce three main tools: orbifold Riemann–Roch, narrow and
broad nodes. The examples below amount essentially to a proof of the formula, but this can be found in higher
generality in [2], [79], and [118].
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Example 3.3.3 (Riemann–Roch for orbifold curves). We assume that the curve with level structure is smooth.
We consider a smooth one-dimensional proper stack C whose stabilizers are nontrivial only on a finite number
of points. We write the line bundle L as O(D) for D ∈ Div(C). Then we have

h0(C, L)− h1(C, L) = h0(C, bLc)− h1(C, bLc),

where C is the reification of C and bLc is O(bDc) as in I.2. (In fact, the above relation may regarded as
Rp∗(L) = Rp∗(ε∗L) where p : C→ SpecC is the composite of εC→ C and p : C → SpecC).

Now we have

h0(C, bLc)− h1(C, bLc) = deg(bDc) + 1− g(C).

Since the multiplicity at the markings is m1, . . . ,mn, we get deg(bDc) = deg(D)−
∑n
i=1

mi
l and ultimately the

orbifold Riemann–Roch formula for curves

h0(C, L)− h1(C, L) = deg(L)−
n∑
i=1

mi

l
+ 1− g (I.14)

matching (I.13) via deg(L) = deg(ωlog)/l.

Example 3.3.4 (narrow nodes and broad nodes). We assume that the curve has a single separating node
BZ/l (the normalization is disconnected). We write the orbifold curve as C = C1 ∪ C2 and the normalization
Cν = C1 t C2; clearly g(C) = g(C1) + g(C2). The line bundle L is determined by a line bundle L1 on C1 and a
line bundle L2 on C2. The multiplicity is defined with respect to the branch lying in C1 and equals M . Consider
the normalization n : Cν → C, the exact sequence

0→ L→ n∗n
∗L→ L|BZ/l → 0,

and the long exact sequence

0→H0(C, L)→ H0(Cν , n∗L)→ H0(BZ/l, L|BZ/l)→

→H1(C, L)→ H1(Cν , n∗L)→ 0.

Now h0(C, L)− h1(C, L) is the sum of three terms

1. h0(C1, L1)− h1(C1, L1),

2. h0(C2, L1)− h1(C2, L1),

3. −h0(BZ/l, L|BZ/l).

The first two terms yield deg(bL1c) + 1− g(C1) and deg(bL2c) + 1− g(C2). The last term is −1 or 0 depending
on the multiplicity M . We have two possibilities.

Broad nodes. This is the case where M = 0; zero multiplicity implies two facts: first deg(bLc) = deg(bL1c)+
deg(bL2c), second h0(BZ/l, L|BZ/l) = 1. The sum of the three terms yields deg(bLc) + 1− g(C) and ultimately

(I.13).

Narrow nodes. This is the case M 6= 0; nonzero multiplicity implies two facts: first we have degbLc =
deg(bL1c) + deg(bL2c) + M

l + l−M
l , second the term h0(BZ/l, L|BZ/l) vanishes. The sum of the three terms still

yields deg(bLc) + 1− g(C) and (I.13).

Remark 3.3.5. The two cases appearing in the above example differ because L1 and L2 are tied by a broad
node (M = 0) and a narrow node (M 6= 0). When the node is narrow the two sides are decoupled, the correcting
term h0(BZ/l, L|BZ/l) vanishes and the Riemann–Roch computations on the two sides are independent and their
sum yields the correct result. If the node is broad, then when we rescale a section on C1 we are automatically
rescaling it on C2. The two Riemann–Roch computation should be corrected by h0(BZ/l, L|BZ/l) = 1.

The terminology narrow nodes/broad nodes replaces the previous terminology Neveu–Schwarz nodes/Ramond
nodes. Ramond and Neveu-Schwarz sectors have a precise meaning in conformal field theory which seems to
be only vaguely related to the meaning commonly used to distinguish between these two type of nodes. (This
change of notation is consistent with recent versions of [51, 52, 53].)
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Remark 3.3.6 (factorization of the index bundle). Let us consider a family of curves over a base scheme B.
Again s = 1 and m1, . . . ,mn > 0. We assume that all fibres have genus 0 and exactly one node. Their level
structure L yields an index bundle

I = R1p∗L.

The normalization
n : C1 t C2 → C

of the node yields two level-l structures (p1 : C1 → B, L1) and (p2 : C2 → B, L2) and two index bundles

I1 = R1(p1)∗L1 and I2 = R1(p2)∗L2.

(using Remark 3.3.2). Finding a relation expressing I in terms of I1 and I2 is not only a natural question, it is
a crucial issue for the definition of quantum theories.

There are two possibilities.

Narrow nodes. We have
I = I1 ⊕ I2.

Indeed let S be the singular locus of C. Since all fibres have exactly one node S projects to B via a morphism
locally isomorphic to BZ/l→ pt. We have a long exact sequence

0→ L→ n∗n
∗L→ L|S → 0.

and a long exact sequence

0 → p∗L → (p1)∗L1 ⊕ (p2)∗L2 → p∗L|S →
→ R1p∗L → R1(p1)∗L1 ⊕R1(p2)∗L2 → 0.

Since the node is narrow and p∗L = (p1)∗L1 = (p2)∗L2 = 0, we get I = I1 ⊕ I2.

Broad nodes. We have an exact sequence of the form

0→ T → I → I1 ⊕ I2 → 0.

Set T = p∗L|S; then this follows by the previous argument. Notice that T⊗l is trivial because ωlog|S is trivial
(residue map); hence the Euler class of I vanishes.

We may rephrase the remark by saying

c(I) = c(I1)c(I2),

where c is the total Chern class. Furthermore, the Euler class (or top Chern class) ctop(I), either vanishes (broad
nodes), or is the product of ctop(I1) and ctop(I2). This is the key fact for the definition of the Landau–Ginzburg
quantum theory in Chapter II.

4 The singularities of the moduli space

In this last section we address natural geometric question on moduli of level curves and on their reifications.
The material presented in this section is not used in the rest of the text. The reader may skip to Chapter II.

4.1 Dual graph and multiplicity

Consider a dual graph Γ of an orbifold curve C (i.e., the ordinary dual graph of the reification). It is a finite
graph with vertex set V and edge set E. Let C0 = C0(Γ,Z/l) be the set of Z/l-valued functions on V and let
C1 = C1(Γ,Z/l) be the set of Z/l-valued functions on the set E. In analogy with our study of the boundary
locus via the degree-2 map S→ S, we regard C1(Γ,Z/l) as a set of functions g on the set of oriented edges E
(for each edge there ate two orientations; so, the cardinality of E is twice that of E). We only consider functions
g : E→ Z/l satisfying g(e) = −g(e), where e and e are oriented edges with opposite orientations (see also Serre
[115, §2, no1]). The space of 0-cochains and 1-cochains C0 and C1 are equipped with bilinear Z/l-valued forms

〈f1, f2〉 =
∑

v∈V
f1(v)f2(v) 〈g1, g2〉 =

1

2

∑
e∈E

g1(e)g2(e)
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with f1, f2 ∈ C0 and g1, g2 ∈ C1. One defines the exterior differential

δ : C0 → C1,

f 7→ δf(e) = f(e+)− f(e−),

where e+ and e− denote the head and the tail of the oriented edge e. The adjoint operator with respect to 〈 , 〉
is given by

∂ : C1 → C0,

g 7→ ∂g(v) =
∑
e∈E
e+=v

g(e).

Since the edges of Γ are in one-to-one correspondence with nodes of C, oriented edges of Γ are in one-to-one
correspondence with branches of nodes of C. In this way, given an l-level curve, to each oriented edge e we
can attach the multiplicity Me of (C, L, φ) at the node (with its prescribed branch). The function M : e 7→ Me

clearly satisfies M(e) = −M(e) for all e ∈ E; in this way M is a 1-chain in C1(Γ,Z/l).
On the other hand, each choice of s and mmm determines a line bundle T = ω⊗slog(−

∑n
i=1mi[Di]). The degrees

of this line bundle T on each irreducible component amount to a function D : v 7→ deg(T |Cv ), where Cv is the

component corresponding to the vertex v. In this way D is a 0-cochain in C0(Γ,Z/l).

Proposition 4.1.1 ([26]). We have

∂M = D.

In particular, when s = 0 and mmm = 0, the multiplicity chain M is closed with respect to the differential ∂.

The image of δ is the orthogonal complement of ker ∂ with respect to 〈 , 〉:

im δ = (ker ∂)⊥. (I.15)

This provides us with a simple criterion to decide when a function g : E → Z/l in C1 belongs to im δ. Recall
that ker ∂ is generated by the circuits of Γ. A circuit within a graph is a sequence of n distinct oriented edges
e0, . . . , en−1 such that the head of ei is also the tail of ei+1 for 0 ≤ i < n − 1 and the head of en−1 is the tail
of e0. In this way a circuit identifies n vertices vi = (ei)− for 0 ≤ i < n; we require that all these vertices
are distinct. A circuit formed by a single edge will be called one-edged or, simply, loop. Via the natural map
sending an edge to its characteristic function

e 7→ χe

an edge may be regarded as an element of C1(Γ,Z/l). In this way, (I.15) may be regarded as saying: g ∈ C1 is
in im δ if and only if 〈g, C〉 = 0 for all circuits of Γ.

4.2 Ghost automorphisms of level-l curves

An automorphism of an l-level curve (C, L, φ) is given by (s, ρ) where s is an isomorphism of C, and ρ is an
isomorphism of sheaves s∗L→ L satisfying φ ◦ ρ⊗l = s∗ρ. Set

Aut(C, L, φ) = {s ∈ Aut(C) | s∗L ∼= L}.

It is easy to see that for each element of Aut(C, L, φ) there exists a pair (s, ρ) ∈ Aut(C, L, φ). Two pairs of this
form differ by a power of a quasi-trivial automorphism of the form (idC, ξl) operating by scaling the fibres. We
have the following exact sequence

1→ Z/l→ Aut(C, L, φ)→ Aut(C, L, φ)→ 1.

Quasi-trivial isomorphisms act trivially on Def(C, L, φ), the deformation space of (C, L, φ).

The reification s 7→ s induces group homomorphisms r : Aut(C, L, φ) → Aut(C) and r : Aut(C, L, φ) →
Aut(C). Consider

1→ ker r → Aut(C, L, φ)
r−−→ im r → 1;

the kernel and the image of r are natural geometric object of independent interest.



4. THE SINGULARITIES OF THE MODULI SPACE 21

Ghosts automorphisms. The kernel of Aut(C, L, φ) is the group

ker r = AutC(C, L, φ)

of automorphisms s of C fixing at the same time the underlying curve C and the isomorphism class of the
overlying line bundle L. Indeed, an automorphism of a stack M may well be nontrivial and operate as the
identity on M . Consider the quotient stack U = [{xy = 0}/Z/l] where Z/l acts as ξl(x, y) = (ξlx, ξ

−1
l y) and

all automorphisms (x, y) 7→ (ξbl x, ξ
a
l y) induce the identity on the quotient space. The autormorphisms fixing

the reification U up to natural transformations (2-isomorphisms) are AutU (U) ∼= Z/l and are generated by
(x, y) 7→ (ξlx, y). In this way, the automorphisms of a k-noded twisted curve C which fix C are freely generated
by automorphisms operating as (x, y) 7→ (ξrix, y).

Automorphisms of C lifting to (C, L, φ). The image im r is the group of automorphisms s of C, that can be
lifted to (C, L, φ). This means that there exists a morphism s of C whose reification is s and such that s∗L ∼= L.

4.3 Singularities

For the rest of this chapter we only consider level structures with respect to O. The point representing (C, L, φ) is
smooth if and only if each element of Aut(C, L, φ) operated on Def(C, L, φ) as a quasireflection (an automorphism
whose fixed space is of codimension one). This holds if and only if all elements of im r and ker r operate as
quasireflections.

In [29] we prove the following theorem extending the level-2 statement of [96]. We need the following
combinatorial tool. Given a level structure (C, L, φ) and its corresponding multiplicity M , for every k dividing
l, let us consider the graph Γk obtained by contracting an edge of Γ if and only if k divides Me. If two divisors
k′ and k′′ of l satisfy k′ | k′′ then Γk′ can be obtained by contracting some edges of Γk′′ ; in this case we will
say that if k′ | k′′, then Γk′ is a contraction of Γk′′ . In particular Γ1 has a single vertex and no edges and Γl is
given by contracting the edges e of Γ with vanishing multiplicity Me. We recall that a graph is tree-like if it is
a tree once we eliminate all the loops (the edges connecting a vertex to itself).

Theorem 4.3.1 ([29]). The point of Rg,l representing (C, L, φ) is smooth if and only if

1. the group of automorphisms of C lifting to (C, L, φ) ( i.e. the group im r) is generated by involutions of
elliptic tails; and

2. for all divisors of l of the form pd (with p prime and d ∈ Z/≥ 1) the graph Γpd is tree-like.

Sketch of the proof. Consider the homomorphism

M : C1(Γ,Z/l)→ C1(Γ,Z/l)∑
e

heχe 7→
∑
e

Meheχe,

where χe is the characteristic function of e. Then, the group of ghost automorphisms ker r is M−1(im δ).
Indeed, the group of automorphisms AutC(C) of C, which fix C is given by C1(Γ,Z/l). By [26], given an

automorphism α ∈ AutC(C) and a level structure L we have

α∗L ∼= L⊗ TM ,

where TM is a line bundle on C defined by applying to M ∈ C1(Γ,Z/l) the natural map C1(Γ,Z/l)→ Pic(L)[l].
Then, The exact sequence

1→ C0(Γ,Z/l) δ−−→ C1(Γ,Z/l)→ Pic(C)[l]→ Pic(Cν)[l]

yields the desired identification between ker r and M−1(im δ).
Once this combinatorics is set up, the claim in [29] follows from a direct study of the action of C1(Γ,Z/l)

on Def(C, L, φ).

4.4 Global geometry of moduli of level-l structures.

We illustrate results from [29], where we focus on ordinary level-l curves without markings: i.e. the initial

moduli space R
l

g. They are proven in the above framework.
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The moduli space R
l

g is a normal variety with finite quotient singularities; using the above characterization
of level-l curves without ghosts we describe the singular locus, Theorem 4.3.1. Then, in order to determine its

Kodaira dimension we consider a smooth model R̂lg of R
l

g and then analyze the growth of the dimension of the
spaces

H0
(
R̂lg,K

⊗q
R̂lg

)
of pluricanonical forms for all q ≥ 0. The following theorem allows us to relate the pluricanonical forms on R̂lg

to those on R
l

g.

Theorem 4.4.1 ([29]). We fix g ≥ 4 and l ≤ 4 and let R̂lg → R
l

g be any desingularization. Then every

pluricanonical form defined on the smooth locus R
l,reg

g of R
l

g extends holomorphically to R̂lg; that is, for all
integers q ≥ 0 we have isomorphisms

H0
(
R
l,reg

g ,K⊗q
R
l
g

) ∼= H0
(
R̂lg,K

⊗q
R̂lg

)
.

The above statement embodies Harris and Mumford’s result for l = 1 [63, Theorem 1], Farkas and Ludwig’s
result for l = 2 [54]. See also Ludwig [96] for 2-level structures over ω (2-spin curves).

The following statement shows an application of Theorem 4.4.1.

Theorem 4.4.2. The moduli space of level-3 curves R
3

g is of general type for g > 10.



Chapter II

The Landau–Ginzburg model

In this section, we present the quantum theory introduced by Fan, Jarvis, and Ruan in [51, 52, 53] building
upon work of Witten. Following [51], we refer to it as Fan–Jarvis–Ruan–Witten (FJRW) theory. The theory
combines the moduli spaces of level structures and classical singularity theory.

1 The state space

The state space is an orbifold version of the space of Lefschetz thimbles. Let us review the setup.

Let us fix the notation for quasihomogeneous (or weighted homogeneous) polynomials. Write

W =

s∑
i=1

γi
∏

x
mi,j
j

with mi,j ∈ Z/≥ 0 and γi 6= 0. Then W is quasihomogeneous of charges q1, . . . , qN if
∑N
j=1mi,jqj = 1.

Equivalently, with a slight abuse of notation, we write

W (λq1x1, . . . , λ
qNxN ) = λW (x1, . . . , xN )

and we refer to q1, . . . , qN as the charges of W . In mathematical literature q1, . . . , qN are commonly expressed
in the form w1/d, . . . , wN/d under a common minimal denominator; then w1, . . . , wN are the weights of W and
d is the degree of W . The physics terminology is more convenient in many formulae, and we will stick to it.

The polynomial W is nondegenerate if:

1. W defines a unique singularity at zero;

2. the choice of q1, . . . , qN is unique.

An element g ∈ GL(N,C) is a diagonal symmetry of W if g is a diagonal matrix of the form Diag(λ1, . . . , λN )
such that

W (λ1x1, . . . , λNxN ) = W (x1, . . . , xN ). (II.1)

We will use Aut(W ) to denote the group of all diagonal symmetries and we will refer to it as the maximal group
of diagonal symmetries. It is easy to see that this group is finite. The group is also nontrivial since it contains
the element jW = Diag(e2πiq1 , . . . , e2πiqN ).

The theory of Fan, Jarvis, and Ruan theory applies to a pair (W,G), where G ⊆ Aut(W ). Two conditions
will naturally arise in the rest of the paper; their role is specular in the sense of mirror symmetry.

A-admissibility. We will say that G ⊆ Aut(W ) is A-admissible if jW is contained in G.

B-admissibility. We will say that it is B-admissible if G ⊆ SL(N,C); i.e. if G is included in SLW =
SL(N,C) ∩Aut(W ).

23
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1.1 Lefschetz thimbles from the classical point of view

Consider W : CN → C. Let us recall some important facts on the relative homology of (CN ,W−1(S+
M )) where

S+
M is the half-plane {z ∈ C | Rez > M} for M > 0. We denote it by

H∗(CN ,W+∞;Z)

with W+∞ = W−1(S+
M ) and, by abusing notation, we refer to it as the space of Lefschetz thimbles.

Remark 1.1.1. Due to the nondegeneracy condition, the origin is the only critical point of W and CN \W−1(0)
is a fiber bundle on C×. For N > 1, since CN is contractible, we can consider the relative cohomology group
above as the homology (with compact support) of degree N − 1 of the fiber over a point S+

M (see [107, 1.1]).
We consider the Milnor fiber W−1(t) with t ∈ S∗M ; it is a Stein manifold with homology only in degree N − 1
and 0. In fact HN−1(W−1(t);C) is equipped with a canonical mixed Hodge structure and with a monodromy
automorphism [117].

In this way, the above space of Lefschetz thimbles is concentrated in degree N and is equipped with a mixed
Hodge structure. The monodromy automorphism is indeed the action of the diagonal matrix jW ; by [117], the
jW -invariants Lefschetz thimbles are are equipped with a pure Hodge structure (see also [48]).

Remark 1.1.2. A nondegenerate pairing can be defined as follows. We consider the relative homology

HN (CN ,W−∞;Z),

where W−∞ denotes W−1(S−M ) and S−M is the half-plane {z ∈ C | Rez < −M} for M > 0. The intersection
form for Lefschetz thimbles with boundaries in W+∞ and in W−∞ gives a well defined nondegenerate pairing

P : HN (CN ,W+∞;Z)×HN (CN ,W−∞;Z) −→ Z, (II.2)

see [64, §8, Step 2] and [107].

1.2 The state space of (W,G)

In our setup the above facts can be used to define the state space as the space of Lefschetz thimbles for the
stack-theoretic map

W : [CN/G] −→ C

where G is an A-admissible group (i.e. a group of diagonal symmetries containing jW ). The quasihomogeneity
condition yields a state space naturally equipped with a nondegenerate inner pairing.

Let us define the state space first; for the scheme-theoretic map W : CN → C we considered the relative
cohomology H∗(CN ,W+∞;C) which is concentrated in degree N and dual to the above space of Lefschetz
thimbles. Since [CN/G] is a stack, and the loci W+∞ and W−∞ (preimages of S+

M and S−M ) are substacks, the
suitable cohomology theory for this setup is orbifold cohomology (or Chen–Ruan cohomology).

Definition 1.2.1 (state space). For any A-admissible group G, we set

Ha,bW,G := Ha+q,b+q
CR ([CN/G],W+∞;C) q =

∑
jqj .

Remark 1.2.2. Because of its role in mirror symmetry, this is sometimes referred to as the A model state space
(see next chapter).

Remark 1.2.3. By making the above definition explicit we may regard the state space as the direct sum over
the elements g ∈ G of the G-invariant cohomology classes

HW,G =
⊕
g∈G

HNg (CNg ,W+∞
g ;C)G, (II.3)

where Ng is the number of coordinates x1, . . . , xN which are fixed by g, and CNg (and W+∞
g ) denote the g-

fixed subspaces of CN (of W+∞). We recall that the G-invariant subspaces in HNg (CNg ,W+∞
g ) are contained

into the subspaces of jW -invariant subspaces. By the remark 1.1.1, this guaranties that HNg (CNg ,W+∞
g ;C)G

is equipped by a pure Hodge structure of weight Ng. In this way, each class has bidegree (p,Ng − p) in the
standard cohomology. We now specify its bidegree in Chen–Ruan cohomology

(deg+,deg−) = (p,Ng − p) + (age(g), age(g))− (q, q) (with q =
∑
qj). (II.4)
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In the above formula age is the rational index defined 1 on the ring of finite order representations.
We will usually write Ha,bW,G for the terms of bidegree (a, b) and we will write deg for the total degree a+ b.

Remark 1.2.4. Consider the following map, naturally defined on HW,G

i∗ : H∗CR([CN/G],W+∞)→ H∗CR([CN/G]).

Narrow states. In the decomposition II.3 i∗ vanishes for all g with Ng > 0 and is injective where Ng vanishes.
The image of i∗ is spanned in HW,G by the summands in for which Ng = 0. These are called narrow states
(in Section 2, Remark 2.2.3, we see how this terminology is compatible with that of the previous chapter). A
special case of narrow state is the fundamental class attached to jW . By construction, we have deg(jW ) = 0.
This element plays the role of the unit of HW,G in the quantum cohomology ring (see [83]).

Broad states. In contrast with narrow states, the complementary space, i.e. the kernel of i∗, is usually
referred to in [51] as the space of broad states. These are classes attached to diagonal symmetries fixing a
nontrivial subspace of CN .

1.3 The inner pairing

We now define the nondegenerate inner pairing. The crucial fact is that the quasihomogeneity of the map W
allows us to define an automorphism

I : [CN/G]→ [CN/G]

exchanging [W+∞/G] with [W−∞/G]. Indeed we can set I(x1, . . . , xN ) = (eπiq1x1, . . . , e
πiqNxN ) satisfying

W (I(x1, . . . , xN )) = −W (x1, . . . , xN ).

Recall that automorphisms of [CN/G] are defined up to natural transformation (composition with elements of
G). The automorphism I induces the nondegenerate inner pairing

〈·, ·〉 : HN (CN ,W+∞;C)G ×HN (CN ,W+∞;C)G −→ C
(α, β) 7→ P (α, I∗β)

by passing to cohomology via the universal coefficient theorem and by using (II.2). Notice that I is defined up
to a natural transformation; since we are working with G-invariant cohomology classes this still yields a well
defined pairing.

There is an obvious identification ε between HNg (CNg ,W+∞
g ;C)G and HNh(CNh ,W+∞

h ;C)G as soon as
g = h−1 in G. This allows us to define a nondegenerate pairing between these two spaces via 〈·, ·〉g = 〈·, ε(·)〉
and, in turn, a nondegenerate pairing globally on HW,G.

Definition 1.3.1 (pairing for HW,G). We have a nondegenerate inner product

〈·, ·〉 : HW,G ×HW,G → C

pairing HaW,G and H2q̂W−a
W,G , for

q̂W = N − 2q =
∑
j(1− 2qj).

The index qW is usually called the central charge.

The above formula follows from the well known relation

age(g) + age(g−1) = N −Ng

from Chen–Ruan cohomology and the overall shift by q in Definition 1.2.1; it shows that the state space behaves
like the cohomology of a variety of complex dimension q̂W .

Assume that
∑
j qj = 1. Then the inner product pairs degree-a terms with degree-(N − 2− a) terms. This

indicates that under the condition
∑
j qj the space HW,G may be isomorphic to the cohomology of a smooth

(N − 2)-dimensional variety. Theorem III/3.1.2 shows that this is indeed the case.

1We define age(α, V ) ∈ Q for any finite order autormorphism α of a vector space V , or — equivalently — for any representation
of µµµr for some r ∈ N. Each character χ : µµµr → C∗ is of the form t → tk for a unique integer k with 0 ≤ k ≤ r − 1 and, for these
representations, we define the age of χ as k/r. Since these characters form a basis for the representation ring of µµµr, this extends to
a unique additive homomorphism which we denote by age: Rµµµr → Q.
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2 The moduli space

The relevant moduli space is also defined starting from the pair (W,G) with an A-admissible group G.

2.1 The moduli stack associated to W

The first step is the definition of a moduli stack Wg,n attached to the nondegenerate polynomial

W =

s∑
i=1

γi
∏
j

x
mi,j
j . (II.5)

We provide an elementary definition, simplifying that of [51] without losing the essential geometric information
needed to set up the intersection theory (see [33]). The moduli stack Wg,n is an étale cover of a compactification

of the usual moduli stack of l-stable orbifold curves M
l-st

g,n for

l = exp(Aut(W ));

in other words l equals the exponent of the group Aut(W ) (the smallest integer l for which gl = 1 for all
l ∈ Aut(W )).

Definition 2.1.1. On an l-stable curve C, a W -structure is the datum of N (as many as the variables of W )

level-l structures L1, . . . , LN with respect to ω⊗lq1log ,. . . ,ω⊗lqNlog(
Lj , φj : L⊗lj

∼−−→ ω
⊗lqj
log

)N
j=1

satisfying the following s conditions (as many as the monomials W1, . . . ,Ws). For each i = 1, . . . , s and for

Wi(L1, . . . , LN ) =
⊗N

j=1 L
⊗mi,j
j , the condition

Wi(L1, . . . , LN ) ∼= ωlog (II.6)

holds. An n-pointed genus-g l-stable curve equipped with a W -structure is called an n-pointed genus-g W -curve.
We denote by Wg,n the moduli stack.

Remark 2.1.2. Let us point out a side issue which will not appear in the rest of this text. Since jW is in
Aut(W ), it is automatic that lqj is integer. On the other hand, the exponent l of Aut(W ) is not the order |jW |
of jW . As a counterexample consider the D4 singularity x3 + xy2: the order of jW is 3 but the exponent l is 6.
In the next pages we always study Wg,n in cases where l equals |jW |.

By definition, the stack Wg,n is embedded into the fibred product of N copies of moduli stacks of level
structures

R
l,lq1
g,n ×M

l-st
g,n
· · · ×

M
l-st
g,n

R
l,lqN
g,n .

It is a proper, smooth Deligne–Mumford stack; more precisely, it is étale and finite over M
l-st

g,n which is a proper
and smooth stack of dimension 3g − 3 + n (under the stability condition 2g − 2 + n > 0)

Wg,n −→ M
l-st

g,n.

2.2 Decomposition of Wg,n

As a consequence of (I.9), the stack Wg,n decomposes into several connected substacks defined by specifying
the types of the roots L1, . . . , LN at the points σ1, . . . , σn. We organize these data into n multiindices h1, . . . , hn
each one with N entries.

Definition 2.2.1. Let us fix n multiindices with N entries

hi = (e2πiΘi1 , . . . , e2πiΘiN ) ∈ U(1)N (II.7)

for i = 1, . . . , n and Θi
j ∈ [0, 1[. Then W (h1, . . . , hn)g,n is the stack of n-pointed genus-g W -curves for which

the jth level strcuture Lj has type (Θ1
j l, . . . ,Θ

n
j l) at the n markings.
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Proposition 2.2.2. Let n > 0. The stack Wg,n is the disjoint union

Wg,n =
⊔

h1,...,hn∈U(1)N

W (h1, . . . , hn)g,n.

The stack W (h1, . . . , hn)g,n is nonempty if and only if{
hi = (e2πiΘi1 , . . . , e2πiΘiN ) ∈ Aut(W ) i = 1, . . . , n;

qj(2g − 2 + n)−
∑n
i=1 Θi

j ∈ Z j = 1, . . . , N.
(II.8)

In this case, it has degree Aut(W )2g/lN over M
l-st

g,n.

Remark 2.2.3. A marking of a W -curve is therefore attached with a multiindex h = (h1, . . . , hN ) ∈ Aut(W ).
The case where all coordinates of h are nontrivial is special: the sections of the line bundles L1, . . . , LN necessarily
vanish at such a marking. In this sense the bundle at that marking is “narrow”. Similarly, a narrow node in
the sense of Section I/3.3 is a node whose multiplicities h and h−1 ∈ Aut(W ) on the two branches are narrow.
Again, as we pointed out in the previous chapter, sections necessarily vanish at such a node.

2.3 The moduli stack associated to W and G

We identify open and closed substacks of Wg,n,G where the local indices h only belong to a given subgroup G
of Aut(W ). We always consider G 3 jW (A-admissibility condition). Then, G can be regarded as the group of
diagonal symmetries Aut(Z) for a polynomial

Z = W (x1, . . . , xN ) + extra quasihomog. terms in the variables x1, . . . , xN .

The above statement is proven in [83] only if we allow negative exponents in the extra terms (we require that the
extra monomials are distinct from those of W but involve the same variables x1, . . . , xN with charges q1, . . . , qN ).

In this way to each A-admissible subgroup G of Aut(W ) we can associate a substack Wg,n,G of Wg,n whose
object will be referred to as (W,G)-curves.

Definition 2.3.1. LetWg,n,G be the full subcategory ofWg,n whose objects (L1, . . . , LN ) satisfy Zt(L1, . . . , LN ) ∼=
ωlog, where Z =

∑
t Zt is the sum of monomials Zt satisfying G = Aut(Z).

Remark 2.3.2. As in Proposition 2.2.2, for n > 0, we have

Wg,n,G =
⊔

h1,...,hn∈G

W (h1, . . . , hn)g,n,G,

where hi ∈ G is the local index at the ith marked point.

Example 2.3.3. The case where G = 〈jW 〉 is easy to work out. The substack Wg,n,〈jW 〉 ⊆ Wg,n can be easily

identified to a stack of the form R
l

g,n. is the image of the stack of roots of ω of order l via the functor

(L,ϕ) 7→
(
(L⊗lq1 , ϕ⊗lq1), . . . , (L⊗lqN , ϕ⊗lqN )

)
We recall that we work under the assumption l = |jW | (see Remark 2.1.2).

3 The virtual cycle

The FJRW invariants of (W,G) fit in the the formalism of Gromov–Witten theory. Fix the genus g and the
number of markings n (with 2g − 2 + n > 0, stability condition); then, for any choice of nonnegative integers
a1, . . . , an (associated to powers of psi classes ψa11 , . . . , ψan1 ) and any choice of elements α1, . . . , αn ∈ HW,G we
can define an invariant (a rational number)

〈τa1(α1), . . . , τan(αn)〉W,Gg,n . (II.9)

Once the “target” (W,G) is fixed, the procedure is — as in Gromov–Witten theory — as follows. An intrinsic
mathematical object is attached to each genus g and each number of markings n: the so called “virtual cycle”.
Then the psi classes ψa11 , . . . , ψan1 and the state space entries α1, . . . , αn ∈ HW,G naturally yield — via some
form of intersection theory — a rational number, the FJRW invariant.
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3.1 Existence of a virtual cycle on R
l

g,n

The general construction of the virtual cycle from [51, 52, 53] is analytic. See [109, 108, 25, 111] for constructions
in algebraic geometry. The general idea is to equip the moduli space of level structures with respect to ωlog with
a cohomology class with suitable facotrization properties. We discussed in Section II/3.3 that this is a delicate

issue. We showed that in genus zero the index K class on R
l,1

g,n(mmm) is represented by a vector bundle as long as
m1, . . . ,mn are (strictly) positive. Furthermore, it admits a simple factorization when narrow nodes occur, see
Remark I/3.3.6.

The cases treated in this text can be reconstructed from the Landau–Ginzburg model x 7→ xl, where we
have the following theorem which summarizes work of [28, 25, 26, 75, 73, 74, 76, 99, 109, 108] (see in particular
the paper of Polishchuk [108] where some crucial factorization properties are proven).

Theorem 3.1.1. For any mmm = (m1, . . . ,mn) with mi ∈ {0, . . . , l − 1}, there is a cycle

clW (mmm) ∈ H2D(R
l,1

g,n(mmm);Q),

with D = (g − 1)(1− 2/l) +
∑n
i=1(mi − 1) satisfying the following properties.

Factorization properties:
For any i ∈ {0, . . . , g} and for any I ⊆ [n], let M = M(i, I). We have

(µi,I)∗(ji,I)
∗ (clW (mmm)

)
= clW (mmmI ,M)× clW (mmmI′ ,M

′). (II.10)

For any M ∈ {0, . . . , l − 1}, we have

(µMirr)∗(j
M
irr)∗

(
clW (mmm)

)
= clW (mmm,M,M ′). (II.11)

Vanishing property:
If mi = 0 for some 1 ≤ i ≤ n, then we have

clW (mmm) = 0. (II.12)

Concavity property:

If for every point pt of R
l,1

g,n(mmm) the corresponding level-l curve (Lpt → Cpt) has no sections, then R1p∗L is a
vector bundle and

cW = ctop((R1p∗L)∨).

The morphism used above are those introduced in Section I/3

R
l

i,|I|+1(1; (mmmI ,M))× R
l

g−i,|I′|+1(1; (mmmI′ ,M
′)) Si,I

µi,Ioo ji,I // R
l,1

g,n(mmm)

for i ∈ {0, . . . , g}, I ⊆ [n], M = q(i, I), and

R
l

g−1,n+2(1; (mmm,M,M ′)) SMirr
µMirroo jirr,M // R

l

g,n(1;mmm)

for M ∈ {0, . . . , l − 1}.

3.2 Application to W -curves: Fermat-type potentials

In a wide range of cases, the virtual cycle clW can be used to define a Gromov–Witten type theory attached to a
nondegenerate quasi-homogeneous polynomial W and a group G 3 JW . In general, a more involved construction
is needed.

Here, we focus on the case of Fermat polynomials of the form

W = xl1 + · · ·+ xlN .

We impose no conditions on G apart from G 3 jW .
Then, we can define a version of the theory of Fan, Jarvis, and Ruan by means of the above class. More

precisely, the intersection theory defined here represents the invariants 〈τa1(α1), . . . , τan(αn)〉W,Gg,n for α1, . . . , αn
lying in the subspace spanned by narrow states.

Having α1, . . . , αn in the narrow state subspace simplifies our notation. In [51] the definition of (II.9) is
given by extending linearly the treatment of the special case where the entries αi ∈ HW,G lie within a single
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summand HNg (CNg ,W+∞;C) of (II.3). We denote by hi the group element satisfying αi ∈ HNhi(CNhi ,W
+∞;C).

Note that, when αi is narrow, we have

HNhi (CNg ,W+∞;C) ∼= 111hi · C;

i.e. there is a canonical generator 111hi and, by abuse of notation, we can write 〈τa1(h1), . . . , τan(hn)〉W,Gg,n for all
these invariants.

Then, Wg,n,G lies in the N -fold fibred product

Wg,n,G ⊆ R
l,1

g,n ×M
l-st · · · ×

M
l-st R

l,1

g,n,

where the products are fibred over M
l-st

. Each nonempty component Wg,n,G(h1, . . . , hn) satisfying the conditions
of Proposition 2.2.2 can be naturally projected to one of the factors via the forgetful morphism

prj : Wg,n,G(h1, . . . , hn)→ R
l

g,n(lΘ1
j , . . . , lΘ

n
j ) j = 1, . . . , N,

(L1, . . . , LN ) 7→ Lj ,

where h1, . . . , hN are multiindexes of complex numbers belonging to the circle group U(1) as in (II.7). Then,
we set

〈τa1(h1), . . . , τan(hn)〉W,Gg,n =

∫
Wg,n,G

N∏
i=1

pri
∗clW (lΘ1

j , . . . , lΘ
n
j )

n∏
h=1

ψahh .

3.3 The special case of W paired with G = 〈jW 〉
Let us focus on a case where G = 〈jW 〉:

W =

N∑
j=1

xlj and G = 〈jW 〉.

The moduli space is simple: the line bundles L1, . . . , LN are equal to each other.

The genus-zero theory either vanishes or falls into the concave case. Indeed, on Wg,n,〈JW 〉(h1, . . . , hn) with

hi = (e2πi
mi
l , e2πi

mi
l , . . . , e2πi

mi
l , e2πi

mi
l ) ∈ 〈jW 〉

the virtual cycle is
N∏
j=1

pr∗jc
l
W (mi, . . . ,mn) = (clW (mmm))N .

Furthermore, by Theorem 3.1.1 the above product, either vanishes, or can be written as

〈τa1(h1), . . . , τan(hn)〉W,Gg,n =

∫
Wg,n,G

ctop((R1p∗L)∨)N
n∏
h=1

ψahh . (II.13)

This allows explicit computations. We have

ctop = exp
(∑

k
skchk

)
,

where chk is the degree-2k term of the Chern character from Theorem 3.2.1 and the coefficients sk are equal to
(k − 1)!.

For the Calabi–Yau case of the quintic degree-5 polynomial in 5 variables these numbers can be reduced to∫
R
5
0,3+5k(222)

(clW )5 ∀k ≥ 0 in genus 0. (II.14)

(This is a consequence of the analogue to the topological recursion relations in Gromov–Witten theory [31].)
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3.4 A quasihomogeneous polynomial W with G = 〈jW 〉.
Our final example is a slight generalization of the previous homogeneous Fermat polynomial W . We consider
N divisors of l: w1, . . . , wN . Let

W = x
l/w1

1 + · · ·+ x
l/wN
N and G = 〈jW 〉.

A W -structure is given by (L1, . . . , LN ) where Lj is an l/wjth root of ωlog. Again, in Wg,n,〈jW 〉the line bundles
L1, . . . , LN are strictly related to each other. They are determined by a single level-l structure L (with respect
to ωlog): we have

L1 = L⊗w1 , . . . , LN = L⊗wN .

We make the forgetful morphism explicit. It maps

(L1, . . . , LN ) ∈Wg,n,〈jW 〉(h1, . . . , hn)

to each factor. First recall that each hi is in 〈jW 〉; i.e. it is of the form

hi = (e2πimi
w1
l , e2πimi

w2
l , . . . , e2πimi

wN
l ) ∈ 〈jW 〉. (II.15)

Then, we may regard the projection prj as

Wg,n,〈jW 〉(h1, . . . , hn)→ R
l/wj ,1

g,n

(
l

wj

〈wj
l
m1

〉
, . . . ,

l

wj

〈wj
l
mn

〉)
where the operation

m 7→ l

wj

〈wj
l
m
〉

is the standard reduction of m ∈ {0, . . . , l − 1} to the corresponding element of {0, . . . , l
wj
− 1} via

Z/l 7→ wjZ/lZ ∼= Z/ l
wj

Z.

An object of Wg,n,〈jW 〉(h1, . . . , hn) is determined by a level-l structure L, and the image via prj is given by
L 7→ L⊗wj . The virtual cycle is

N∏
j=1

pr∗jc
l/wj
W

(
l

wj

〈wj
l
m1

〉
, . . . ,

l

wj

〈wj
l
mn

〉)
.

By the vanishing property of Theorem 3.1.1 it vanishes as soon as one of the entries m1, . . . ,mn ∈ {0, . . . , l−1}
is a multiple of l/wj for some j. In other words as soon as one of the n states h1, . . . , hn of the form (II.15)
attached to the markings is broad.

Example 3.4.1. Consider the explicit example

W (x1, x2, x3, x4) = x6
1 + x4

2 + x4
3 + x3

4,

a quasihomogeneous polynomial of degree 12 in four variables of weight 2, 3, 3, 4. The 12 rays represent the
elements m ∈ 〈jW 〉 ∼= Z/12.

m l
w1
〈w1

l
m〉 l

w2
〈w2

l
m〉 l

w3
〈w3

l
m〉 l

w4
〈w4

l
m〉

0 0 0 0 0
1 1 1 1 1
2 2 2 2 2
3 3 3 3 0
4 4 0 0 1
5 5 1 1 2
6 0 2 2 0
7 1 3 3 1
8 2 0 0 2
9 3 1 1 0
10 4 2 2 1
11 5 3 3 2

,

The virtual cycle cW on W0,n(h1, . . . , hn) vanishes as soon as one of the entries h1, . . . , hn ∈ Z/12 yields one
zero via one of the functions l

wj
〈wjl hi〉 illustrated in the diagram above.

The diagram of figure (III.1) also provides a useful bookkeeping device and will serve to illustrate the LG-CY
correspondence in some examples laters. The twelve rays correspond to the elements of 〈jW 〉. The rays carrying
a black dot are the broad states, whereas the empty rays are the narrow states. The dots are obtained by
drawing as many circles as the number of variables and by placing a dot on the rays whose angles correspond
to wjth roots of unities.



Chapter III

Cohomology

State spaces lie at the starting point of the definition of Gromov–Witten theory and of Fan–Jarvis–Ruan–Witten
theory. At their level, we can provide an exhaustive picture featuring LG-CY correspondence as well as mirror
symmetry.

Schematically, the theory presented in this text attaches invariants to any pair of nondegenerate polynomial
W with a group containing jW (A-admissible) and included in SLW = Aut(W ) ∩ SL(N,C) (B-admissible).
The invariants are of two sorts A-model invariants and B-model invariants. In this chapter they will simply
amount to cohomology groups, or — more explicitly — to double graded vector spaces. We already saw the
definition of the A-model invariant: it is the double graded space HW,G, its double grading will be from now on
written as (deg+

A,deg−A). The first section is devoted to a B-model construction (QW,G,deg+
B ,deg−B) paralleling

the construction of (HW,G,deg+
A,deg−A).

The second section will present an elementary mirror duality associating a mirror object (W∨, G∨) to the
object (W,G) (and preserving the admissibility conditions). We will state Berglund–Hübsch–Krawitz mirror
theorem: the A-model (HW,G,deg+

A,deg−A) is isomorphic to the B-model (QW,G,deg+
B ,deg−B).

The third section focuses on a natural question: the application of this theorem to the geometric setup
where (W,G) is interpreted as the hypersurface XW = {W = 0} modulo the group G. We will see that, under
a condition insuring that [XW /G] is Calabi–Yau there is a Landau–Ginzburg mirror symmetry theorem stating
that the cohomology of [XW /G] is isomorphic to HW,G (with matching double gradings).

1 B model state space

Our discussion parallels Section II/1. The definition is based on the local algebra (also known as the chiral ring
or the Milnor ring)

QW := C[x1, . . . , xN ]/ Jac(W ),

where Jac(W ) is the Jacobian ideal generated by partial derivatives:

Jac(W ) := (∂1W, . . . , ∂NW ) .

We present the state space paralleling the discussion of the A model state space.

1.1 Local algebra from the classical point of view

The algebra QW is a graded algebra whose grading is determined by xj 7→ qj . There is a unique element

hess(W ) = det(∂i∂jW )

whose degree is maximal and equals the central charge q̂W =
∑
j(1 − 2qj) already found in Definition 1.3.1.

This is a fundamental invariant for singularities. The singularities with q̂W < 1 are called simple singularities
and are classified by the ADE sequence

• Al = xl+1 (l ≥ 1),

• Dl = xl−1 + xy2 (l ≥ 4),

• E6 = x3 + y4, E7 = x3 + xy3, E8 = x3 + y5.

31
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When
∑
i qi = 1, the corresponding hypersurface XW = {W = 0} is of CY type in the sense that ω is trivial.

Note that in this case q̂W = N − 2 is integral and Q may well be related to the cohomology of a variety. One
of the main results of this chapter is the proof that this is indeed the case.

The dimension of the local algebra is given by the formula

µ(W ) =
∏
i

(
1

qi
− 1

)
.

The dimension hi of the subspace of QW of elements of degree λi can be easily computed, because
∑
i hit

λi

equals

P (td,W ) =

N∏
j=1

1− td−wj
1− twj

,

where d is the order of jW ; i.e, the least common denominator of the charges qi satisfying qj = wj/d.
For f, g ∈ QW , the residue pairing 〈f, g〉 is determined by writing fg in the form

fg = 〈f, g〉hess(W )

µ(W )
+ terms whose degree is less than q̂W .

This pairing is well defined, it is nondegenerate, and endows the local algebra with the structure of a Frobenius
algebra (i.e. 〈fg, h〉 = 〈f, gh〉). For more details, see [10].

1.2 The state space of (W,G)

From the modern point of view, the local algebra is regarded as a part of the B model theory of singularities.
For its application, it is important to orbifold the construction by G.

Let us define the G action on Q. The elements of QW are identified to the N -forms of ΩN/dW ∧ΩN−1 via

α 7−→ αdx1 ∧ dx2 ∧ · · · ∧ dxN (III.1)

The group G naturally operates on ΩN/dW ∧ ΩN−1 and, via the above identification, on QW . Note that this
action on QW differs from the G-action induced on QW by C[x1, . . . , xN ]. We have

Diag(α1, . . . , αN ) ·
(∏

j
x
mj
j

)∧
j

dxj =
(∏

j
α
mj+1
j x

mj
j

)∧
j

dxj .

The orbifold B model graded vector space with pairing (QW,G, 〈 〉) was essentially worked out by the
physicists Intriligator and Vafa [70] (see [77] for a mathematical account). The ring structure was constructed
later by Kaufmann [78] and Krawitz [83] in the case of the so called “invertible” W and B-admissible group
G ⊆ Aut(W ).

For each g ∈ G, we write as usual CNg for the points of CN fixed by g. We write Wg for the restriction of W

to CNg . In this way Wg is a quasihomogeneous singularity in a subspace of CN and admits a local algebra QWg

with a natural G-action.

Definition 1.2.1 (B model state space). For any B-admissible group G, we set

QW,G =
⊕
g∈G

(QWg )G,

where (·)G denots the G-invariant subspace.

Remark 1.2.2. The state space QW,G is clearly a module over (QW )G.

Remark 1.2.3. The B model state space is isomorphic to the A state space of Definition 1.2.1. On the other
hand, the space is equipped with a different Hodge bigrading as follows. For a G-invariant form α of degree p
in QWg

∼= ΩNg/dWg ∧ ΩNg−1, the bidegree (deg+
B(α),deg−B(α)) is defined as follows

(deg+
B(α),deg−B(α)) = (p, p) + (age(g), age(g−1))− (q, q) (with q =

∑
qj).

We will usually write Qa,bW,G for the terms of bidegree (a, b) and degB for the total degree a+ b.
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1.3 The inner pairing

Notice that Qg is canonically isomorphic to Qg−1 . The pairing of QW,G is the direct sum of residue pairings

〈·, ·〉 : Qg ×Qg−1 → C

via the pairing of the local algebra.

Definition 1.3.1 (pairing for QW,G). We have a nondegenerate inner product

〈·, ·〉 : QW,G ×QW,G → C

pairing QaW,G and Q2q̂W−a
W,G .

2 Mirror symmetry between LG models

Berglund and Hübsch [13] consider polynomials in N variables having N monomials

W (x1, . . . , xN ) =

N∑
i=1

N∏
j=1

x
mi,j
j . (III.2)

Note that each of the N monomials has coefficient one; indeed, since the number of variables equals the number
of monomials, even when we start from a polynomial of the form

∑N
i=1 γi

∏N
j=1 x

mi,j
j , it is possible to reduce to

the above expression by conveniently rescaling the N variables (this uses the nondegeneracy condition). In this
way assigning a polynomial W as above amounts to specifying its exponent square matrix

EW = (mi,j)1≤i,j≤N .

The polynomials studied in [13] are called “invertible” because the matrix EW is an invertible N×N matrix
as a consequence of the uniqueness of the charges q1, . . . , qN (nondegeneracy of W ). There is a strikingly simple
classification of invertible nondegenerate singularities by Kreuzer and Skarke [85].

An invertible potential W is nondegenerate if and only if it can be written, for a suitable permutation of the
variables, as a sum of invertible potentials (with disjoint sets of variables) of one of the following three types:

WFermat = xa.

Wloop = xa11 x2 + xa22 x3 + · · ·+ x
aN−1

N−1 xN + xaNN x1.

Wchain = xa11 x2 + xa22 x3 + · · ·+ x
aN−1

N−1 xN + xaNN .

One can compute the charges q1, . . . , qN by simply setting

qi =
∑
jm

i,j , (III.3)

the sum of the entries on the ith line of E−1
W = (mi,j)1≤i,j≤N .

Each column (m1,j , . . . ,mN,j) of the matrix E−1
W can be used to define the diagonal matrix

ρj = Diag(exp(2πim1,j), . . . , exp(2πimN,j)). (III.4)

In fact these matrices satisfy the following properties ρ∗jW = W ; i.e. W is invariant with respect to ρj .
Furthermore the group Aut(W ) of diagonal matrices α such that α∗W = W is generated by the elements
ρ1, . . . , ρN :

Aut(W ) := {α = Diag(α1, . . . , αN ) | α∗W = W} = 〈ρ1, . . . , ρN 〉.

For instance, the above mentioned matrix jW whose diagonal entries are exp(2πiq1), . . . , and exp(2πiqN ) lies
in Aut(W ) and is indeed the product ρ1 · · · ρN . Recall that

SLW = Aut(W ) ∩ SL(N,C),

the matrices with determinant 1; in Berglund and Hübsch’s construction we consider groups G containing jW
(A-admissible) and included in SLW (B-admissible). We write G̃ for the quotient G/〈jW 〉.

The geometric side of the LG-CY correspondence is an orbifold or Deligne–Mumford stack. More precisely,
let d be the least common denominator of q1 = w1/d, . . . , qN = wN/d (i.e. d = |jW |). Then XW = {W = 0}
is a degree d hypersurface of the weighted projective space P(w1, . . . , wN ). Then, W is nondegenerate (i.e. W
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has a single critical point at the origin) if and only if XW is a smooth Deligne-Mumford stack. Let W be a
nondegenerate invertible potential of charges q1, . . . , qN satisfying the Calabi–Yau condition∑

jqj = 1. (III.5)

The geometrical meaning of this condition is that XW = {W = 0} is of Calabi–Yau type in the sense that ω is
trivial (adjuction formula: d =

∑
j wj).

Another important geometric condition is the Gorenstein condition of the ambient weighted projective
space P(w1, . . . , wN ). The Gorenstein condition corresponds to a numerical condition wi|

∑
j wj . For weighted

projective spaces, the Gorenstein condition is equivalent to another well known condition, namely that the
associated toric variety is reflexive. In the Calabi–Yau case we have d =

∑
j wj . Then XW is a Calabi–

Yau hypersurface of Gorenstein weighted projective space if and only if wj |d. If W is a Fermat polynomial,
the ambient weighted projective stack is Gorenstein. Otherwise, the ambient weighted projective stack is
not Gorenstein in general. Among all the known examples of Calabi–Yau hypersurfaces, Fermat polynomials
constitute only a small fraction.

2.1 The polynomial W∨

Following Berglund–Hübsch, we consider the transposed polynomial W∨ defined by the property

EW∨ = (EW )∨.

Namely, the polynomial W∨ is defined by transposing the matrix (mi,j):

W∨(x1, . . . , xN ) =

N∑
i=1

N∏
j=1

x
mj,i
j . (III.6)

This construction preserves the type of polynomial sending Fermat to Fermat, loop to loop and chain to
chain. This shows that W∨ is nondegenerate if and only if W is nondegenerate. Recall that qj is the sum of
the entries of the jth column of the inverse matrix E−1

W . Hence, the charges q1, . . . , qN of W∨ are the sums of
the rows of E−1

W . Therefore, ∑
jqj =

∑
jqj .

In this way, W∨ is of Calabi–Yau type if and only if W is of Calabi–Yau type.
The striking idea of Berglund and Hubsch is that W and W∨ should be related by mirror symmetry. Clearly

this is not true in the naive way: the mirror of a Fermat quintic three-fold XW is not the quintic itself as one
would get by transposing the corresponding exponent matrix. Instead, as already discussed in the introduction,
the mirror X∨W is the quotient of XW by the automorphism group (Z/5)3. It was already understood by
Berglund–Hübsch that the correct statement should read

(W,G) mirror to (W∨, G∨)

for a conjectural dual group G∨. Many examples of dual groups have been constructed in the literature. The
general construction was given only recently by Krawitz [83].

2.2 The group G∨

The group G∨ is contained in Aut(W∨). Recall that Aut(W∨) is spanned by the diagonal symmetries ρ∨1 , . . . , ρ
∨
N

determined by the columns of (E∨W )−1 as in (III.4):

Aut(W∨) = 〈ρ∨1 , . . . , ρ∨N 〉.

Then G∨ is the subgroup defined by

G∨ =
{∏N

j=1(ρ∨i )ai | if
∏N
j=1 x

ai
i is G-invariant

}
. (III.7)

Alternatively, we express any g ∈ G as g = ρk11 . . . ρkNN and h ∈ G∨ as h = (ρ∨1 )l1 . . . (ρ∨N )lN . Then, G∨ is

determined by imposing within Aut(W∨) the following conditions for all g = ρk11 . . . ρkNN ∈ G

[
k1 . . . kN

]
E−1
W

 l1...
lN

 ∈ Z.

We have the following properties: transposition is an involution (G∨)∨ = G, it is inclusion-reversing (H ⊆
K ⇒ H∨ ⊇ K∨), it sends the trivial subgroup of Aut(W∨) to the total group Aut(W ), and it exchanges 〈jW 〉
and SLW∨ .
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2.3 Mirror symmetry conjectures between LG models

Now, we can state two mirror symmetry conjectures. Here, “mirror” means that the A model and the B model
are exchanged. The first one is the Berglund–Hübsch–Krawitz mirror symmetry of the form LG| LG.

Conjecture 2.3.1 (mirror symmetry LG| LG). Suppose that W is a nondegenerate invertible polynomial. Then
the Landau–Ginzburg models (W,G) and (W∨, G∨) mirror each other.

Let W be invertible and of Calabi–Yau type. We say G ⊆ Aut(W ) is of Calabi–Yau type if 〈jW 〉 ⊆ G ⊆ SLW
(the fact that jW is contained in SLW follows from the Calabi–Yau condition (III.5)). In this case G̃ acts on

XW faithfully and the quotient [XW /G̃] is still an orbifold with trivial canonical bundle (Calabi–Yau type). The
properties listed above for the construction associating G∨ to G show that G is of Calabi–Yau type if and only
if G∨ is of Calabi–Yau type. Then, within the Calabi–Yau category, we obtain a mirror symmetry conjecture
of type CY| CY.

Conjecture 2.3.2 (mirror symmetry CY| CY). Suppose that W and G satisfy the Calabi–Yau condition (au-

tomatically the same holds for W∨ and G∨). Then the stack [XW /G̃] is the mirror of [XW∨/G̃
∨].

Remark 2.3.3. Since we have not given a precise meaning to to the notion of mirror, the above conjectures
should be viewed as a guideline instead of a mathematical statement. In the next section the above conjectures
are turned into more precise mathematical statements. Here, we only interpret them as relations in terms of
state spaces. Then, they may be regarded as saying: the A model state space of (W,G) is isomorphic to the B
model state space to (W∨, G∨). Even if it is elementary, the claim is nontrivial. For example it does not fit in
Borisov–Batyrev duality of Gorenstein cones [12].. This happens systematically when W is not Fermat as was
first noted in [42]. It was proven by Krawitz.

Theorem 2.3.4 (cohomological mirror symmetry LG| LG, [83]). Suppose that W is invertible. Then, there is
a bigraded vector space isomorphism

HW,G ∼= QW∨,G∨ .

Remark 2.3.5. It is worth mentioning that Krawitz [83] and Kaufmann [78] have also develloped the ring
structure on Q and proven some cases of ring isomorphism. Furthermore, recently, Borisov has found [17] a new
proof of the theorem above via vertex algebras. This approach may actually lead to a unified setup including
both Berglund–Hübsch and Borisov–Batyrev duality.

3 LG-CY correspondence

3.1 The correspondence and mirror symmetry

With both state spaces of the LG model and the GW theory established, the simplest conjecture from the
LG-CY correspondence is the following cohomological LG-CY correspondence conjecture.

Conjecture 3.1.1 (cohomological LG-CY correspondence). Suppose that the pair (W,G) is of Calabi–Yau type;
i.e. W is nondegenerate (not necessarily invertible) with

∑
j qj = 1 (Calabi–Yau condition) and G contains 〈jW 〉

and lies in SLW . Then, there is a bigraded vector space isomorphism

Hp,qW,G ∼= Hp,q
CR

(
[XW /G̃];C

)
, ∀p, q, (III.8)

where the right-hand side is Chen–Ruan orbifold cohomology of the stack [XW /G̃] with G̃ = G/〈jW 〉.

This conjecture is certainly not true without assuming that W satisfied the Calabi–Yau condition
∑
j qj = 1.

For instance a quartic polynomial in five variables provides an immediate counterexample. The Calabi–Yau
condition plays a crucial in the proof of the correspondence. Even if the formula in the statement above makes
sense even for G 6⊆ SLW , this indicates that the isomorphism may fail without imposing a Calabi–Yau condition
to G. Surprisingly we found that the above statement still holds when G is not contained in SLW .

Theorem 3.1.2 (cohomological LG-CY correspondence, [40]). Suppose that W is of Calabi–Yau type and that
G contains jW (no upper bound for G). Then the above cohomological LG-CY correspondence (III.8) holds.

The main application is the folllowing classical mirror symmetry, which is a direct consequence of the
cohomological LG-CY correspondence and Krawitz’s mirror symmetry theorem of type LG| LG.
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Corollary 3.1.3 (cohomological mirror symmetry CY| CY, [40]). Suppose that W is invertible and that the
pair (W,G) is of Calabi–Yau type ( i.e.

∑
j qj = 1 and G ∈ SLW ). Automatically, also the pair (W∨, G∨) is of

Calabi–Yau type. Furthermore, the Calabi–Yau orbifold [XW /G̃] and the Calabi–Yau orbifold [XW∨/G̃
∨] form

a mirror pair in the classical sense; i.e. we have the following isomorphism of Chen–Ruan orbifold cohomologies

Hp,q
orb

(
[XW /G̃];C

)
∼= HN−2−p,q

orb

(
[XW∨/G̃

∨];C
)
.

Corollary 3.1.4. Assume that the quotient schemes XW /G̃ and XW∨/G̃
∨ admit crepant resolutions Z and

Z∨. Then the above statement yields a statement in ordinary cohomology:

hp,q(Z;C) = hN−2−p,q(Z∨;C).

In the case where wj divides d, Corollary 3.1.3 can be deduced from Borisov and Batyrev’s construction
of mirror pairs in toric geometry [12]. As already mentioned, the general case does not fit into polar duality
because the associated toric variety is not reflexive. The following example illustrates this well.

Example 3.1.5. We consider the quintic hypersurface in P4 defined as the vanishing locus of

W = x4
1x2 + x4

2x3 + x4
3x4 + x4

4x5 + x5
5.

This is a chain-type Calabi–Yau variety X whose Hodge diamond is clearly equal to that of the Fermat quintic
and is well known: h1,1 = 1, h0,3 = 1, h1,2 = 101. The mirror Calabi–Yau is given by the vanishing of the
polynomial

W∨(x1, x2, x3, x4, x5) = x4
1 + x1x

4
2 + x2x

4
3 + x3x

4
4 + x4x

5
5,

which may be regarded as defining a degree-256 hypersurface X∨ inside P(64, 48, 52, 51, 41). This is a degree-256
hypersurface of Calabi–Yau type (256 is indeed the sum of the weights). In this case, the ambient weighted
projective stack is no longer Gorenstein (all weights but 64 do not divide the total weight 256). Note that the
group SL coincides with 〈j〉 on both sides; therefore, Corollary 3.1.3 reads

hp,qCR(X;C) = h3−p,q
CR (X∨;C).

Indeed, the Hodge diamond of XW∨ satisfies h1,1 = 101, h0,3 = 1, h1,2 = 1 matching (IV.3).

Let us explain the role of the Gorenstein condition. Let us call the hypersurface XW ⊂ P(w1, . . . , wN )
transverse if the intersection of XW with every coordinate subspace of the form P(wi1 , . . . , wik) is either empty
or a hypersurface. The transversality of XW amounts essentially to the ambient space being Gorenstein. In
another words, if P(w1, . . . , wN ) is not Gorenstein, XW will contain some coordinate subspace. The presence of
these coordinate subspaces makes it more difficult to study XW and its quotients. For instance, it is well known
that the enumerative geometry of rational stable maps for these coordinate subspaces is an open problem in
Gromov–Witten theory (this is due to the behavior of the virtual fundamental cycle). Initially, we thought that
nonGorenstein cases such as loop and chain polynomials may provide counterexamples for the classical mirror
symmetry conjecture. We actually found out that the cohomological LG-CY correspondence as well as the
classical mirror symmetry conjecture hold in full generality. Similar issues arise in the enumerative geometry of
curves; we will discuss this issue in §3.

3.2 A combinatorial model

To illustrate the idea of the proof, it is instructive to work out the case of the quintic three-fold.

Example 3.2.1. Consider W = x5
1 + x5

2 + x5
3 + x5

4 + x5
5 and the cyclic group G = 〈j〉 of order 5. For each

element jm = (e2πim/5, . . . , e2πim/5) ∈ G with m = 0, . . . , 4 we compute HW,G =
⊕

g∈GH
Ng (CNg ,W+∞

g ;C)G

and the total degree of its elements.
Let m 6= 0 and consider the elements of the summands corresponding to jm. These are the narrow states

where HNg (CNg ,W+∞
g ;C)G is isomorphic to 111gC. The total degree of 111 is 2m− 2. We obtain four elements of

degree 0, 2, 4 and 6; they correspond to the generators of H0(XW ,C), H2(XW ,C), H4(XW ,C) and H6(XW ,C).
Finally consider the remaining states which are not narrow and lie in HN (CN1 ,W

+∞
1 ,C)G. This space is

isomorphic to the degree-3 cohomology group of XW . This holds in full generality as a consequence of the
isomorphism between the G-invariant part of the local algebra and the primitive cohomology. The total degree
of these elements is 3. Therefore, we recover the desired degree-preserving vector space isomorphism.
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We learn from this example that the dichotomy determined by narrow and broad states within the Landau–
Ginzburg state space corresponds to the well known dichotomy on the Calabi–Yau side between fixed classes
and variable (or primitive) classes. In the orbifold setting, each sector of XW lies in some subweighted projective
coordinate space of the form P(wi1 , . . . , wik). Therefore, this dichotomy applies to each sector. We say that
an orbifold cohomological class is variable (or primitive) if it comes from a variable (or primitive) cohomology
classe of some sector. It is straightforward to match the broad sector with variable classes. But it is far trickier
to do so for narrow group elements versus fixed classes. We match these classes via a combinatorial construction
based on an earlier model for Chen–Ruan orbifold cohomology of weighted projective spaces due to Boissière,
Mann, and Perroni [16].

Example 3.2.2. In the case of W (x1, . . . , x4) = x6
1 + x4

2 + x4
3 + x3

4 the combinatorial model uses the diagram
which appeared already in Example II/3.4.1.

Figure III.1: Diagram of {x6
1 + x4

2 + x4
3 + x3

4 = 0} inside P(2, 3, 3, 4).

In fact, in [16], this diagram represents the sectors of the weighted projective stack P(2, 3, 3, 4); indeed, the
dotted rays correspond to the so called “sectors”; i.e., loci with nontrivial stabilizers. The number of dots
lying on one ray corresponds to the dimension of the cohomology of the corresponding sector (which, in turn,
is a weighted projective stack). If we consider the hypersurface where W (x1, . . . , x4) = 0 vanishes we can
use the same diagram. The rays should be regarded as hypersurfaces lying inside the sectors of the ambient
weighted projective stack. In the surface above we actually have six dotted rays corresponding to the sectors
of the ambient projective stack. When the ray carries a single dot, the hypersurface is empty. When the ray
carries two dots the hypersurface is 0-dimensional. Hence, in the example there are only four nonempty sectors
corresponding to J0 = 1, J−4, J−6, and J−8. In general n dots on one ray correspond to an (n− 2)-dimensional
hypersurface: the first n− 1 dots counting from the origin are the classes cut out by 111, p, . . . , pn−2 (where p is
the hyperplane class), whereas the extremal dot corresponds to the contribution from primitive cohomology.

In this way, Example II/3.4.1 illustrates how the diagram above represents the elements of the state space
HW,〈j〉 on the LG side. The present example shows how the same diagram represents the cohomological classes
of H∗CR(XW ;C) on the CY side. In [32] we show how the gradings on both sides can be read off the diagram
(above, we have decorated each dot with its total degree). The correspondence — at least in the Gorenstein
case — can be proven using this observation. We refer to [32] for the argument in full generality.
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Chapter IV

Global mirror symmetry

This chapter consists of three sections. In the first section, we detail the problem of providing a global for-
mulation to mirror symmetry. For sake of clarity, we focus on the case of the quintic three-fold and we will
only sketch the case of quotients of finite groups acting on Calabi–Yau hypersurfaces (we refer to [33] for a
more detailed discussion). In the second section, we state a result obtained in collaboration with Yongbin Ruan
in the case of the quintic three-fold. In the third section, we illustrate work in collaboration with Iritani and
Ruan allowing us to rely the geometry of Calabi–Yau varieties to the Landau–Ginzburg model without using
the mirror symmetry framework.

LG CY

CY
?

LG

1 A global formulation

In the previous chapter we have provided a precise statement of mirror symmetry in terms of cohomology (i.e.
in terms of state spaces). A deeper statement involves on the A-side informations such as the Kähler structure
and Gromov–Witten invariants, and on the B side moduli of complex structures and period integrals. From a
global point of view, this framework is at the same time deeper and somewhat incomplete. In fact the topology
of the moduli space of complex structures on the B side is nontrivial, whereas the moduli space of Kähler
structures is not. We illustrate this point in explicit terms.

We get back to

XW = {x5
1 + x5

2 + x5
3 + x5

4 + x5
5 = 0}⊂ P4 (IV.1)

and to the quotient stack

X∨W = [XW /(Z/5)3] (IV.2)

where (Z/5)3 is defined as SLW modulo the cyclic group of order 5 generated by jW = (ξ5, ξ5, ξ5, ξ5, ξ5). The
cohomology classes whose total degree is odd of X∨W form a four-dimensional subspace with a particularly simple
filtration: the Hodge numbers hp,q with odd total index p+ q are given by (h3,0, h2,1, h1,2, h0,3) = (1, 1, 1, 1) and
reflect the four powers 111, p, p2, p3 of the cycle p defined by the hyperplane section of the projective hypersurface
XW . This follows from the statement of Corollary 3.1.3

hp,q(XW ) = hdim−p,q(X∨W ). (IV.3)

1.1 Local mirror symmetry

We now illustrate a deeper mirror symmetry statement in this case ; we will focus on the differences from the
global point of view between the two sides. On one side, for XW , we consider the (complexified) moduli space
of Kähler structures. This is a contractible complex space of dimension one ; we can consider it as an A side
invariant denoted by

AXW .

39
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We can think of AXW as an open and contractible analytic neighborhood of the origin of H1,1(XW ;C). On
the other side of the mirror, we consider a B side invariant: the deformations (of the complex structure) of
[XW /(Z/5)3]. These are indeed the deformations of XW which are invariant with respect to the action of
(Z/5)3. We obtain in this way the Dwork family already discussed in the introduction

XW,ψ =

{
x5

1 + x5
2 + x5

3 + x5
4 + x5

5 + 5ψ

5∏
i=1

xi = 0

}
,

on the projective line P1. We discuss in more detail the geometry of this family. The group (Z/5)3 = SLW /〈jW 〉
acts on the fibers of the family ; the quotient stack obtained by modding out (Z/5)3 gives rise to a family of
Calabi–Yau stacks [XW /(Z/5)3]ψ fibered over a Zariski open set in P1

ψ (the complement of the divisor where
the singularities arise). In fact, for all i ∈ {1, . . . , 5}, the diagonal symmetry xi 7→ ξ5xi (fixing all remaining
coordinates) acts on this family ; this action identifies the fibre [XW /(Z/5)3]ψ with the fiber [XW /(Z/5)3]ξ5ψ.
In this way, the Dwork family induces a family of Calabi–Yau three-dimensional stacks on [P1/(Z/5)]. Let us
set t = ψ5; then, the new family is smooth away from t = ∞ et t = 1. These two points, as well as the point
t = 0 with nontrivial stabilizer in [P1/(Z/5)], are usually called special limit points; more specifically, 0,∞, et 1
are the Gepner point, the large complex structure point, and the conifold point. Unlike the Kähler moduli space,
the moduli space of complex structures is non contractible. For this reason, mirror symmetry has been studied
as a local identification between the contractible Kähler moduli space AXW and a contractible neighborhood of
the point at infinity t =∞

B∞X∨W .

This leads to a formulation of mirror symmetry as a local statement matching the A mode and the B model
restricted to a neighborhood of the large complex structure point.

We consider the vector bundle on B∞X∨W whose fibre on t ∈ B∞X∨W is given by H3([XW /(Z/5)3]t;C). The local

system determined by H3([XW /(Z/5)3]t;Z) in H3([XW /(Z/5)3]t;C) can be regarded as a flat connection, the
Gauss–Manin connection. Dubrovin showed how to use Gromov–Witten invariants to define a flat connection
on the rank-four vector bundle defined as Hev(XW ;C) ⊗ O on AXW . Under a suitable identification (mirror
map)

B∞X∨W
∼=

��
AXW

OO
(IV.4)

the two structures are identified (Givental [56], Lian–Liu–Yau [92]). This local point of view dominated the
mathematical study of mirror symmetry for the last twenty years.

1.2 The global point of view

On the other hand, it is natural to study the entire complex moduli space near every special point. This
global point of view underlies a large part of the recent physical literature and naturally gives rise to important
predictions such as the holomorphic anomaly equation [15] and the above mentioned predictions by Huang–
Klemm–Qackenbush [69] for genus g ≤ 52. In the early 90’s, a physical solution was proposed to complete the
Kähler moduli space by including other phases [101, 125]. For the quintic three-fold, two phases arise in the A
model: the CY geometry and the LG phase.

Whereas the CY geometry of the quintic has already been identified by mirror symmetry to a neighborhood
of the large complex structure limit point B∞X∨W , the LG model of Chapter II is expected to be mirror to the

neighborhood of the Gepner point at 0

B0
X∨W

.

In this framework, the LG model and the Gromov–Witten theory of the quintic are related to each other via
an analytic continuation from the Gepner point to the large complex structure point. From this point of view,
the so called LG-CY correspondence should be viewed as a step towards global mirror symmetry.

On B0
X∨W

consider the bundle with fibre H3([XW /G̃]0,C) over the point t. There is again the flat Gauss–

Manin connection induced by the local system H3([XW /G̃]t;Z) ⊂ H3([XW /G̃]∞;C). The work of Fan, Jarvis,
and Ruan [51] yields — via Dubrovin connection — a flat connection on a vector bundle on a contractible
one-dimensional space

AW,Z/5
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(see the next section for further details (IV.9), and [71] for the abstract formalism of Dubrovin connection).
The fibre of this bundle is the four-dimensional state space HW,Z/5 attached to the singularity (W,Z/5) (see
Chapter II). Under a suitable identification (mirror map)

B0
X∨W

∼=
��

AW,Z/5

OO
(IV.5)

the two structures are identified [31].
Now, the correspondence between the Gromov–Witten theory of the quintic and the Landau–Ginzburg

model of the singularity W : C5 → C can be carried out via (IV.4) and (IV.5) on the B side via the local system

induced by the family of CY orbifolds [XW /G̃]t with t varying in (P1)× = P1
t \ {0, 1,∞}.

(V0,∇0)

��

// (V,∇)

��

(V∞,∇∞)oo

��
B model (B0

X∨W
)× //

∼=

��

[P1/(Z/5)]× (B∞X∨W )×oo

∼=

��

↑

mir. sym.

↓

A model (AW,Z/5)×

OO

(AXW )×

OO

LG ← correspondence→ CY

Figure IV.1: Casting LG-CY correspondence within the global mirror symmetry framework. For each U the
notation U× stands for U \ {special points}, the horizontal maps to (P1)× are the natural inclusions, and V , V0

and V∞ are the four-dimensional bundles with fibre H3([XW /G̃]t;C) equipped with the respective Gauss–Manin
connections ∇.

On the CY side, i.e. on AXW , the isomorphism (IV.4) and the study of the variation of the Hodge structure
of X∨W,t on B∞X∨W allow us to associate to a given basis of Hev(XW ) a basis of multivalued functions from AXW to

Hev(XW ) which are flat with respect to Dubrovin connection. This amounts to solving Gromov–Witten theory
for XW in genus zero. The analogous problem occurs on AW,Z/5 on the LG side; it is solved via (IV.5) and
amounts to compute Fan–Jarvis–Ruan–Witten theory for (W,Z/5) in genus zero. Furthermore, via analytic
continuation, we can extend the bases of flat sections globally on [P1/(Z/5)]× and find a change of bases matrix

ULG-CY. (IV.6)

This is explicitly computed in [31] and illustrated in the next section. We provide an interpretation of this
linear transformation via Orlov’s equivalence in the last section of this chapter.

Remark 1.2.1 (global mirror symmetry via Berglund–Hübsch). In [33] we provide a conjectural picture where
Figure IV.1 is generalized. Schematically, the setup is the following. The one-parameter Dwork family is
replaced by a deformation of the form

t0W
∨ +

l∑
i=1

tiMi,

with M1 =
∏
j xj and Mi ∈ [QW∨ ]deg=1 (here QW∨ denotes the Milnor ring as in the previous chapter). The

basis is the projective space Pl modulo the group Z = Aut(W∨)/G×. (We notice that when G = 〈jW 〉 and
W is the quintic polynomial, this yields Z/5.) The special points 0 and ∞ are the points 0 = (t0 6= 0) and
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B model (B0
[XW /G̃]∨

)× //

∼=

��

[
Pl/Z

]
(B∞

[XW /G̃]∨
)×oo

∼=

��

↑

mir. sym.

↓

A model (AW,G)×

OO

(A[XW /G̃])
×

OO

LG ← correspondence→ CY

Figure IV.2: The generalized framework: [XW /G̃]∨ = [XW∨/G̃
∨].

∞ = (t1 6= 0). The local system H3(X∨W,t;C) is replaced by the analogue space of primitive cohomology

classes in HN−2. The restriction to primitive cohomology classes on the B side has a specular counterpart
in the conjecture: namely, we only consider the Aut(W )-invariant part of quantum theory on the A-side (the
isomorphism from Theorem 2.3.4 sets precisely the equivalence involving Aut(W )-invariant states, see [83] and
[33]).

2 LG-CY via global mirror symmetry

In this section we give a precise statement of the LG-CY correspondence for the quintic threefold. We follow
[31].

The Fan–Jarvis–Ruan–Witten genus-zero invariants

〈τa1(φh1
), . . . , τan−1

(φhn−1
), τan(φhn)〉FJRW

0,n

of the quintic polynomial W with respect to the group 〈j〉 have been defined precisely in II.13. We use the
notation 〈. . . 〉FJRW

0,n in order to distinguish them from the analogue genus-zero Gromov–Witten invariants of the
W -hypersurface (CY side)

〈τa1(ϕh1), . . . , τan−1(ϕhn−1), τan(ϕhn)〉GW
0,n,δ.

Both sets of invariants are defined for any (a1, . . . , an) ∈ Nn and for any entry of the even-dimensional state
spaces of the two respective theories: HFJRW = HW,〈j〉 = ⊕hφhC and HGW = Hev(XW ;C) = ⊕hϕhC (in both
cases these are four-dimensional spaces, and we set h between 0 and 3).

These two sets of numbers, defined in very different ways, can be incorporated into the Fan–Jarvis–Ruan–
Witten generating function (also called partition function) and into the Gromov–Witten generating function,
which, by standard techniques, can be reconstructed from the generating functions of one-point descendants: the
invariants 〈τ0(φh1), . . . , τ0(φhn−1), τa(φhn)〉FJRW and 〈τ0(ϕh1), . . . , τ0(ϕhn−1), τa(ϕhn)〉GW with not more than
one entry τa(φh) and τa(ϕh) having a 6= 0. In other words, the two theories are determined by the J-functions
JFJRW(

∑
ht
h
0φh, z) equal to

zφ0 +
∑
h

th0φh +
∑
n≥0

(h1,...,hn)

∑
ε,k

th1
0 · · · t

hn
0

n!zk+1
〈τ0(φh1

), . . . , τ0(φhn), τk(φε)〉FJRW
0,n+1φ

ε, (IV.7)

and JGW(
∑
ht
h
0ϕh, z) equal to

zϕ0 +
∑
h

th0ϕh +
∑
n≥0
δ≥0

(h1,...,hn)

∑
ε,k

th1
0 · · · t

hn
0

n!zk+1
〈τ0(ϕh1

), . . . , τ0(ϕhn), τk(ϕε)〉GW
0,n+1,δϕ

ε, (IV.8)

which can be regarded as terms of HFJRW((z−1)) and HGW((z−1)), i.e. Laurent series with coefficients in
HFJRW and HGW. The techniques allowing to reconstruct the entire theories from these two functions hold in
general and are based on the string and dilaton equations (see [9]).
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In fact, for W = x5
1 + x5

2 + x5
3 + x5

4 + x5
5, further simplifications occur. In Fan–Jarvis–Ruan–Witten theory,

all computations are reduced to

JFJRW(t1φ1, z) = zφ0 + t1φ1 +
∑
n≥0

∑
ε,k

(t1)n

n!zk+1
〈τ0(φ1), . . . , τ0(φ1), τk(φε)〉FJRW

0,n+1φ
ε.

The analogue one-parameter expression for the J-function also holds on the line t1ϕ1 in Gromov-Witten theory;
we refer to the discussion in [31].

On a neighbouhood of 0 in t1 ∈ C, consider the trivial bundles whose fiber equals HFJRW. A nontrivial
connection may be defined as follows. Recall that 〈. . . 〉FJRW

0,n naturally defines a family of products ◦t1 depending
on a the parameter t1. Then, set

∇t1(X) =
∂

∂t1
+ φ1 ◦t1 X. (IV.9)

In this way, we have the rank-four local system on AW,Z/5. This parallels the setup of Dubrovin connection in
Gromov–Witten theory yielding the rank-four local system on AXW . As discussed in the previous section two
mirror map play a crucial role: (IV.4) and (IV.5).

2.1 Mirror symmetry on the CY side

On the CY side, Givental’s mirror symmetry theorem [56] for the quintic three-fold sets an equivalence between
the above J-function and the HGW((z−1))-valued I-function

IGW(q, z) =
∑
d≥0

zqp/z+d
∏5d
k=1(5p+ kz)∏d
k=1(p+ kz)5

,

where H is the cohomology class corresponding to the hyperplane section, qp/z should be read as the expansion
of exp(p log(q)/z) in the cohomology ring, and q = exp(t1) parametrizes the line Cϕ1 as already mentioned.
Expanded in the variable p, the I-function decomposes in the form f0,GW + f1,GW + f2,GW + f3,GW, the sum of
the period integrals spanning the space of solutions of Picard–Fuchs equation[

Dq
4 − 5q

4∏
m=1

(5Dq +mz)

]
IGW = 0

(
for Dq = zq

∂

∂q

)
.

Via an explicit change of variables

log q′ =
f1,GW(q)

f0,GW(q)
(with f0,GW and f1,GW C-valued and f0,GW invertible)

the A-model of the quintic (i.e. JGW), matches the B-model of the quintic (i.e. IGW), via a mirror map

IGW(q, z)

f0,GW(q)
= JGW (q′, z) . (IV.10)

In other words, up to an identification between the base spaces, the four-dimensional local system on AXW
matches the four-dimensional local system on B∞X∨W as in (IV.4).

2.2 Mirror symmetry on the LG side

We provide the same picture on the LG side.

Theorem 2.2.1 ([31]). Consider the HFJRW((z−1))-valued function (where [a]n = a(a+ 1) . . . (a+ n− 1))

IFJRW(t, z) = z
∑

k=1,2,3,4

1

Γ(k)

∑
l≥0

([k5 ]l)
5 tk+5l

[k]5l zk−1
φk−1.

The four summands f0,FJRW, f0,FJRW, f0,FJRW, f0,FJRW span the solution space of the Picard–Fuchs equation[
Dt

4 − 55t−5
4∏

m=1

(Dt −mz)

]
IFJRW = 0

(
for Dt = zt

∂

∂t

)
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and coincide with the period integrals at the Gepner point computed by Huang, Klemm, and Quackenbush [69].
The above I-function and the J-function of FJRW-theory are related by an explicit change of variables (mirror
map)

t′ =
f1,FJRW(t)

f0,FJRW(t)
(with f0,FJRW and f1,FJRW C-valued and f0,FJRW invertible)

satisfying

IFJRW(t, z)

f0,FJRW(t)
= JFJRW(t′, z). (IV.11)

Remark 2.2.2. Equation IV.10 is the mirror identification (IV.5).

Remark 2.2.3. The proof of the theorem above may be regarded as an application of Theorem I/3.2.1.

2.3 The correspondence via mirror symmetry

The Picard–Fuchs equation in the above statement coincides with that of the quintic three-fold for q = t−5.
After this identification of the coordinate patch at t = 0 with the coordinate patch at q =∞, the two I-functions
are solutions of the same Picard–Fuchs equation. Since IGW and IFJRW take values in two isomorphic state
spaces, we can compute the analytic continuation of IGW and obtain two different bases spanning the space of
solutions of the same Picard–Fuchs equation. Therefore, we have the following corollary.

Corollary 2.3.1. There is a degree-preserving symplectic transformation ULG-CY mapping IFJRW to the analytic
continuation of IGW near t = 0.

Remark 2.3.2. Since, the I-functions IFJRW and IGW encode the generating functions for the genus-zero
part of the corresponding theories, the symplectomorphism ULG-CY establishes an equivalence between the
computation of the Gromov–Witten genus-zero invariants of the quintic and the intersection theory setup in
Chapter II

Remark 2.3.3 (higher genus conjecture). We have explicitly computed U using the Mellin–Barnes method
for analytic continuation. In [31], we conjecture that the quantization of ULG-CY yields the full higher genus
Gromov–Witten generating function of the quintic three-fold when applied to the full higher genus Fan–Jarvis–
Ruan–Witten generating function.

3 LG-CY shortcircuiting the mirror

In [30], in collaboration with Hiroshi Iritani and Yongbin Ruan, we describe a transition going directly from
Gromov–Witten theory of the Calabi–Yau variety XW to Fan–Jarvis–Ruan–Witten theory of the Landau–
Ginzburg model W : [C5/(Z/5)] → C. This avoids the use of the local system (V,R3π∗Z) on P1 \ {0, 1,∞}.
The idea is to reach a point of view, which does not depend on mirror symmetry but rather on tools that
are intrinsically related to XW and W : [C5/(Z/5)] → C. Of course, at the same time, this effort allows us to
complete and provide more structure to the mirror symmetry framework: it shows a path going directly from
AXW to AW,Z/5 which is specular to the local system (V,R3π∗Z).

We point out a direct application. The correspondence ULG-CY was not proven in order to further understand
genus-zero Gromov–Witten theory. Indeed this issue has been already completely elucidated by Givental and
Lian–Liu–Yau. On the other hand, as mentioned in the previous section, one can regard ULG-CY as an operator
which conjecturally relates the higher genus Gromov–Witten theory to level structures. In order to phrase this
conjecture, one needs the language of quantization, which applies to symplectic operators ULG-CY. The fact
that this map is symplectic was proven via analytic continuation and direct calculation; in [31] we were lacking
a conceptual explanation. The direct approach illustrated here presents ULG-CY as a cohomological application
deriving from Orlov’s equivalence. This simplifies the computation of ULG-CY and explains why it is symplectic.

We have proven this result for all hypersurfaces of CY type within a Gorenstein weighted projective space
(each weight divides the total weight

∑
i wj). Again, for sake of clarity, we will limit ourselves to the case of

the quintic three-fold.
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3.1 Geometric invariant theory

Via GIT, we describe the passage from XW to the corresponding Landau–Ginzburg model. This purely math-
ematical approach was described first by Witten in [125].

Consider the C∗-action on V = SpecC[x1, x2, x3, x4, x5, p] with weights (1, 1, 1, 1, 1,−5). We are interested
in representing geometrically the space parametrizing the orbits of this action; in other words we would like
to produce some sort of geometric quotient. We are faced with the problem of the existence of nonclosed
orbite, which prevents us from constructing a quotient space. GIT allows to identify all open and C×-invariant
subspaces of V , having only closed orbits, and admitting a (separated) quotient space. Even if we require
that the open subset is maximal, there is not a unique possibility. GIT identifies the two possible cases (they
correspond to two types of choices of polarisations on [V/C∗]).

1. We consider the open subset Ω1 defined by (x1, x2, x3, x4, x5) 6= 000. We have a quotient of (C5 \ {000})× C
by the free C×-action. The quotient space is the total space of the line bundle O(−5) on P4.

2. We consider Ω2 defined by p 6= 0. We obtaint the C∗-action on C5 × C∗. This setup is represented
in an equivalent way by the Z/5-action on C5 (given by ξ5 times the identity matrix). We obtain the
Deligne–Mumford quotient stack [C5/(Z/5)].

We can enhance the above discussion by introducing the function W = x5
1 + x5

2 + x5
3 + x5

4 + x5
5. In order to lift

this function to a C×-invariant function on V we consider W = p
∑5
j=1x

5.

Then, W descends to

W : O(−5)→ C

(the composite of O(−5) → O and of the projection of the total space O on the fiber). We obtain in this way
a geometric model essentially equivalent to the quintic three-fold (the critical locus of W : O(−5)→ C).

On the other side W reduces to what we have called so far Landau–Ginzburg model: the morphisms

W : [C5/〈jW 〉]→ C,

with an isolated singularity at the origin.
From this point of view, both sides of the LG-CY correspondence stem from

W : [V/C∗] −→ C (pour V = C5 × C). (IV.12)

3.2 Matrix factorization and Orlov’s equivalence

The above construction yields the equivalence of categories proven by Orlov in [105] (this GIT perspective is
extensively treated in [65]).

On the CY side, for XW , we consider the bounded derived category Db(XW ) of coherent sheaves on XW .
On the LG side, for W : [C5/(Z/5)] → C, we consider the triangulated category MFgr(W ) of graded matrix
factorizations.

We recall that a matrix factorization of W is the datum of

(E, δE) =
(
E0

δ1←−−
−−→
δ0

E1
)
,

where E = E0 ⊕ E1 is a finitely generated free module on R = C[x1, . . . , xN ] with a Z/2-graduation, and
δE ∈ End1

R(E) is an odd endomorphism of E satisfying the condition

δ2 = W · idE .

There is a natural Z-graded version; it gives rise to a triangulated category MFgr(W ).
In [110], Polishchuk an Vaintrob have shown how to apply the general formalism of Chern characters of

triangulated categories, to the special case of MFZ/d(W ), the category of Z/d-equivariant matrix factorizations.
We have

ch: K(MFZ/d(W ))→ HH(MFZ/d(W )),

where HH denotes the Hochschild cohomology of MFZ/d(W ). This yields a homomorphisms

K(MFgr(W ))→ HW,Z/d
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via the composition with the natural function from MFgr(W ) to Z/d-equivariant matrix factorizations and the
natural isomorphism

HH(MFZ/d(W )) ∼= HW,〈jW 〉
shown by [110]. Hence, Orlov equivalences from [105, §2.2]

Φ̃a : MFgr(W )
∼−−−→ Db(XW )

for a ∈ Z, induce, by passage toK-theory and to cohomology, isomorphisms between the state spacesH∗(XW ;C)
and HW,Z/5 involved. We will denote these homomorphisms by

Φa : HFJRW −→ HGW. (IV.13)

Serre’s functor yields a symplectic form on both cohomologies; since Orlov’s equivalence is compatible with this
structure, for all a, Φa is symplectic. We also point out that Φa does not respect the bigraduation of chapter
III.

3.3 The direct path

Corollary 2.3.1 establishes a LG-CY correspondence LG-CY via two mirror maps (IV.10) et (IV.11). These two
mirror maps identify two bases of of multivalued flat sections of V = R3π∗(Z) ⊗ O: σ = (Σ1,Σ2,Σ3,Σ4) near
t = ∞ and γ = (Γ1,Γ2,Γ3,Γ4) near t = 0. Via analytic continuation we can extend these bases on the entire
open set P1 \ {0, 1,∞}.

We illustrate in more detail why these bases are multivalued. In fact, on an open contractible subspace U ⊂
[P1/(Z/5)]×, each multivalued basis γ = (Γ1,Γ2,Γ3,Γ4) can be expresses as

⊕
i∈I γi, where γi = (Γi1,Γ

i
2,Γ

i
3,Γ

i
4)

is a basis of singlevalued flat section taking values in VU → U . The basis γi cannot be extended on the entire
space P1 \ {0, 1,∞}; indeed when we transport γi along a closed path around t = ∞, we obtain four cycles
T (Γi1,Γ

i
2,Γ

i
3,Γ

i
4) for a given nontrivial monodromy operator T .

Note also that the local data (IV.10) near ∞ and (IV.11) neat 0 yielding σ and γ are determined by choices
of bases HGW = ⊕3

h=0ϕhC and HFJRW = ⊕3
h=0φhC. We have defined ULG-CY as the change of basis matrix.

We point out here that, since σ and γ are multivalued, the matrix ULG-CY is determined up to conjugation with
T . We get in this way a set of symplectic transformations

{Ua = T aULG-CYT
−a | a ∈ Z}

yielding an equivalence between the computation of Gromov–Witten genus-zero invariants and that of genus-zero
Fan–Jarvis–Ruan–Witten invariants.

In collaboration with Iritani and Ruan we have identified these linear application Ua.

Theorem 3.3.1 (Chiodo–Iritani–Ruan, [30]). For all a ∈ Z the symplectic operation Ua identifying IFJRW to
the analytic continuation of IGW at a neighborhood of t = 0 can be directly computed via Orlov’s equivalence.
We have

Φa = Ua
for all a ∈ Z.
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[17] L. Borisov, Berglund–Hübsch mirror symmetry via vertex algebras, arXiv:1007.2633v3

[18] L. Borisov, R. Kaufmann On CY-LG correspondence for (0,2) toric models, arXiv:1102.5444

[19] S. Brannetti, M. Melo, F. Viviani, On the tropical Torelli map, Advances in Mathematics 226 (2011), 2546–
2586

[20] C. Cadman, Using stacks to impose tangency conditions on curves, Amer. J. Math. 2007, 129 (2), 405–427

[21] P. Candelas, X. C. De La Ossa, P. S. Green, L. Parkes, A pair of Calabi–Yau manifolds as an exactly soluble
superconformal theory, Nucl. Phys. B 359 (1991) 21–74

[22] L. Caporaso, C. Casagrande, M. Cornalba, Moduli of roots of line bundles of curves, Trans. Amer. Math.
Soc. 359 (2007), no. 8, 3733–3768

[23] L. Caporaso, F. Viviani, Torelli theorem for graphs and tropical curves, Duke Math. Journal 153 (2010) 129–171

[24] S. Cecotti, C. Vafa, On classification of N = 2 supersymmetric theories, Comm. Math. Phys. 158 (1993)
569–644

[25] A. Chiodo, The Witten top Chern class via K-theory. J. Algebraic Geom. 15 (2006), no. 4, 681–707

[26] A. Chiodo, Stable twisted curves and their r-spin structures (Courbes champêtres stables et leurs structures r-spin).
Ann. Inst. Fourier, Vol. 58 no. 5 (2008), 1635–1689

47



48 BIBLIOGRAPHY
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[112] M. Raynaud, Spécialisation du foncteur de Picard. Inst. Hautes Études Sci. Publ. Math. 38 (1970), 27–76

[113] C. Sabbah, Hypergeometric periods for a tame polynomial, Portugal. Math. 63 (2006), no. 2, p. 173–226

[114] C. Sabbah, Fourier–Laplace transform of a variation of polarized complex Hodge structure, J. reine angew. Math.
621 (2008), p. 123-158

[115] J. P. Serre, Arbres, amalgames, SL2, Astérisque 46, Soc. Math. France, 1977
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