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Introduction

Quivers are very simple mathematical objects: finite directed graphs. A representation

of a quiver assigns a vector space to each vertex, and a linear map to each arrow. Quiver

representations were originally introduced to treat problems of linear algebra, for exam-

ple, the classification of tuples of subspaces of a prescribed vector space. But it soon

turned out that quivers and their representations play an important role in representa-

tion theory of finite-dimensional algebras; they also occur in less expected domains of

mathematics including Kac-Moody Lie algebras, quantum groups, Coxeter groups, and

geometric invariant theory.

These notes present some fundamental results and examples of quiver representations,

in its algebraic and geometric aspects. Our main goal is to give an account of a theo-

rem of Gabriel characterizing quivers of finite representation type, that is, having only

finitely many isomorphism classes of representations in any prescribed dimensions: such

quivers are exactly the disjoint unions of Dynkin diagrams of types An, Dn, E6, E7, E8,

equipped with arbitrary orientations. Moreover, the isomorphism classes of indecompos-

able representations correspond bijectively to the positive roots of the associated root

system.

This beautiful result has many applications to problems of linear algebra. For example,

when applied to an appropriate quiver of type D4, it yields a classification of triples of

subspaces of a prescribed vector space, by finitely many combinatorial invariants. The

corresponding classification for quadruples of subspaces involves one-parameter families

(the so-called tame case); for r-tuples with r ≥ 5, one obtains families depending on an

arbitrary number of parameters (the wild case).
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Gabriel’s theorem holds over an arbitrary field; in these notes, we only consider al-

gebraically closed fields, in order to keep the prerequisites at a minimum. Section 1 is

devoted to the algebraic aspects of quiver representations; it requires very little back-

ground. The geometric aspects are considered in Section 2, where familiarity with some

affine algebraic geometry is assumed. Section 3, on representations of finitely gener-

ated algebras, is a bit more advanced, as it uses (and illustrates) basic notions of affine

schemes. The reader will find more detailed outlines, prerequisites, and suggestions for

further reading, at the beginning of each section.

Many important developments of quiver representations fall beyond the limited scope

of these notes; among them, we mention Kac’s far-reaching generalization of Gabriel’s

theorem (exposed in [10]), and the construction and study of moduli spaces (surveyed in

the notes of Ginzburg, see also [16]).

Conventions. Throughout these notes, we consider vector spaces, linear maps, algebras,

over a fixed field k, assumed to be algebraically closed. All algebras are assumed to be

associative, with unit; modules are understood to be left modules, unless otherwise stated.

1 Quiver representations: the algebraic approach

In this section, we present fundamental notions and results on representations of quivers

and of finite-dimensional algebras.

Basic definitions concerning quivers and their representations are formulated in Sub-

section 1.1, and illustrated on three classes of examples. In particular, we define quivers

of finite representation type, and state their characterization in terms of Dynkin diagrams

(Gabriel’s theorem).

In Subsection 1.2, we define the quiver algebra, and identify its representations with

those of the quiver. We also briefly consider quivers with relations.

The classes of simple, indecomposable, and projective representations are discussed in

Subsection 1.3, in the general setting of representations of algebras. We illustrate these

notions with results and examples from quiver algebras.

Subsection 1.4 is devoted to the standard resolutions of quiver representations, with

applications to extensions and to the Euler and Tits forms.

The prerequisites are quite modest: basic material on rings and modules in Subsec-

tions 1.1-1.3; some homological algebra (projective resolutions, Ext groups, extensions)

in Subsection 1.4.

We generally provide complete proofs, with the exception of some classical results for

which we refer to [3]. Thereby, we make only the first steps in the representation theory of

quivers and finite-dimensional algebras. The reader will find more complete expositions in
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the books [1, 2, 3] and in the notes [4]; the article [5] gives a nice overview of the subject.

1.1 Basic definitions and examples

Definition 1.1.1. A quiver is a finite directed graph, possibly with multiple arrows

and loops. More specifically, a quiver is a quadruple

Q = (Q0, Q1, s, t),

where Q0, Q1 are finite sets (the set of vertices, resp. arrows) and

s, t : Q1 −→ Q0

are maps assigning to each arrow its source, resp. target.

We shall denote the vertices by letters i, j, . . .. An arrow with source i and target j

will be denoted by α : i→ j, or by i
α
−→j when depicting the quiver.

For example, the quiver with vertices i, j and arrows α : i → j and β1, β2 : j → j is

depicted as follows:

i
α // j

β1

��

β2

XX

Definition 1.1.2. A representation M of a quiver Q consists of a family of vector

spaces Vi indexed by the vertices i ∈ Q0, together with a family of linear maps fα : Vs(α) →

Vt(α) indexed by the arrows α ∈ Q1.

For example, a representation of the preceding quiver is just a diagram

V
f // W

g1

��

g2

XX

where V , W are vector spaces, and f, g1, g2 are linear maps.

Definition 1.1.3. Given two representations M =
(

(Vi)i∈Q0 , (fα)α∈Q1

)

, N = (Wi, gα)

of a quiver Q, a morphism u : M → N is a family of linear maps (ui : Vi →Wi)i∈Q0 such

that the diagram

Vs(α)
fα
−−−→ Vt(α)

us(α)





y

ut(α)





y

Ws(α)
gα
−−−→ Wt(α)

commutes for any α ∈ Q1.
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For any two morphisms u : M → N and v : N → P , the family of compositions

(viui)i∈Q0 is a morphism vu : M → P . This defines the composition of morphisms, which

is clearly associative and has identity elements idM := (idVi
)i∈Q0. So we may consider the

category of representations of Q, that we denote by Rep(Q).

Given two representations M , N as above, the set of all morphisms (of representa-

tions) from M to N is a subspace of
∏

i∈Q0
Hom(Vi, Wi); we denote that subspace by

HomQ(M, N). If M = N , then

EndQ(M) := HomQ(M, N)

is a subalgebra of the product algebra
∏

i∈Q0
End(Vi).

Clearly, the composition of morphisms is bilinear; also, we may define direct sums and

exact sequences of representations in an obvious way. In fact, one may check that Rep(Q)

is a k-linear abelian category ; this will also follow from the equivalence of Rep(Q) with

the category of modules over the quiver algebra kQ, see Proposition 1.2.2 below.

Definition 1.1.4. A representation M = (Vi, fα) of Q is finite-dimensional if so are

all the vector spaces Vi. Under that assumption, the family

dim M := (dim Vi)i∈Q0

is the dimension vector of M ; it lies in the additive group ZQ0 consisting of all tuples of

integers n = (ni)i∈Q0.

We denote by (εi)i∈Q0 the canonical basis of Z
Q0 , so that n =

∑

i∈Q0
ni εi.

Note that every exact sequence of finite-dimensional representations

0 −→M ′ −→M −→M ′′ −→ 0

satisfies

dim M = dim M ′ + dim M ′′.

Also, any two isomorphic finite-dimensional representations have the same dimension

vector. A central problem of quiver theory is to describe the isomorphism classes of

finite-dimensional representations of a prescribed quiver, having a prescribed dimension

vector.

Examples 1.1.5. 1) The loop is the quiver L having a unique vertex i and a unique

arrow α (then s(α) = t(α) = i). Thus, a representation of L is a pair (V, f), where V is

a vector space and f an endomorphism of V ; the dimension vector is just the dimension

of V .
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A morphism from a pair (V, f) to another pair (W, g) is a linear map u : V → W

such that uf = gu. In particular, the endomorphisms of the pair (V, f) are exactly the

endomorphisms of V that commute with f .

Given a representation (V, f) having a prescribed dimension n, we may choose a basis

(v1, . . . , vn) of V , and hence identify f with an n × n matrix A. Choosing another basis

amounts to replacing A with a conjugate BAB−1, where B is an invertible n× n matrix.

It follows that the isomorphism classes of n-dimensional representations of L correspond

bijectively to the conjugacy classes of n × n matrices. The latter are classified in terms

of the Jordan canonical form.

In particular, there are infinitely many isomorphism classes of representations of the

loop having a prescribed dimension.

More generally, for any integer r ≥ 1, the r-loop is the quiver Lr having a unique

vertex and r arrows α1, . . . , αr.

L2 : iα1
$$

α2
zz

The representations of Lr consist of a vector space V equipped with r endomorphisms

f1, . . . , fr. Thus, the isomorphism classes of representations of Lr having a prescribed

dimension (vector) n correspond bijectively to the r-tuples of n× n matrices up to simul-

taneous conjugation.

2) The r-arrow Kronecker quiver is the quiver having two vertices i, j and r arrows

α1, . . . , αr : i→ j. The representations of Kr consist of two vector spaces V , W together

with r linear maps f1, . . . , fr : V → W . The dimension vectors are pairs of non-negative

integers.

K2 : i
α1 //
α2

//j

As in the preceding example, the isomorphism classes of representations with dimension

vector (m, n) correspond bijectively to the r-tuples of n×m matrices, up to simultaneous

multiplication by invertible n× n matrices on the left, and by invertible m×m matrices

on the right.

When r = 1, these representations are classified by the rank of the unique n × m

matrix; in particular, they form only finitely many isomorphism classes.

In the case where r = 2, the classification is due (in essence) to Kronecker and is much

more involved (see e.g. [3, Thm. 4.3.2]).

When r ≥ 2, the classification of representations of Kr contains that of Lr−1 in the

following sense. Consider a representation of Kr with dimension vector (n, n), such that

the map f1 is invertible. Choosing appropriate bases of V and W , we may assume that

f1 is the identity of kn; then f2, . . . , fr are n × n matrices, uniquely determined up to
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simultaneous conjugation. As a consequence, such representations of Kr form infinitely

many isomorphism classes.

3) We denote by Sr the quiver having r + 1 vertices i1, . . . , ir, j, and r arrows α1, . . . , αr

with sources i1, . . . , ir and common target j.

i2

α2

��
S4 : i1

α1 // j i3α3

oo

i4

α4

OO

A representation M of Sr consists of r + 1 vector spaces V1, . . . , Vr, W together with

r linear maps fi : Vi → W . By associating with M the images of the fi, one ob-

tains a bijection between the isomorphism classes of representations with dimension vec-

tor (m1, . . . , mr, n), and the orbits of the general linear group GL(n) acting on r-tuples

(E1, . . . , Er) of subspaces of kn such that dim(Ei) ≤ mi for all i, via g · (E1, . . . , Er) :=
(

g(E1), . . . , g(Er)
)

. In other words, classifying representations of Sr is equivalent to clas-

sifying r-tuples of subspaces of a fixed vector space.

When r = 1, one recovers the classification of representations of K1 ' S1.

When r = 2, one easily checks that the pairs of subspaces (E1, E2) of kn are classified

by the triples
(

dim(E1), dim(E2), dim(E1 ∩ E2)
)

, i.e., by those triples (a, b, c) ∈ Z3 such

that 0 ≤ c ≤ min(a, b). In particular, there are only finitely many isomorphism classes of

representations having a prescribed dimension vector.

This finiteness property may still be proved in the case where r = 3, but fails whenever

r ≥ 4. Consider indeed the representations with dimension vector (1, 1, . . . , 1, 2), such that

the maps f1, . . . , fr are all non-zero. The isomorphism classes of these representations are

in bijection with the orbits of the projective linear group PGL(2) acting on the product

P1(k)×· · ·×P1(k) of r copies of the projective line. Since r ≥ 4, there are infinitely many

orbits; for r = 4, an explicit infinite family is provided by the representations

k

(0,1)
��

k
(1,0) // k2 k

(1,1)
oo

k

(1,λ)

OO

where λ ∈ k.

These examples motivate the following:
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Definition 1.1.6. A quiver Q is of finite representation type if Q has only finitely

many isomorphism classes of representations of any prescribed dimension vector.

A remarkable theorem of Gabriel yields a complete description of these quivers:

Theorem 1.1.7. A quiver is of finite representation type if and only if each connected

component of its underlying undirected graph is a simply-laced Dynkin diagram.

Here the simply-laced Dynkin diagrams are those of the following list:

Ar : • • · · · • • • (r vertices, r ≥ 1)

Dr : • • · · · • • • (r vertices, r ≥ 4)

•

E6 : • • • • •

•

E7 : • • • • • •

•

E8 : • • • • • • •

•

For example, K1 = S1 has type A2, whereas S2 has type A3, and S3 has type D4.

We shall prove the “only if” part of Gabriel’s theorem in Subsection 2.1, and the “if”

part in Subsection 2.4. For a generalization of that theorem to arbitrary fields (possibly

not algebraically closed), see [3, Sec. 4.7].

1.2 The quiver algebra

In this subsection, we fix a quiver Q = (Q0, Q1, s, t). To any representation M = (Vi, fα)

of Q, we associate the vector space

(1.2.1) V :=
⊕

i∈Q0

Vi

equipped with two families of linear self-maps: the projections

fi : V −→ V (i ∈ Q0)
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(the compositions V → Vi ↪→ V of the projections with the inclusions), and the maps

fα : V −→ V (α ∈ Q1)

obtained similary from the defining maps fα : Vs(α) → Vt(α). Clearly, these maps satisfy

the relations

f 2
i = fi, fifj = 0 (i 6= j), ft(α)fα = fαfs(α) = fα

and all other products are 0. This motivates the following:

Definition 1.2.1. The algebra of the quiver Q is the (associative) algebra kQ deter-

mined by the generators ei, where i ∈ Q0, and α, where α ∈ Q1, and the relations

(1.2.2) e2
i = ei, eiej = 0 (i 6= j), et(α)α = αes(α) = α.

In particular, eiej = 0 unless i = j, so that the ei are orthogonal idempotents of

kQ. Also,
∑

i∈Q0
ei = 1, since this equality holds after multiplication by any generator.

Likewise, eiα = 0 unless i = t(α), and αej = 0 unless j = s(α).

Proposition 1.2.2. The category of representations of any quiver Q is equivalent to

the category of left kQ-modules.

Indeed, we have seen that any representation M of Q defines a representation V of kQ.

Conversely, any kQ-module V yields a family of vector spaces (Vi := eiV )i∈Q0 , and the

decomposition (1.2.1) holds in view of the relations (1.2.2). Moreover, we have a linear

map fα : Vi → Vj for any arrow α : i → j (since the image of the multiplication by α in

V is contained in Vj, by the relation α = ejα). One may check that these constructions

extend to functors, and yield the desired equivalence of categories; see the proof of [2,

Thm. II.1.5] for details.

In what follows, we shall freely identify representations of Q with left modules over

kQ, and the category Rep(Q) with the (abelian) category of kQ-modules.

For any arrows α, β, the product βα = βes(β)α is zero unless s(β) = t(α). Thus, a

product of arrows α` · · ·α1 is zero unless the sequence π := (α1, . . . , α`) is a path, i.e.,

s(αj) = t(αj+1) for j = 1, . . . , ` − 1. We then put s(π) := s(α1) (the source of the path

π), t(π) := t(α`) (the target of π), and `(π) := ` (the length). For any vertex i, we also

view ei as the path of length 0 at the vertex i.

Clearly, the paths generate the vector space kQ. They also are linearly independent:

consider indeed the path algebra with basis the set of all paths, and multiplication given

by the concatenation of paths. This algebra is generated by the paths of length 0 (the

vertices) and of length 1 (the arrows), and satisfies the relations of kQ. Thus, the path

algebra is a quotient of kQ, which implies the desired linear independence, and shows

that the quiver algebra and the path algebra are in fact the same.
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Examples 1.2.3. We describe the path algebras of the quivers considered in Examples

1.1.5, and of an additional class of examples.

1) The algebra of the loop L has basis the monomials αn, where n ∈ N. In other words,

the algebra kL is freely generated by α.

More generally, the algebra of the r-loop Lr is the free algebra k〈X1, . . . , Xr〉 on the r

arrows. The paths are just the words (or non-commutative monomials) in X1, . . . , Xr.

2) The algebra of the r-arrow Kronecker quiver Kr has basis ei, ej, α1, . . . , αr. Thus, kKr

is the direct sum of kα1 ⊕ · · · ⊕ kαr (a two-sided ideal of square 0), with kei ⊕ kej (a

subalgebra isomorphic to k × k).

3) Likewise, kSr is the direct sum of the two-sided ideal kα1⊕ · · ·⊕ kαr of square 0, with

the subalgebra kei1 ⊕ · · · ⊕ keir ⊕ kej ' k × · · · × k (r + 1 copies).

4) Let Hr denote the quiver having two vertices i, j, an arrow α : i → j, and r loops

β1, . . . , βr at j (so that H2 is our very first example). Then kHr is the direct sum of

k〈β1, . . . , βr〉α (a two-sided ideal of square 0) with kei ⊕ k〈β1, . . . , βr〉 (a subalgebra iso-

morphic to k × k〈X1, . . . , Xr〉).

Returning to an arbitrary quiver Q, let kQ≥1 be the linear span in kQ of all paths of

positive length. Then kQ≥1 is the two-sided ideal of kQ generated by all arrows, and we

have the decomposition

(1.2.3) kQ = kQ≥1 ⊕
⊕

i∈Q0

kei ,

where
⊕

i∈Q0
kei is a subalgebra isomorphic to the product algebra

∏

i∈Q0
k. Moreover,

for any positive integer n, the ideal (kQ≥1)
n is the linear span of all paths of length ≥ n;

we shall also denote that ideal by kQ≥n.

Clearly, the vector space kQ is finite-dimensional if and only if Q contains no oriented

cycle, i.e., no non-trivial path π with s(π) = t(π). Under that assumption, all paths in Q

have length at most the number r of vertices. Thus, (kQ≥1)
r = {0}. In particular, the

ideal kQ≥1 is nilpotent.

To obtain a more general class of algebras, it is convenient to introduce quivers with

relations:

Definition 1.2.4. A relation of a quiver Q is a subspace of kQ spanned by linear

combinations of paths having a common source and a common target, and of length at

least 2.

A quiver with relations is a pair (Q, I), where Q is a quiver, and I is a two-sided ideal

of kQ generated by relations. The quotient algebra kQ/I is the path algebra of (Q, I).
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For instance, if Q is the r-loop, then a relation is a subspace of kQ = k〈X1, . . . , Xr〉

spanned by linear combinations of words of length at least 2. As an example, take

the linear span of all the commutators XiXj − XjXi, then the path algebra is just the

polynomial algebra k[X1, . . . , Xr].

The representations of arbitrary finite-dimensional algebras may be described in terms

of quivers with relations. Namely, to any such algebra A, one can associate a quiver with

relations (Q, I) such that the path algebra kQ/I is finite-dimensional, and Rep(A) is

equivalent to the category Rep(Q, I) defined in an obvious way (this follows from the

results of [3, Sec. 4.1], especially Prop. 4.1.7).

In contrast, finite-dimensional quiver algebras (without relations) satisfy very special

properties among all finite-dimensional algebras, as we shall see in Subsection 1.4.

1.3 Structure of representations

In this subsection, we fix an (associative) algebra A and consider (left) A-modules, as-

sumed to be finitely generated. We begin by discussing the simple A-modules, also called

irreducible, i.e., those non-zero modules that have no non-zero proper submodule.

Let M , N be two simple A-modules; then every non-zero A-morphism f : M → N

is an isomorphism by Schur’s lemma. As a consequence, HomA(M, N) = {0} unless

M ' N ; moreover, EndA(M) is a division algebra. If M is finite-dimensional, then so is

EndA(M); in particular, each f ∈ EndA(M) generates a finite-dimensional subfield. Since

k is algebraically closed, it follows that EndA(M) = k idM .

Also, recall that an A-module is semi-simple (or completely reducible) if it equals

the sum of its simple submodules. Any finite-dimensional semi-simple module admits a

decomposition of algebras

(1.3.1) M '

r
⊕

i=1

mi Mi ,

where the Mi are pairwise non-isomorphic simple modules, and the mi are positive inte-

gers. By Schur’s lemma, the simple summands Mi and their multiplicities mi are uniquely

determined up to reordering. Moreover, we have a decomposition

EndA(M) '

r
∏

i=1

EndA(mi Mi) '

r
∏

i=1

Matmi×mi

(

EndA(Mi)
)

and hence

(1.3.2) EndA(M) '

r
∏

i=1

Matmi×mi
(k).

10



We may apply the decomposition (1.3.2) to an algebra A which is semi-simple, i.e., the

(left) A-module A is semi-simple; equivalently, every A-module is semi-simple. Indeed,

for an arbitrary algebra A, we have an isomorphism of algebras

(1.3.3) EndA(A)
∼
−→Aop, f 7−→ f(1),

where Aop denotes the opposite algebra, with the order of multiplication being reversed.

Moreover, each matrix algebra is isomorphic to its opposite algebra, via the transpose

map. It follows that each finite-dimensional semi-simple algebra satisfies

A '

r
∏

i=1

Matmi×mi
(k) ,

where m1, . . . , mr are unique up to reordering; the simple A-modules are exactly the

vector spaces kmi , where A acts via the ith factor.

It is easy to construct simple representations of a quiver Q = (Q0, Q1, s, t): given

i ∈ Q0, consider the representation S(i) defined by

S(i)i = k, S(i)j = 0 (j ∈ Q0, j 6= i), fα = 0 (α ∈ Q1).

Clearly, S(i) is simple with dimension vector εi (the ith basis vector of ZQ0). This yields

all the simple representations, if kQ is finite-dimensional:

Proposition 1.3.1. Assume that Q has no oriented cycle. Then any simple represen-

tation of Q is isomorphic to S(i) for a unique i ∈ Q0. Moreover, any finite-dimensional

semi-simple representation is uniquely determined by its dimension vector, up to isomor-

phism.

Proof. Consider a simple kQ-module M . Then M 6= kQ≥1M (otherwise, M =

(kQ≥1)
nM = kQ≥nM for any positive integer n, and hence M = {0}). Thus, kQ≥1M =

{0}, so that M may be viewed as a module over the algebra

kQ/kQ≥1 '
⊕

i∈Q0

kei '
∏

i∈Q0

k.

As a consequence, each subspace of eiM is a kQ-submodule of M . This readily implies

the first assertion.

Next, let M be a finite-dimensional semi-simple kQ-module. Then, by the decompo-

sition (1.3.1),

M '
⊕

i∈Q0

mi S(i)

for some non-negative integers mi. Thus,

dim M =
∑

i∈Q0

mi dim S(i) =
∑

i∈Q0

mi εi.
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In the preceding statement, the assumption that Q has no oriented cycle cannot be

omitted, as shown by the following:

Example 1.3.2. The irreducible representations of the loop L are exactly the spaces

S(λ) := k[X]/(X − λ) k[X], where λ ∈ k, viewed as modules over kL = k[X]. Each S(λ)

is just the vector space k, where the arrow α acts via multiplication by λ.

In contrast, the r-loop Lr, r ≥ 2, has irreducible representations of an arbitrary

dimension n; for example, the vector space kn with standard basis (v1, . . . , vn), where α1

acts via the ‘shift’ v1 7→ v2, v2 7→ v3, . . ., vn 7→ v1; α2 acts via v1 7→ v2, vj 7→ 0 for all

j ≥ 2, and αi acts trivially for i ≥ 3.

Next, we consider indecomposable modules over an algebra A, i.e., those non-zero

modules that have no decomposition into a direct sum of non-zero submodules.

Clearly, an A-module M is indecomposable if and only if the algebra EndA(M) contains

no non-trivial idempotent. Assuming that M is finite-dimensional, we obtain further

criteria for indecomposability, analogous to Schur’s lemma:

Lemma 1.3.3. For a finite-dimensional module M over an algebra A, the following

conditions are equivalent:

(i) M is indecomposable.

(ii) Any A-endomorphism of M is either nilpotent or invertible.

(iii) EndA(M) = I ⊕ k idM , where I is a nilpotent ideal.

Proof. Some of the statements, and all the arguments of their proofs, may be found

in [3, Sec. 1.4]; we provide details for completeness.

(i)⇒(ii) follows from the Fitting decomposition

M = Ker(fn)⊕ Im(fn) ,

where f ∈ EndA(M) and n� 0 (see e.g. [3, Lem. 1.4.4]).

(ii)⇒(iii) Denote by I the set of all nilpotent elements of EndA(M). We first show

that I is a two-sided ideal. Consider x ∈ I and y ∈ EndA(M). Then xy is non-invertible

in End(M), and hence is nilpotent: xy ∈ I and likewise, yx ∈ I. If, in addition, y ∈ I,

then x + y ∈ I: otherwise, z := x + y is invertible, and hence x = z − y = z(1− z−1y) is

invertible as well, since z−1y is nilpotent.

Next, we show that the ideal I is nilpotent. Since the algebra EndA(M) is finite-

dimensional, and In ⊃ In+1 for all n, there exists a positive integer n such that In = In+1.

But 1 + x is invertible for all x ∈ I, and hence In = {0} by Nakayama’s lemma (see [3,

Lem. 1.2.3]).
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Finally, EndA(M)/I is a division algebra, since the complement of I in EndA(M)

consists of invertible elements. On the other hand, the vector space EndA(M)/I is finite-

dimensional; thus, EndA(M)/I = k.

(iii)⇒(i) Consider an idempotent e ∈ EndA(M). Then the image of e in the quotient

EndA(M)/I ' k is 1, and hence e = 1 + x for some x ∈ I. Thus, e is invertible, and

e = 1.

We now obtain an important structure result for finite-dimensional modules and their

endomorphism rings:

Theorem 1.3.4. Let M be a finite-dimensional module over an algebra A. Then there

is a decomposition of A-modules

(1.3.4) M '

r
⊕

i=1

mi Mi,

where M1, . . . , Mr are indecomposable and pairwise non-isomorphic, and m1, . . . , mr are

positive integers. The indecomposable summands Mi and their multiplicities mi are uniquely

determined up to reordering.

Moreover, we have a decomposition of vector spaces

(1.3.5) EndA(M) = I ⊕B

where I is a nilpotent ideal, and B is a subalgebra isomorphic to
∏r

i=1 Matmi×mi
(k).

Proof. The first assertion is the classical Krull-Schmidt theorem, proved e.g. in [3,

Sec. 1.4].

The second assertion follows from Lemma 1.3.3 (iii), in the case where M is indecom-

posable. In the general case, let f ∈ EndA(M) and consider the compositions

fij : mi Mi ↪→M
f
−→M −→M/

⊕

6̀=j

m` M`
∼
−→mj Mj (i, j = 1, . . . , r).

Then we have the “block decomposition” f =
∑

i,j fi,j, where

fi,j ∈ HomA(mi Mi, mj Mj) ' Matmj×mi

(

HomA(Mi, Mj)
)

.

In particular,

fii ∈ EndA(mi Mi) ' Matmi×mi

(

EndA(Mi)
)

.

By Lemma 1.3.3, we have a decomposition EndA(Mi) = Ii⊕k idMi
, where Ii is a nilpotent

ideal. This induces a homomorphism EndA(Mi)→ k and, in turn, a homomorphism

ui : Matmi×mi

(

EndA(Mi)
)

−→ Matmi×mi
(k).
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Consider the linear map

u : EndA(M) −→
r
∏

i=1

Matmi×mi
(k), f =

∑

i,j

fi,j 7−→
(

u1(f11), . . . , ur(frr)
)

.

Clearly, u is split surjective via the natural inclusions

Matmi×mi
(k) ↪→ Matmi×mi

(

EndA(Mj)
)

= EndA(mi Mi) ↪→ EndA(M).

We claim that u is an algebra homomorphism. Since (gf)ii =
∑

j gji fij for all f, g ∈

EndA(M), it suffices to check that ui(gji fi,j) = 0 whenever i 6= j. For this, we may

assume that mi = mj = 1; we then have to show that gf ∈ Ii for any morphisms

f : Mi →Mj and g : Mj →Mi. But otherwise, gf is an automorphism of Mi, and hence

f yields an isomorphism of Mi with a summand of Mj, a contradiction.

To complete the proof, it remains to show that the two-sided ideal Ker(u) is nilpotent.

By arguing as in the proof of Lemma 1.3.3, it suffices to show that Ker(u) consists of

nilpotent elements. Let f =
∑

i,j fi,j ∈ Ker(u), so that no fi,j is an isomorphism. Let n

be a positive integer and write fn =
∑

i,j(f
n)i,j, where

(fn)i,j =
∑

i1,...,in−1

fi,i1fi1,i2 · · · fin−1,j.

Each product fi,i1fi1,i2 · · · fin−1,j is a sum of compositions of morphisms

gi,i1,...,in−1,j : Mj −→Min−1 −→ · · · −→Mi1 −→Mi.

Choose n = Nr, where N is a positive integer. Then there exists an index ` that appears N

times in the sequence (i, i1, . . . , in−1, j). Thus, gi,i1,...,in−1,j factors through a composition

of N endomorphisms of M`; by the preceding argument, no such endomorphism is an

isomorphism. Thus, their composition is zero for N � 0, by Lemma 1.3.3 again.

Next, we apply Theorem 1.3.4 to the structure of a finite-dimensional algebra A, by

viewing A as a module over itself via left multiplication, and using the isomorphism

(1.3.3). The summands of A are easily described (see [3, Lem. 1.3.3]):

Lemma 1.3.5. Let A be any algebra, viewed as an A-module via left multiplication.

(i) Every decomposition 1 = e1 + · · ·+ er, where e1, . . . , er are orthogonal idempotents of

A, yields a decomposition of (left) A-modules A = P (e1)⊕· · ·⊕P (er), where P (ei) := Aei.

This sets up a bijection between decompositions of 1 as a sum of orthogonal idempotents,

and direct sum decompositions of the A-module A. In particular, the non-zero summands

of A are exactly the ideals P (e) := Ae, where e is an idempotent.
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(ii) For any A-module M , we have an isomorphism of A-modules

(1.3.6) HomA

(

P (e), M
) ∼
−→eM, f 7−→ f(e).

(iii) There is an isomorphism of algebras

(1.3.7) EndA

(

P (e)
)

' (eAe)op,

where eAe is viewed as an algebra with unit e.

(iv) The A-module P (e) is indecomposable if and only if e is not the sum of two orthogonal

idempotents; equivalently, e is the unique idempotent of eAe.

An idempotent satisfying the assertion (iv) is called primitive. Also, recall that an

A-module P is projective, if P is a direct factor of a free A-module (see [3, Lem. 1.5.2] for

further characterizations of projective modules). Thus, the P (e) are projective ideals of

A. If A is finite-dimensional, this yields a complete description of all projective modules:

Proposition 1.3.6. Let A be a finite-dimensional algebra, and choose a decomposition

of A-modules

A ' m1P1 ⊕ · · · ⊕mrPr ,

where P1, . . . , Pr are indecomposable and pairwise non-isomorphic.

(i) There is a decomposition of vector spaces A ' I ⊕B, where I is a nilpotent ideal and

B is a semi-simple subalgebra, isomorphic to
∏r

i=1 Matmi×mi
(k).

(ii) Every A-module Si := Pi/IPi is simple. Conversely, every simple A-module is iso-

morphic to a unique Si.

(iii) Every projective indecomposable A-module is isomorphic to a unique Pi. In particular,

every such module is finite-dimensional.

(iv) Every finite-dimensional projective A-module admits a decomposition

M ' n1 P1 ⊕ · · · ⊕ nrPr,

where n1, . . . , nr are uniquely determined non-negative integers.

Proof. (i) follows from Theorem 1.3.4.(ii) applied to the A-module A, taking into

account the isomorphism (1.3.3).

(ii) Note that Si 6= 0 since the ideal I is nilpotent. Also, we may identify A/I with

B, and each Si with a B-module. By Theorem 1.3.4 and its proof, B acts on Si via its

ith factor Matmi×mi
(k). As a consequence, Si ' ni k

mi for some integer ni ≥ 1. Then

A/I ' m1 S1⊕· · ·⊕mr Sr has dimension n1 m2
1 + · · ·+nr m2

r. But dim(A/I) = dim(B) =

m2
1 + · · ·+ m2

r, and hence n1 = . . . = nr = 1.
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(iii) Let P be a projective indecomposable A-module. Then, as above, P 6= IP . The

quotient P/IP is a semi-simple module (since so is A/I ' B) and non-trivial; thus, there

exists a surjective morphism of A-modules p : P → Si for some i. Let pi : Pi → Si

denote the natural map. Since P is projective, there exists a morphism f : P → Pi such

that pif = p. Likewise, there exists a morphism g : Pi → P such that pg = pi. Then

pifg = pi, so that fg ∈ EndA(Pi) is not nilpotent: fg is invertible, i.e., Pi is isomorphic

to a summand of P . Thus, Pi ' P .

(iv) Since M is finite-dimensional, there exists a surjective morphism f : F → M ,

where the A-module F is a direct sum of finitely many copies of A. By the projectivity

of M , this yields an isomorphism F ' M ⊕ N for some A-module N . Now the desired

statement follows from the Krull-Schmidt theorem.

Returning to the case of the algebra of a quiver Q (possibly with oriented loops, so that

kQ may be infinite-dimensional), recall the decomposition 1 =
∑

i∈Q0
ei into orthogonal

idempotents, and consider the corresponding decomposition

(1.3.8) kQ '
⊕

i∈Q0

P (i),

where P (i) := P (ei) = kQei (i ∈ Q0).

Proposition 1.3.7. Let Q be any quiver, and i a vertex.

(i) The vector space P (i) is the linear span of all paths with source i. Moreover, the

algebra EndQ

(

P (i)
)

is isomorphic to the linear span of all oriented loops at i.

(ii) We have an isomorphism of kQ-modules

P (i)/kQ≥1P (i) ' S(i).

In particular, P (i) is not isomorphic to P (j), when i 6= j.

(iii) The representation P (i) is indecomposable; equivalently, ei is primitive.

(iv) If Q has no oriented loop, then EndQ

(

P (i)
)

' k. Moreover, every indecomposable

projective kQ-module is isomorphic to a unique P (i).

Proof. (i) The first assertion is clear, and the second one is a consequence of (1.3.7).

(ii) By (i), the space P (i)/kQ≥1P (i) has basis the image of ei.

(iii) It suffices to show that ei is the unique idempotent of EndQ

(

P (i)
)

. Let a ∈ eikQei,

a 6= ei, and consider a path π of maximal length occuring in a. Then π is a non-trivial

loop at i. Thus, π2 occurs in a2, and hence a2 6= a.

(iv) follows from (iii) combined with Proposition 1.3.6.
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Examples 1.3.8. 1) The indecomposable finite-dimensional modules over the loop

algebra kL = k[X] are the quotients

M(λ, n) := k[X]/(X − λ)n k[X],

where λ ∈ k, and n is a positive integer. For 0 ≤ i ≤ n − 1, denote by vi the image of

(X−λ)i in M(λ, n). Then v0, . . . , vn−1 form a basis of M(λ, n) such that αvi = λvi +vi+1

for all i, where we set vn = 0. Thus, α acts on M(λ, n) via a Jordan block of size n and

eigenvalue λ. Note that M(λ, 1) is just the simple representation S(λ).

Clearly, HomL

(

M(λ, m), M(µ, n)
)

= {0} unless λ = µ and m ≥ n. Moreover,

HomL

(

M(λ, m), M(λ, n)
)

'M(λ, n) when m ≥ n. In particular,

(1.3.9) EndL

(

M(λ, n)
)

'M(λ, n).

Also, k[X] has a unique finitely generated, indecomposable module of infinite dimen-

sion, namely, k[X] itself. It also has many indecomposable modules which are not finitely

generated, e.g., all non-trivial localizations of k[X].

2) The indecomposable representations of the quiver

K1 : i
α
−→j

fall into 3 isomorphism classes:

S(i) : k −→ 0,

S(j) : 0 −→ k,

P (i) : k
1
−→k.

of respective dimension vectors (1, 0), (0, 1), (1, 1). Note that P (j) = S(j).

In contrast, K2 admits infinitely many indecomposable representations; for example,

k
1 //

λ
//k (λ ∈ k)

of dimension vector (1, 1).

3) Likewise, one may show that the indecomposable representations of the quiver

S2 : i1
α1−→j

α2←−i2

fall into 6 isomorphism classes:

S(i1) : k −→ 0←− 0,
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S(j) : 0 −→ k ←− 0,

S(i2) : 0 −→ 0←− k,

P (i1) : k
1
−→k ←− 0,

P (i2) : 0 −→ k
1
←−k,

and finally

M(j) : k
1
−→k

1
←−k,

of respective dimension vectors (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1), (1, 1, 1). Also,

P (j) = S(j).

1.4 The standard resolution

Throughout this subsection, we fix a quiver Q = (Q0, Q1, s, t).

Proposition 1.4.1. For any left kQ-module M , we have an exact sequence of kQ-

modules

(1.4.1) 0 −→
⊕

α∈Q1

P
(

t(α)
)

⊗k es(α)M
u
−→

⊕

i∈Q0

P (i)⊗k eiM
v
−→M −→ 0,

where the maps u and v are defined by

u(a⊗m) := aα⊗m− a⊗ αm
(

a ∈ P
(

t(α)
)

, m ∈ es(α)M
)

and

v(a⊗m) := am
(

a ∈ P (i), m ∈ eiM
)

.

Here each P (j)⊗k eiM is a kQ-module via a(b⊗m) = ab⊗m, where a ∈ kQ, b ∈ P (j),

and m ∈ eiM .

Proof. Note that the map

kQ⊗kQ M −→M, a⊗m 7−→ am

is an isomorphism of (left) kQ-modules, where the tensor product is taken for kQ viewed as

a right kQ-module. Since the algebra kQ is generated by the ei and the α, the vector space

kQ⊗kQ M is the quotient of kQ⊗k M by the linear span of the elements aei⊗m−a⊗eim

and aα⊗m− a⊗ αm, where a ∈ kQ, m ∈M , i ∈ Q0, and α ∈ Q1. Moreover,

kQ⊗k M =
⊕

i,j∈Q0

P (i)⊗k ejM
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and the linear span of the aei⊗m− a⊗ eim (a ∈ kQ, m ∈M , i ∈ Q0) is the partial sum
⊕

i6=j P (i)⊗k ejM . It follows that v is surjective, and its kernel is generated by the image

of u.

It remains to show that u is injective; this is equivalent to the injectivity of the maps

ui :
⊕

α, s(α)=i

P
(

t(α)
)

⊗k eiM −→ P (i)⊗k eiM (i ∈ Q0)

obtained as restrictions of u. Recall that P
(

t(α)
)

has a basis consisting of all paths π

such that s(π) = j. So ui is given by

∑

α,π, s(α)=i, s(π)=t(α)

π ⊗mα,π 7−→
∑

α, π

πα⊗mα,π − π ⊗ αmα,π.

If the left-hand side is non-zero, then we may choose a path π of maximal length such

that mα,π 6= 0. Then the right-hand side contains πα⊗mα,π but no other component on

πα⊗ eiM . This proves the desired injectivity.

The exact sequence (1.4.1) is called the standard resolution of the kQ-module M ; it

is a projective resolution of length at most 1.

As a consequence, each left ideal I of kQ is projective (as follows by applying Schanuel’s

lemma [3, Lem. 1.5.3] to the standard resolution of the quotient kQ/I and to the exact

sequence 0→ I → kQ→ kQ/I → 0). This property defines the class of (left) hereditary

algebras; we refer to [3, Sec. 4.2] for more on these algebras and their relations to quivers.

Next, recall the definition of the groups Exti
Q(M, N), where M and N are arbitrary

kQ-modules. Choose a projective resolution

(1.4.2) · · · −→ P2 −→ P1 −→ P0 −→M −→ 0.

Taking morphisms to N yields a complex

HomQ(P0, N) −→ HomQ(P1, N) −→ HomQ(P2, N) −→ · · ·

The homology groups of this complex turn out to be independent of the choice of the res-

olution (1.4.2); the ith homology group is denoted by Exti
Q(M, N) (see e.g. [3, Sec. 2.4]).

Clearly, Ext0
Q(M, N) = HomQ(M, N). Also, recall that Ext1

Q(M, N) is the set of

equivalence classes of extensions of M by N , i.e., of exact sequences of kQ-modules

0 −→ N −→ E −→M −→ 0

up to isomorphisms that induce the identity maps on N and M (see [3, Sec. 2.6]).

Using the standard resolution and the isomorphism (1.3.6), we readily obtain the

following:
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Corollary 1.4.2. For any representations M = (Vi, fα) and N = (Wi, gα) of a quiver

Q, the map

cM,N :
∏

i∈Q0
Hom(Vi, Wi) −→

∏

α∈Q1
Hom(Vs(α), Wt(α)),

(ui)i∈Q0 7−→
(

ut(α)fα − gαus(α)

)

α∈Q1

has kernel HomQ(M, N) and cokernel Ext1
Q(M, N).

Moreover, Extj
Q(M, N) = 0 for all j ≥ 2.

In particular, there is a four-term exact sequence

(1.4.3) 0→ EndQ(M)→
∏

i∈Q0

End(Vi)→
∏

α∈Q1

Hom(Vs(α), Vt(α))→ Ext1
Q(M, M)→ 0

which will acquire a geometric interpretation in Subsection 2.2. The space Ext1
Q(M, M)

is called the space of self-extensions of M .

Taking dimensions in Corollary 1.4.2 yields:

Corollary 1.4.3. For any finite-dimensional representations M , N of Q with di-

mension vectors (mi)i∈Q0, (ni)i∈Q0, we have

(1.4.4) dim HomQ(M, N)− dim Ext1
Q(M, N) =

∑

i∈Q0

mi ni −
∑

α∈Q1

ms(α) nt(α).

In particular, dim Ext1
Q

(

S(i), S(j)
)

is the number of arrows with source i and target

j, for all vertices i and j. For example, the dimension of the space of self-extensions

Ext1
Q

(

S(i), S(i)
)

is the number of loops at i.

Also, note that the left-hand side of (1.4.4) only depends on the dimension vectors of

M , N , and is a bi-additive function of these vectors. This motivates the following:

Definition 1.4.4. The Euler form of the quiver Q is the bilinear form 〈, 〉Q on R
Q0

given by

(1.4.5) 〈m, n〉Q =
∑

i∈Q0

mi ni −
∑

α∈Q1

ms(α) nt(α)

for any m = (mi)i∈Q0 and n = (ni)i∈Q0.

Note that the assignement (m, n) 7→ 〈n, m〉Q is the Euler form of the opposite quiver,

obtained from Q by reverting all the arrows. Thus, the Euler form is generally non-

symmetric (e.g., for the quiver Kr).
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Definition 1.4.5. The quadratic form associated to the Euler form is the Tits form

qQ. In other words,

(1.4.6) qQ(n) := 〈n, n〉Q =
∑

i∈Q0

n2
i −

∑

α∈Q1

ns(α) nt(α)

for any n = (ni)i∈Q0.

By (1.4.4), we have

(1.4.7) qQ(dim M) = dim EndQ(M)− dim Ext1
Q(M, M)

for any finite-dimensional representation M .

Also, note that the Tits form depends only on the underlying undirected graph of Q,

and determines that graph uniquely. For example, if Q has type Ar, then

qQ(x1, . . . , xr) =

r
∑

i=1

x2
i −

r−1
∑

i=1

xi xi+1.

The positivity properties of the Tits form are closely related with the shape of Q.

For instance, if Q contains a (possibly non-directed) loop with vertices i1, . . . , ir, then

qQ(εi1 + · · ·+ εir) ≤ 0. Together with [3, Prop. 4.6.3], this implies:

Proposition 1.4.6. For a quiver Q, the following conditions are equivalent:

(i) The Tits form qQ is positive definite.

(ii) qQ(n) ≥ 1 for any non-zero n ∈ NQ0.

(iii) The underlying undirected graph of each connected component of Q is a simply-laced

Dynkin diagram.

As a consequence, Theorem 1.1.7 may be rephrased as follows: the quivers of finite

representation type are exactly those having a positive definite Tits form. This version of

Gabriel’s theorem will be proved in the next section.

2 Quiver representations: the geometric approach

In this section, we study the representations of a prescribed quiver having a prescribed

dimension vector from a geometric viewpoint: the isomorphism classes of these represen-

tations are in bijection with the orbits of an algebraic group (a product of general linear

groups) acting in a representation space (a product of matrix spaces).

Subsection 2.1 presents general results on representation spaces of quivers, and orbits

of algebraic groups in algebraic varieties. As an application, we obtain a proof of the

“only if” part of Gabriel’s theorem (Thm. 1.1.7).
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In Subsection 2.2, we describe the isotropy groups of representation spaces and we

study the differentials of the corresponding orbit maps. In particular, the normal space to

an orbit is identified with the space of self-extensions of the corresponding representation.

The main result of Subsection 2.3 asserts that the orbit closure of every point in a

representation space contains the associated graded to any filtration of the corresponding

representation. Further, the filtrations for which the associated graded is semi-simple

yield the unique closed orbit.

In Subsection 2.4, we prove the “if” part of Gabriel’s theorem by combining the results

of the previous subsections with a key technical ingredient. An alternative proof via purely

representation-theoretic methods is exposed in [3, Sec. 4.7].

The prerequisites of this section are basic notions of affine algebraic geometry (Zariski

topology on affine spaces, dimension, morphisms, Zariski tangent spaces, differentials);

they may be found e.g. in the book [7].

As in the previous section, we only make the first steps in the geometry of quiver

representations. For further results, including Kac’s broad generalization of Gabriel’s

theorem, a very good source is [10]. The invariant theory of quiver representations is

studied in [11] over a field of characteristic zero, and [6] in arbitrary characteristics.

Moduli spaces of representations of finite-dimensional algebras are constructed in [9];

the survey [16] reviews this construction in the setting of quivers, and presents many

developments and applications. In another direction, degenerations of representations

(equivalently, orbit closures in representation spaces) are intensively studied, see e.g. [19].

2.1 Representation spaces

Throughout this section, we fix a quiver Q = (Q0, Q1, s, t) and a dimension vector n =

(ni)i∈Q0 .

Recall that a representation of Q with dimension vector n assigns a vector space Vi of

dimension ni to every vertex i, and a linear map fα : Vi → Vj to every arrow α : i → j.

Choosing bases, we may identify each Vi to kni; then each fα is just a matrix of size

nj × ni. This motivates the following:

Definition 2.1.1. The representation space of the quiver Q for the dimension vector

n is

(2.1.1) Rep(Q, n) :=
⊕

α:i→j

Hom(kni , knj) =
⊕

α:i→j

Matnj×ni
(k).

This is a vector space of dimension
∑

α:i→j ninj.

Here
∑

α:i→j denotes (abusively) the summation over all α ∈ Q1, to simplify the

notation. Likewise, a point of Rep(Q, n) will be denoted by x = (xα)α:i→j.
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For any positive integer n, we denote by GL(n) the group of invertible n× n matrices

with coefficients in k, and by idn the identity matrix. The group

GL(n) :=
∏

i∈Q0

GL(ni)

acts linearly on each space Matnj×ni
(k) by

(2.1.2) (gi)i∈Q0 · xα := gjxαg−1
i .

Hence GL(n) acts on Rep(Q, n) by preserving the decomposition (2.1.1). The subgroup

k∗ idn := {(λ idni
)i∈Q0 | λ ∈ k∗}

is contained in the center of GL(n), and acts trivially on Rep(Q, n). Thus, the action of

GL(n) factors through an action of the quotient group

PGL(n) := GL(n)/k∗ idn .

Clearly, any point x ∈ Rep(Q, n) defines a representation Mx of Q. Moreover, any

two such representations Mx, My are isomorphic if and only if x, y are in the same orbit

of GL(n) or, equivalently, of PGL(n). This yields the following fundamental observation.

Lemma 2.1.2. The assignement x 7→ Mx sets up a bijective correspondence from the

set of orbits of GL(n) in Rep(Q, n) to the set of isomorphism classes of representations

of Q with dimension vector n. The isotropy group

GL(n)x := {g ∈ GL(n) | g · x = x}

is isomorphic to the automorphism group AutQ(Mx).

Example 2.1.3. Consider the quiver Hr of Example 1.2.3.4, and choose the dimension

vector n := (1, n). Then Rep(Hr, n) consists of all tuples (v, x1, . . . , xr), where v ∈ kn

and x1, . . . , xr ∈ Matn×n(k). Further, GL(n) = k∗ ×GL(n) acts on Rep(Hr, n) via

(t, g) · (v, x1, . . . , xr) := (tgv, gx1g
−1, . . . , gxrg

−1).

So the orbits are those of PGL(n) ' GL(n), acting by simultaneous multiplication on v

and conjugation on the xi’s.

Each point (v, x1, . . . , xr) ∈ Rep(Q, n) defines a representation

ϕ : k〈X1, . . . , Xr〉 −→ Matn×n(k), Xi 7−→ xi,

together with a point v ∈ kn. Moreover, the orbits of GL(n) parametrize the isomorphism

classes of such pairs (ϕ, v).
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We say that a tuple (v, x1, . . . , xr) is cyclic, if v generates kn as a module over

k〈X1, . . . , Xr〉; we denote by Rep(Hr, n)cyc the subset of Rep(Hr, n) consisting of cyclic

tuples. Clearly, Rep(Hr, n)cyc is stable under the action of GL(n), and the isotropy group

of each cyclic tuple is trivial. Moreover, the orbit space Rep(Hr, n)cyc/ GL(n) may be

identified with the set of all left ideals of codimension n in k〈X1, . . . , Xr〉. Indeed, to any

tuple (v, x1, . . . , xr), we assign the ideal

I(v, x1, . . . , xr) := {P ∈ k〈X1, . . . , Xr〉 | P (x1, . . . , xr)v = 0}.

which depends only on the orbit of (v, x1, . . . , xr). Conversely, to any left ideal I ⊂

k〈X1, . . . , Xr〉 of codimension n, we assign the isomorphism class of the pair (ϕ, v), where

ϕ is the representation of k〈X1, . . . , Xr〉 in the quotient k〈X1, . . . , Xr〉/I ' kn, and v is

the image of the unit 1 in this quotient. One readily checks that these assignements are

mutually inverse bijections.

Returning to the case of an arbitrary quiver Q, we denote by OM the orbit in Rep(Q, n)

associated with a representation M of Q. Thus, OM = GL(n) · x, where x ∈ Rep(Q, n) is

any point such that M 'Mx.

In particular, Q is of finite representation type if and only if Rep(Q, n) contains only

finitely many orbits of GL(n) for any dimension vector n. This observation will yield a

quick proof of the “only if” part of Gabriel’s theorem. To present that proof, we need

some general notions and results on algebraic group actions.

Definition 2.1.4. An (affine) algebraic group is an (affine) algebraic variety G,

equipped with a group structure such that the multiplication map

µ : G×G −→ G, (g, h) 7−→ gh

and the inverse map

ι : G −→ G, g 7−→ g−1

are morphisms of varieties.

Examples 2.1.5. 1) The general linear group, denoted by GL(n), is the open affine

subset of Matn×n(k) (an affine space of dimension n2) where the determinant is non-zero.

The corresponding algebra of regular functions is generated by the matrix coefficients

and the inverse of their determinant. Since the coefficients of the product of matrices

(resp. of the inverse of a matrix) are polynomials in the matrix coefficients (and in the

inverse of the determinant), GL(n) is an affine algebraic group; it is an irreducible variety

of dimension n2.

24



As a consequence, any closed subgroup of GL(n) is an affine algebraic group; such a

subgroup is called a linear algebraic group. In fact, all affine algebraic groups are linear

(see [18, 2.3.7]).

For example, the group k∗ idn of scalar invertible matrices is a closed central subgroup

of GL(n), isomorphic to the multiplicative group

Gm := GL(1).

The quotient group

PGL(n) := GL(n)/k∗ idn

is isomorphic to the image of GL(n) in the automorphism group of the vector space

Matn×n(k), where GL(n) acts by conjugation. This image is a closed subgroup of GL(n2)

of dimension n2 − 1, as follows from Corollary 2.1.8 below. (Alternatively, PGL(n) is

the automorphism group of the algebra Matn×n(k) by the Skolem-Noether therem; see

[3, Prop. 1.3.6]. This realizes PGL(n) as a subgroup of GL(n2) defined by quadratic

equations.) Thus, PGL(n) is an irreducible linear algebraic group of dimension n2 − 1,

the projective linear group.

2) More generally, GL(n) is the subset of

End(n) :=
∏

i∈Q0

End(kni) =
∏

i∈Q0

Matni×ni
(k)

consisting of those families (gi)i∈Q0 such that
∏

i∈Q0
det(gi) is non-zero. This realizes

GL(n) as a principal open subset of the affine space End(n) or, alternatively, as a closed

subgroup of GL(
∑

i∈Q0
ni). Thus, GL(n) is an irreducible linear algebraic group of di-

mension
∑

i∈Q0
n2

i , and the subgroup k∗ idn is closed. As in the preceding example, one

shows that the quotient

PGL(n) := GL(n)/k∗ idn

is an irreducible linear algebraic group of dimension
(
∑

i∈Q0
n2

i

)

− 1.

Definition 2.1.6. An algebraic action of an algebraic group G on a variety X is a

morphism

ϕ : G×X −→ X, (g, x) 7−→ g · x

of varieties, which is also an action of the group G on X.

For instance, the action of GL(n) on Rep(Q, n) is algebraic by (2.1.2). Since the

subgroup k∗ idn acts trivially, this action factors through a linear action of PGL(n), which

is also algebraic by Corollary 2.1.8 below.

25



Proposition 2.1.7. Let X be a variety equipped with an algebraic action of an alge-

braic group G and let x ∈ X.

(i) The isotropy group

Gx := {g ∈ G | g · x = x}

is closed in G.

(ii) The orbit

G · x := {g · x, g ∈ G}

is a locally closed, non-singular subvariety of X. All connected components of G · x have

dimension dim G− dim Gx.

(iii) The orbit closure G · x is the union of G · x and of orbits of smaller dimension ; it

contains at least one closed orbit.

(iv) The variety G is connected if and only if it is irreducible; then the orbit G · x and its

closure are irreducible as well.

Proof. (i) Consider the orbit map

ϕx : G −→ X, g 7−→ g · x.

This is a morphism of varieties with fibers being the left cosets gGx, g ∈ G; hence these

cosets are closed.

(ii) The orbit G · x is the image of the morphism ϕx, and hence is a constructible

subset of X; thus, G · x contains a dense open subset of its closure (see [7, p. 311]). Since

any two points of G · x are conjugate by an automorphism of X, it follows that G · x is

open in its closure. Likewise, G ·x is non-singular, and its connected components have all

the same dimension. The formula for this dimension follows from a general result on the

dimension of fibers of morphisms (see again [7, p. 311]).

(iii) By the results of (ii), the complement G · x \G · x has smaller dimension; being

stable under G, it is the union of orbits of smaller dimension. Let O be an orbit of minimal

dimension in G · x, then O \ O must be empty, so that O is closed.

(iv) Note that G is an orbit for its action on itself by left multiplication. Thus, it is

non-singular by (ii), so that connectedness and irreducibility are equivalent. Finally, if G

is irreducible, then so is its image G·x under the orbit map. This implies the irreducibility

of G · x.

Corollary 2.1.8. Let ϕ : G→ H be a homomorphism of algebraic groups. Then the

kernel Ker ϕ and image Im ϕ are closed in G resp. H, and we have dim Ker ϕ+dim Im ϕ =

dim G.
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Proof. Consider the action of G on H by g ·h := ϕ(g)h. This action is algebraic and

its orbits are the right cosets (Im ϕ)h, where h ∈ H; these orbits are permuted transitively

by the action of H on itself via right multiplication. By Proposition 2.1.7, there exists a

closed coset. Thus, all cosets are closed; in particular, Im ϕ is closed. On the other hand,

the isotropy group of any point of H is Ker ϕ. So this subgroup is closed by Proposition

2.1.7, which also yields the equality dim Im ϕ = dim G− dim Ker ϕ.

We may now prove the “only if” part of Gabriel’s theorem. For any quiver Q, note

the equality

(2.1.3) dim GL(n)− dim Rep(Q, n) =
∑

i∈Q0

n2
i −

∑

α:i→j

ninj.

Equivalently,

(2.1.4) dim PGL(n)− dim Rep(Q, n) = qQ(n)− 1,

where qQ denotes the Tits form defined in (1.4.6). Together with Proposition 2.1.7, it

follows that qQ(n) ≥ 1 whenever Rep(Q, n) contains an open orbit of the group PGL(n).

By Proposition 2.1.7 again, this assumption holds if Rep(Q, n) contains only finitely many

orbits of that group. Thus, if Q is of finite representation type, then qQ(n) ≥ 1 for all

non-zero n ∈ NQ0. By Proposition 1.4.6, it follows that qQ is positive definite.

2.2 Isotropy groups

We begin with a structure result for automorphism groups of representations. To formu-

late it, we say that an algebraic group is unipotent if it is isomorphic to a closed subgroup

of the group of upper triangular n× n matrices with diagonal coefficients 1.

Proposition 2.2.1. Let M be a finite-dimensional representation of Q.

(i) The automorphism group AutQ(M) is an open affine subset of EndQ(M). As a con-

sequence, AutQ(M) is a connected linear algebraic group.

(ii) There exists a decomposition

(2.2.1) AutQ(M) = U o

r
∏

i=1

GL(mi),

where U is a closed normal unipotent subgroup and m1, . . . , mr denote the multiplicities

of the indecomposable summands of M .

Proof. (i) Just note that AutQ(M) is the subset of EndQ(M) where the determinant

is non-zero.
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(ii) The decomposition (1.3.5) yields a split surjective homomorphism of algebras

EndQ(M) −→ EndQ(M)/I '

r
∏

i=1

Matmi×mi
(k)

and, in turn, a split surjective homomorphism of algebraic groups

AutQ(M) −→

r
∏

i=1

GL(mi)

with kernel

idM +I := {idM +f, f ∈ I}

(indeed, idM +f is invertible for any f ∈ I, since f is nilpotent). Thus, idM +I is a closed

connected normal subgroup of AutQ(M).

It remains to show that the group idM +I is unipotent. For this, we consider the linear

action of that group on the subspace k idM ⊕I by left multiplication. Since the orbit of

idM is isomorphic to the affine space idM +I, this action yields a closed embedding

idM +I ↪→ GL(k idM ⊕I).

Moreover, the powers In form a decreasing filtration of the vector space k idM ⊕I, and

In = 0 for n � 0; any In is stable under the group idM +I, and the latter group fixes

pointwise the quotients In/In+1 and (k idM ⊕I)/I. This realizes idM +I as a unipotent

subgroup of GL(k idM ⊕I), by choosing a basis of k idM ⊕I compatible with the filtration

(In)n≥1.

The decomposition (2.2.1) yields a criterion for the indecomposability of a represen-

tation, in terms of its automorphism group:

Corollary 2.2.2. Let x ∈ Rep(Q, n), then the representation Mx is indecomposable

if and only if the isotropy group GL(n)x is the semi-direct product of a unipotent subgroup

with the group k∗ idn; equivalently, PGL(n)x is unipotent.

Next, we obtain the promised geometric interpretation of the four-term exact sequence

(1.4.3):

Theorem 2.2.3. Let x = (xα)α:i→j ∈ Rep(Q, n) and denote by M the corresponding

representation of Q.

(i) We have an exact sequence

(2.2.2) 0 −→ EndQ(M) −→ End(n)
cx−→Rep(Q, n) −→ Ext1

Q(M, M) −→ 0,

where cx

(

(fi)i∈Q0

)

=
(

fjxα − xαfi

)

α:i→j
.
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(ii) cx may be identified with the differential at the identity of the orbit map

ϕx : GL(n) −→ Rep(Q, n), g 7−→ g · x.

(iii) The image of cx is the Zariski tangent space Tx

(

GL(n) · x
)

viewed as a subspace of

Tx

(

Rep(Q, n)
)

' Rep(Q, n).

Proof. (i) is a reformulation of (1.4.3).

(ii) Since the algebraic group GL(n) is open in the affine space End(n), the Zariski

tangent space to this group at idn may be identified with the vector space End(n). Like-

wise, by Proposition 2.2.1, the tangent space to AutQ(M) at idn may be identified with

EndQ(M). Now the assertion follows from the definition (2.1.2) of the action of GL(n).

Consider indeed an arrow α : i→ j and a matrix xα ∈ Matnj×ni
(k). Then the differential

at (idni
, idnj

) of the morphism

GL(ni)×GL(nj) −→ Matnj×ni
(k), (gi, gj) 7−→ gjxαg−1

i

is easily seen to be the map

Matni×ni
(k)×Matnj×nj

(k) −→ Matnj×ni
(k), (fi, fj) 7−→ fjxα − xαfi.

(iii) By Proposition 2.1.7, we have

dim Tx

(

GL(n) · x
)

= dim GL(n) · x = dim GL(n)− dim GL(n)x.

Together with Proposition 2.2.1, it follows that

dim Tx

(

GL(n) · x
)

= dim End(n)− dim EndQ(M).

On the other hand, the differential of the orbit map has kernel EndQ(M) by (2.2.2). Thus,

its image is the whole space Tx

(

GL(n) · x
)

.

Remarks 2.2.4. 1) By Theorem 2.2.3, the differential at the identity of the orbit map

GL(n) → GL(n) · x is surjective for any x ∈ Rep(Q, n). In other words, orbit maps for

quiver representations are separable (for this notion, see e.g. [18, 3.2]).

This holds in fact for any algebraic group action in characteristic zero by [loc. cit.],

but generally fails in characteristic p > 0. For example, the additive group of k acts

algebraically on the affine line via t · x = tp + x, and the differential of each orbit map

is 0.

2) The exact sequence (2.2.2) may also be interpreted in terms of Lie algebras. We briefly

review the relevant definitions and results from algebraic groups, referring to [18, 3.3] for

details.

29



Let G be an algebraic group with identity element e. Consider the commutator map

G×G −→ G, (x, y) 7−→ xyx−1y−1.

Its differential at (e, e) yields the Lie bracket

Te(G)× Te(G) −→ Te(G), (x, y) 7−→ [x, y]

which endows Te(G) with the structure of a Lie algebra, denoted by Lie G. The assigne-

ment G 7→ Lie(G) is clearly functorial. For example, if H is a closed subgroup of G,

then Lie(H) is a Lie subalgebra of Lie(G) via the identification of Te(H) to a subspace of

Te(G).

The Lie algebra of the general linear group GL(n) is the space Matn×n(k) endowed

with the standard Lie bracket (x, y) 7→ xy − yx. It follows that Lie GL(n) = End(n)

endowed with the same Lie bracket, where End(n) is viewed as a subalgebra of End(
∑

i ni).

Likewise, the Lie algebra of AutQ(M) is EndQ(M) viewed as a Lie subalgebra of End(M).

Moreover, the representation of GL(n) in Rep(Q, n) differentiates to a representation of

the Lie algebra End(n) given by f · x := cx(f).

We now obtain a representation-theoretic interpretation of the Zariski tangent spaces

to orbits, and also of their normal spaces; these are defined as follows. Let X be a variety,

Y a locally closed subvariety, and x a point of Y . Then the Zariski tangent space Tx(Y )

is identified to a subspace of Tx(X); the quotient

Nx(Y/X) := Tx(X)/Tx(Y )

is the normal space at x to Y in X.

Corollary 2.2.5. With the notation of Theorem 2.2.3, we have isomorphisms

(2.2.3) Tx(OM ) ' End(n)/ EndQ(M), Nx

(

OM/ Rep(Q, n)
)

' Ext1
Q(M, M).

Moreover, OM is open in Rep(Q, n) if and only if Ext1
Q(M, M) = 0; then the orbit OM is

uniquely determined by the dimension vector n.

Proof. The isomorphisms (2.2.3) follow readily from Theorem 2.2.3, and the second

assertion is a consequence of the lemma below. For the uniqueness assertion, just recall

that any two nonempty open subsets of Rep(Q, n) meet, whereas any two distinct orbits

are disjoint.

Lemma 2.2.6. Let X be a variety, and Y a non-singular locally closed subvariety.

Then Y is open in X if and only if Nx(Y/X) = 0 for some x ∈ Y .

Proof. Note that dim Tx(Y ) = dim(Y ) for all x ∈ Y , whereas dim Tx(X) ≥ dim(X).

Thus, if Nx(Y/X) = 0, then dim(X) = dim(Y ) and hence Y is open in X. The converse

is obvious.
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2.3 Orbit closures

The points in the closure of an orbit OM may be viewed as geometric degenerations

of the representation M . The following fundamental result constructs some of these

degenerations in algebraic terms.

Theorem 2.3.1. Let

(2.3.1) 0 −→M ′ −→M −→M ′′ −→ 0

be an exact sequence of finite-dimensional representations of Q. Then the closure of

OM contains OM ′⊕M ′′. Moreover, the exact sequence (2.3.1) splits if and only if OM =

OM ′⊕M ′′.

Proof. Let the representation M be given by the spaces Vi and the maps fα; then

the subrepresentation M ′ yields subspaces V ′
i ⊂ Vi, i ∈ Q0, such that fα(V ′

i ) ⊂ V ′
j for all

α : i→ j. Choosing bases for the V ′
i and completing them to bases of the Vi, we obtain a

point x = (xα) ∈ Rep(Q, n) such that Mx ' M and xα(kn′

i) ⊂ kn′

j for all α : i→ j. Here

n′ = (n′
i)i∈Q0 denotes the dimension vector of M ′, and

(2.3.2) kni = kn′

i ⊕ kn′′

i

is the obvious decomposition (of vector spaces), so that n′′ = (n′′
i )i∈Q0 is the dimension

vector of M ′′. Then the family of restrictions x′ := (x′
α : kn′

i → kn′

j ) satisfies Mx′ ' M ′.

Moreover, the family of quotient maps x′′ := (x′′
α : kn′

i → kn′

j ) satisfies Mx′′ 'M ′′.

Define a homomorphism of algebraic groups

λ : Gm −→ GL(n), t 7−→
(

λi(t)
)

i∈Q0
,

where

λi(t) :=

(

t idn′

i
0

0 idn′′

i

)

in the decomposition (2.3.2). We have

xα =

(

x′
α yα

0 x′′
α

)

for some yα, so that

λj(t) xα λi(t)
−1 =

(

x′
α tyα

0 x′′
α

)

.

As a consequence, the morphism

λx : Gm −→ GL(n) · x, t 7−→ λ(t) · x
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extends to a morphism

λx : A
1 −→ GL(n) · x, 0 7−→

(

x′
α 0

0 x′′
α

)

.

It follows that OM contains M ′ ⊕M ′′.

To complete the proof, it suffices to show that the exact sequence (2.3.1) splits if

M ' M ′ ⊕M ′′ as representations of Q. For this, consider the left exact sequence

(2.3.3) 0 −→ HomQ(M ′′, M ′) −→ HomQ(M ′′, M) −→ HomQ(M ′′, M ′′) −→ 0

induced by (2.3.1). Since M 'M ′ ⊕M ′′, we have

dim HomQ(M ′′, M) = dim HomQ(M ′′, M ′) + dim HomQ(M ′′, M ′′).

It follows that the sequence (2.3.3) is also right exact. Thus, the identity of M ′′ extends

to a morphism of representations M ′′ →M , which provides a splitting of (2.3.1).

An iterated application of Theorem 2.3.1 yields:

Corollary 2.3.2. Let M be a finite-dimensional representation of Q equipped with a

filtration

0 = F0M ⊂ F1M ⊂ · · · ⊂ FrM = M

by subrepresentations. Then the closure of OM contains Ogr M , where

grM :=

r
⊕

i=1

FiM/Fi−1M

denotes the associated graded representation.

Next, consider a composition series

0 = F0M ⊂ F1M ⊂ · · · ⊂ FrM = M,

that is, a filtration such that all subquotients FiM/Fi−1M are simple representations.

Then, by the Jordan-Hölder theorem (see [3, Thm. 1.1.4]), these subquotients are inde-

pendent of the series, up to reordering; in other words, the semi-simple representation

grM depends only on M . We put

M ss := gr M.

Then OM contains OMss by Corollary 2.3.2.

We shall show that OMss is the unique closed orbit in OM ; this will yield another proof

of the uniqueness of M ss. For this, we need the following auxiliary result.
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Lemma 2.3.3. Let N , N ′ be finite-dimensional semi-simple representations of Q. Then

N ' N ′ (as representations) if and only if det(aN) = det(aN ′) for all a ∈ kQ, where aN

denotes the map N → N , x 7→ ax.

Proof. The implication (⇒) is clear. For the converse, denote by A the image of kQ

in End(N ⊕ N ′). Then A is a finite-dimensional semi-simple algebra, since N ⊕ N ′ is a

finite-dimensional semi-simple A-module. Hence there exist positive integers m1, . . . , mr

such that

A '

r
∏

i=1

Matmi×mi
(k).

Moreover, N '
⊕r

i=1 ni k
mi and N ′ '

⊕r

i=1 n′
i k

mi where the multiplicities (n1, . . . , nr)

and (n′
1, . . . , n

′
r) are uniquely determined. By our assumption,

r
∏

i=1

det(xi)
ni =

r
∏

i=1

det(xi)
n′

i

for all xi ∈ Matmi×mi
(k). Taking xi = λi idmi

where λ1, . . . , λr are arbitrary scalars, it

follows that ni = n′
i for all i. Equivalently, N ' N ′.

Theorem 2.3.4. Let M be a finite-dimensional representation of Q. Then OMss is

the unique closed orbit in the closure of OM .

Proof. For any representation N such that ON ⊂ OM , we have

ONss ⊂ ON ⊂ OM .

Thus, it suffices to show that N ss = M ss. By Lemma 2.3.3, this is equivalent to checking

the equalities

(2.3.4) det(aNss) = det(aMss) for all a ∈ kQ.

Let x, y ∈ Rep(Q, n) such that M ' Mx and N ' My. Then y ∈ GL(n) · x. On the

other hand, any a ∈ kQ defines a map

az := aMz
∈ End(Mz)

for any z ∈ Rep(Q, n); the matrix coefficients of az depend polynomially on z. Moreover,

we have ag·z = gazg
−1 for all g ∈ GL(n) and z ∈ Rep(Q, n). Thus, the map

fa : Rep(Q, n) −→ k, z 7−→ det(az)

is polynomial and invariant under GL(n); hence fa is constant on orbit closures. It

follows that fa(x) = fa(y), that is, (2.3.4) holds with M ss, N ss being replaced with M ,

N . Applying this to OMss ⊂ OM and, likewise, for N completes the proof of (2.3.4).
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Corollary 2.3.5. The orbit OM is closed if and only if the representation M is

semi-simple.

Remark 2.3.6. If Q has no oriented cycle, then any semi-simple representation with

dimension vector n is isomorphic to
⊕

i∈Q0
ni S(i) by Proposition 1.3.1. Therefore, 0 is the

unique point x ∈ Rep(Q, n) such that Mx is semi-simple, and hence every orbit closure

contains the origin. This can be seen directly, as follows. We may choose a function

h : Q0 → N such that h(i) < h(j) whenever there exists an arrow α : i→ j. Now consider

the homomorphism

λ : Gm −→ GL(n), t 7−→ (th(i) idni
)i∈Q0.

Then λ acts on Rep(Q, n) via

λ(t) · xα := th(j)−h(i)xα

for any α : i→ j. Thus, for any x = (xα)α:i→j ∈ Rep(Q, n), the morphism

λx : Gm −→ GL(n) · x, t 7−→ λ(t) · x

extends to a morphism

λx : A
1 −→ Rep(Q, n), 0 7−→ 0.

So the closure of GL(n) · x contains 0.

Examples 2.3.7. 1) Applying Theorem 2.3.4 to the loop, we see that the closure of

the conjugacy class of an n×n matrix with eigenvalues λ1, . . . , λn contains a unique closed

conjugacy class, that of diag(λ1, . . . , λn). In particular, the closed conjugacy classes are

exactly those of diagonalizable matrices.

More generally, the simultaneous conjugacy class of an r-tuple of n × n matrices

(x1, . . . , xr) is closed if and only if the k〈X1, . . . , Xr〉-module kn is semi-simple, where

each Xi acts on kn via xi.

2) Consider the quiver Hr and the dimension vector n = (1, n) as in Example 2.1.3. Then

the closure of the orbit of a tuple (v, x1, . . . , xr) contains (0, x1, . . . , xr). Thus, the closed

orbits are exactly those of the tuples (0, x1, . . . , xr) such that the k〈X1, . . . , Xr〉-module

kn is semi-simple.

On the other hand, one may show that the subset Repcyc(Hr, n) of cyclic tuples is

open in Rep(Hr, n); clearly, each GL(n)-orbit in that subset is closed there. Moreover,

the quotient

Repcyc(Hr, n) −→ Repcyc(Hr, n)/ GL(n)

is a principal GL(n)-bundle, and Repcyc(Hr, n)/ GL(n) is a non-singular quasi-projective

variety of dimension (r − 1)n2 + n. By Example 2.1.3, this variety parametrizes the

(left) ideals of codimension n in the free algebra k〈X1, . . . , Xr〉; it is the non-commutative

Hilbert scheme introduced in [14] and studied further in [15].
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2.4 Schur representations and Gabriel’s theorem

Definition 2.4.1. A representation M of the quiver Q is called a Schur representation

(also known as a brick), if EndQ(M) = k idM .

Clearly, any Schur representation is indecomposable. The converse does not hold for

an arbitrary quiver Q, e.g., for the loop, in view of (1.3.9). However, the converse does

hold if the Tits form of Q is positive definite. This is in fact the main step for proving

the “if” part of Gabriel’s theorem, and is a direct consequence of the following result of

Ringel (see [17, pp. 148–149]):

Lemma 2.4.2. Let M be an indecomposable representation of Q. If M is not Schur,

then it has a Schur subrepresentation N such that Ext1
Q(N, N) 6= 0.

Proof. We begin with a construction of non-trivial extensions between quotients and

submodules of M . Consider an exact sequence of representations

0 −→M ′ −→M −→M ′′ −→ 0

and write M ′ =
⊕r

i=1 M ′
i , where M ′

1, . . . , M
′
r are indecomposable. Then we claim that

Ext1
Q(M ′′, M ′

i) 6= 0 (i = 1, . . . , r).

Indeed, we have an exact sequence

0 −→M ′
i −→M

/

⊕

j 6=i

M ′
j −→M ′′ −→ 0

which splits if Ext1
Q(M ′′, M ′

i) = 0. This yields a complement to M ′
i in M/

⊕

j 6=i M
′
j, and

hence a complement to M ′
i in M , contradicting the indecomposability of M .

Next, we construct an indecomposable submodule N of M having non-zero self-

extensions. Let f ∈ EndQ(M) and consider the associated exact sequence

0 −→ Ker(f) −→M
f
−→ Im(f) −→ 0.

By our assumption and Lemma 1.3.3, we may choose f to be nilpotent and non-zero; we

may further assume that Im(f) has minimal dimension among all such f . Then f 2 = 0,

i.e., Im(f) ⊂ Ker(f). Thus, we may choose an indecomposable summand N of Ker(f)

such that the projection

p : Im(f) −→ N

is non-zero. Then p is in fact injective, since the composition

M
f
−→ Im(f)

p
−→N ↪→M
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is a non-zero endomorphism with image Im(p) of dimension ≤ dim Im(f). Moreover,

Ext1
Q

(

Im(f), N
)

6= 0

by the first step of the proof. Next, consider the exact sequence

0 −→ Im(f)
p
−→N −→ C := Coker(p) −→ 0.

By [3, Prop. 2.5.2], it yields a long exact sequence of Ext groups

· · · −→ Ext1
Q(N, N) −→ Ext1

Q

(

Im(f), N
)

−→ Ext2
Q(C, N) −→ · · ·

Since Ext2
Q(C, N) = 0 by Corollary 1.4.2, we see that Ext1

Q(N, N) 6= 0.

If N is Schur, then the proof is complete; otherwise, we replace M with N and conclude

by induction.

We may now complete the proof of Gabriel’s theorem, in a more precise form:

Theorem 2.4.3. Assume that the Tits form qQ is positive definite. Then:

(i) Every indecomposable representation is Schur and has no non-zero self-extensions.

(ii) The dimension vectors of the indecomposable representations are exactly those n ∈ NQ0

such that qQ(n) = 1.

(iii) Every indecomposable representation is uniquely determined by its dimension vector,

up to isomorphism.

(iv) There are only finitely many isomorphism classes of indecomposable representations

of Q. In particular, Q is of finite representation type.

Proof. Consider an indecomposable representation M . If M is not Schur, let N be

a subrepresentation satisfying the assertions of Lemma 2.4.2. Then we have by (1.4.7):

qQ(dim N) = 1− dim Ext1
Q(N, N) ≤ 0

which contradicts our assumption on qQ. Thus, M is a Schur representation; moreover,

Ext1
Q(M, M) = 0, so that qQ(dim M) = 1. This proves (i) and one half of (ii).

For the other half, consider n ∈ NQ0 such that qQ(n) = 1, and a representation M such

that dim (M) = n and the orbit OM has maximal dimension; in particular, OM is not

contained in the closure of another orbit. If M 'M ′⊕M ′′ is a non-trivial decomposition

of representations, then every extension of M ′′ by M ′ splits by Proposition 2.1.7 and

Theorem 2.3.1. Thus, Ext1
Q(M ′′, M ′) = 0 and likewise, Ext1

Q(M ′, M ′′) = 0. Hence,

setting n′ := dim M ′ and n′′ := dim M ′′, we obtain

qQ(n) = qQ(n′ + n′′) = qQ(n′) + 〈n′, n′′〉Q + 〈n′′, n′〉Q + qQ(n′′)
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where qQ(n′) ≥ 1, qQ(n′′) ≥ 1, 〈n′, n′′〉Q = dim HomQ(M ′, M ′′) ≥ 0 and likewise,

〈n′′, n′〉Q ≥ 0. So qQ(n) ≥ 2, a contradiction.

(iii) follows from (i) combined with Corollary 2.2.5.

Finally, (iv) is a consequence of (iii) together with the assumption that qQ is positive

definite, which implies that there are only finitely many n ∈ N
Q0 such that qQ(n) = 1.

The tuples n ∈ NQ0 such that qQ(n) = 1 are called the positive roots of Q. Thus,

Theorem 2.4.3 sets up a bijection between the isomorphism classes of indecomposable

representations and the positive roots.

Note that the set of positive roots only depends on the underlying undirected graph

of Q. For example, if Q is of type Ar, then the positive roots are exactly the partial

sums
∑j

`=i ε`, where 1 ≤ i ≤ j ≤ r. When r = 2, this gives back the classification of

indecomposable representations of S2 presented in Example 1.3.8.3.

3 Representations of finitely generated algebras

In this section, we generalizes some of the results of Section 2 to the setting of represen-

tations of finitely generated algebras. The latter include of course quiver algebras and

finite-dimensional algebras, but also group algebras k[G], where G is any finitely generated

group.

In this setting, it is natural to consider a more advanced object than the representation

space of quiver theory; namely, the representation scheme Rep(A, n) parametrizing the

homomorphisms from a finitely generated algebra A to the algebra of n × n matrices.

This is an affine scheme of finite type, that we discuss in Subsection 3.1.

The natural action of the general linear group on the representation scheme is consid-

ered in Subsection 3.2. In particular, the normal space to the orbit of a representation is

again identified with the space of self-extensions.

Subsection 3.3 is devoted to a variant of the representation scheme, in the setting

of algebras equipped with orthogonal idempotents. As an application, we describe the

representation scheme of any quiver algebra, in terms of the representation spaces of the

quiver for fixed dimension vectors.

As prerequisites, we shall assume some familiarity with affine schemes, refering to the

book [8] for an introduction to that topic.

3.1 Representation schemes

Let A be a finitely generated algebra. Choose a presentation

(3.1.1) A = k〈X1, . . . , Xr〉/I
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where k〈X1, . . . , Xr〉 denotes the free algebra on X1, . . . , Xr, and I is a two-sided ideal.

We denote by a1, . . . , ar the images of X1, . . . , Xr in A.

Definition 3.1.1. For any positive integer n, let Rep(A, n) be the set of all represen-

tations of A on the vector space kn.

In other words, Rep(A, n) is the set of all algebra homomorphisms

ϕ : A −→ Matn×n(k).

Such a homomorphism is given by the images

xi := ϕ(ai) ∈ Matn×n(k) (i = 1, . . . , r),

satisfying the relations

(3.1.2) P (x1, . . . , xr) = 0 for all P ∈ I.

Thus, Rep(A, n) is the closed algebraic subset of Matn×n(k)r (the space of r-tuples of ma-

trices of size n×n, an affine space of dimension rn2) defined by the polynomial equations

(3.1.2). We denote by R(A, n) the algebra of regular functions on Rep(A, n), that is, the

quotient of the polynomial ring in the coefficients of r matrices of size n× n, by the ideal

of polynomials vanishing at all points of Rep(A, n). For any x ∈ Rep(A, n), we denote by

Mx the corresponding A-module.

Next, we introduce a schematic version of Rep(A, n). Let R be any commutative

algebra. Consider the set of representations of A on the vector space Rn which are

compatible with the R-module structure, i.e., the set of algebra homomorphisms

ϕ : A −→ Matn×n(R).

Such a homomorphism is still given by the images xi := ϕ(ai) (1 ≤ i ≤ r) satisfying the

relations (3.1.2). In other words, we have an isomorphism

(3.1.3) Hom
(

A, Matn×n(R)
)

' Hom
(

R(A, n), R
)

,

where R(A, n) denotes the quotient of the polynomial algebra in the coefficients of r

matrices x1, . . . , xr of size n × n, by the two-sided ideal generated by the coefficients

of the matrices P (x1, . . . , xr) with P ∈ I. (The algebra R(A, n) may contain non-zero

nilpotent elements, see Example 3.1.3.2 below.)

Definition 3.1.2. The affine scheme

Rep(A, n) := SpecR(A, n)

is the scheme of representations of A on kn.
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The set of R-valued points of the scheme Rep(A, n) is Hom
(

R(A, n), R
)

(see [8,

Thm. I-40]). Together with (3.1.3), it follows that Rep(A, n) represents the covariant

functor R → Hom
(

A, Matn×n(R)
)

from commutative algebras to sets. Thus, Rep(A, n)

is independent of the presentation (3.1.1) of the algebra A.

In particular, the set of k-valued points of Rep(A, n) is

Rep(A, n)(k) = Hom
(

A, Matn×n(k)
)

= Rep(A, n).

In other words, Rep(A, n) is the reduced scheme Rep(A, n)red (as defined in [8, p. 25]).

Equivalently, R(A, n) is the quotient of R(A, n) by its ideal consisting of all nilpotent

elements. As a consequence, Rep(A, n) is also independent of the presentation of A; of

course, this may be seen directly.

Examples 3.1.3. 1) Let A be the free algebra on r generators X1, . . . , Xr. Then

Rep(A, n) is the affine space Matr
n×n of dimension rn2, and hence Rep(A, n) = Rep(A, n).

2) Let A = k[X]/Xm k[X], where m ≥ n ≥ 2. Then Rep(A, n) consists of n× n matrices

x such that xm = 0, i.e., of all nilpotent matrices since m ≥ n. As a consequence, the

trace map Matn×n(k) → k, x 7→ Tr(x) vanishes identically on Rep(A, n). (In fact, the

ideal of Rep(A, n) is generated by the coefficients of the characteristic polynomial of x.)

On the other hand, the algebra R(A, n) is the quotient of the polynomial algebra in

the coefficients of the n × n matrix x, by the ideal generated by the coefficients of the

matrix xm. Since the latter coefficients are homogeneous polynomials of degree m ≥ 2,

the image of the trace map in R(A, n) is a non-zero element t. Moreover, since the algebra

R(A, n) is the quotient of R(A, n) by its ideal of nilpotents, we see that t is nilpotent.

Thus, the scheme Rep(A, n) is not reduced.

3.2 The action of the general linear group

The group GL(n) acts on Rep(A, n) by conjugation:

(g · ϕ)(a) = (gϕg−1)(a)

for all g ∈ GL(n), ϕ ∈ Hom
(

A, Matn×n(k)
)

, and a ∈ A. Viewing Rep(A, n) as a closed

subset of Matn×n(k)r, this action is the restriction of the action by simultaneous conjuga-

tion. In particular, GL(n) acts algebraically via its quotient PGL(n). The orbits are the

isomorphism classes of n-dimensional A-modules; for such a module M , we denote the

corresponding orbit by OM . The description of the isotropy groups (Proposition 2.2.1)

extends without change to this setting, as well as all the results of Subsection 2.3.

Likewise, Rep(A, n) is a closed subscheme of the affine space Matr
n×n, stable under the

action of GL(n) by simultaneous conjugation; the induced action of GL(n) on Rep(A, n)

is compatible with that on the reduced subscheme Rep(A, n).
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We now describe the tangent spaces to Rep(A, n) and to its orbits in terms of deriva-

tions.

We say that a map D : A → End(M) is a k-derivation, if D is k-linear and satisfies

the Leibnitz rule

D(ab) = D(a)bM + aMD(b)

for all a, b ∈ A, where aM denotes the multiplication by a in M . The set of derivations is

a subspace of Hom
(

A, End(M)
)

, denoted by Der
(

A, End(M)
)

.

Any f ∈ End(M) defines a derivation

ad f : A −→ End(M), a 7−→ faM − aMf

called an inner derivation. The image of the resulting map

ad : End(M) −→ Der
(

A, End(M)
)

will be denoted by Inn
(

A, End(M)
)

. Clearly, the kernel of ad is EndA(M); in other

words, we have an exact sequence

(3.2.1) 0 −→ EndA(M) −→ End(M)
ad
−→ Inn

(

A, End(M)
)

−→ 0.

Theorem 3.2.1. Let x ∈ Rep(A, n) with corresponding A-module M = Mx. Then

there is a natural isomorphism

Tx

(

Rep(A, n)
)

' Der
(

A, End(M)
)

which restricts to an isomorphism

Tx

(

GL(n) · x
)

' Inn
(

A, End M)
)

.

Proof. Denote by

k[ε] = k[X]/X2 k[X]

the algebra of dual numbers. Then Tx

(

Rep(A, n)
)

is the set of those k[ε]-points of the

scheme Rep(A, n) that lift the k-point x, i.e., the set of those algebra homomorphisms

ϕ : R(A, n) −→ k[ε]

that lift the homomorphism

x : R(A, n) −→ k = k[ε]/kε

(see [8, VI.1.3]). By (3.1.3), this identifies Tx

(

R(A, n)
)

with the set of all linear maps

D : A→ Matn×n(k) such that x + εD : A→ Matn×n(k[ε]) is an algebra homomorphism;

equivalently, D is a k-derivation. This proves the first isomorphism; the second one

follows from the fact that the differential at idn of the orbit map g 7→ gϕg−1 is the map

f 7→ fϕ− ϕf .
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Next, using these descriptions, we generalize Theorem 2.2.3 and Corollary 2.2.5 to the

setting of representations of algebras.

Corollary 3.2.2. For any x ∈ Rep(A, n) with corresponding A-module M = Mx, we

have an exact sequence

0 −→ EndA(M) −→ End(M) −→ Tx

(

Rep(A, n)
)

−→ Ext1
A(M, M) −→ 0.

Proof. In view of the exact sequence (3.2.1) and of Theorem 3.2.1, it suffices to show

that the quotient Der(A, End(M))/ Inn(A, End(M)) is isomorphic to Ext1
A(M, M).

For this, recall that Ext1
A(M, M) parameterizes the self-extensions of the A-module

M . Given D ∈ Der(A, End(M)), we let A act on the vector space M ⊕M by setting

(3.2.2) a · (m1, m2) := (am1 + D(a)m2, am2).

For that action, M⊕M is an A-module that we denote ED. Further, M⊕0 is a submodule,

isomorphic to M , and the quotient module is also isomorphic to M . In other words, we

obtain a self-extension

0 −→M −→ ED −→M −→ 0.

Conversely, any self-extension 0 −→M −→ E −→M −→ 0 is isomorphic to some ED: to

see this, choose a splitting E 'M⊕M as vector spaces, then one checks that the resulting

action of A on M⊕M satisfies (3.2.2) for a unique derivation D. One also checks that the

induced map Der(A, End(M))→ Ext1
A(M, M) is linear with kernel Inn(A, End(M)).

Corollary 3.2.3. The normal space at x to the orbit GL(n) · x in Rep(A, n) is

isomorphic to Ext1
A(M, M).

As a consequence, the orbit GL(n)·x is open in Rep(A, n) if and only if Ext1
A(M, M) =

0. In that case, Rep(A, n) coincides with Rep(A, n) along that orbit.

As an application of these results, we describe the representation schemes of finite-

dimensional semi-simple algebras:

Proposition 3.2.4. Consider the algebra A :=
∏r

i=1 Matmi×mi
(k). Then each con-

nected component of the scheme Rep(A, n) is an orbit of GL(n); in particular, Rep(A, n)

is non-singular. Its components are indexed by the tuples n = (n1, . . . , nr) ∈ Nr such that

m1 n1 + · · ·+ mr nr = n. The isotropy group of the orbit associated with n is isomorphic

to GL(n) =
∏r

i=1 GL(ni) embedded into GL(n) via its natural representation in

(km1 ⊗ kn1)⊕ · · · ⊕ (kmr ⊗ knr) = kn.

41



Proof. Since A is semi-simple and finite-dimensional, all A-modules are projective.

Thus, Ext1
A(M, M) = 0 for any A-module M . By Corollary 3.2.3, each orbit of GL(n)

in Rep(A, n) is open. Since the complement of an orbit is a union of orbits, it follows

that each orbit is closed. And since orbits under GL(n) are connected (Proposition 2.1.7),

they form the connected components of Rep(A, n). As a consequence, Rep(A, n) is non-

singular; in particular, it coincides with Rep(A, n).

Next, recall that every A-module of dimension n is isomorphic to a direct sum n1 km1⊕

· · ·⊕nr kmr , where n1, . . . , nr are uniquely determined and satisfy m1 n1 + · · ·+mr nr = n.

Moreover, we have an isomorphism of algebras

EndA(n1 km1 ⊕ · · · ⊕ nr kmr) '

r
∏

i=1

Matni×ni
(k),

and hence an isomorphism of algebraic groups

AutA(n1 km1 ⊕ · · · ⊕ nr kmr) '
r
∏

i=1

GL(ni)

embedded in Matn×n(k) resp. GL(n) as claimed.

3.3 Representations with a prescribed dimension vector

Consider a finitely generated algebra A equipped with orthogonal idempotents e1, . . . , er

(i.e., e2
i = ei 6= 0, and eiej = 0 whenever i 6= j) such that e1 + · · · + er = 1. To any

finite-dimensional A-module M , we associate its dimension vector

dim M := (dim eiM)i=1,...,r = (n1, . . . , nr) =: n

and we set

|n| := n1 + · · ·+ nr.

Note that M '
⊕r

i=1 eiM , so that |n| = dim M .

Given n ∈ Nr, we define the set Rep(A, n) of those algebra homomorphisms ϕ : A →

Matn×n(k) such that n = |n| and each ϕ(ei) equals the projection pi : kn → kni to the ith

summand of the corresponding decomposition of vector spaces

kn = kn1 ⊕ · · · ⊕ knr .

Then Rep(A, n) is the representation space of A for the dimension vector n; this is a

closed subset of Rep(A, n).

Next, we introduce the representation scheme Rep(A, n). Choose again a presentation

(3.1.1) of A and choose also representatives Pi(X1, . . . , Xr) of the ei’s in k〈X1, . . . , Xr〉.
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Let R(A, n) be the quotient of the polynomial algebra in the coefficients of r matri-

ces x1, . . . , xr of size n × n, by the ideal generated by the coefficients of the matri-

ces P (x1, . . . , xr) for all P ∈ I, and by the images of the coefficients of the matrices

Pi(x1, . . . , xr)− pi for i = 1, . . . , r. Finally, put

Rep(A, n) := SpecR(A, n).

Then, like in Subsection 3.1, the affine scheme Rep(A, n) represents the functor assigning

to each commutative algebra R the set of those algebra homomorphisms

ϕ : A −→ Matn×n(R)

such that each ϕ(ei) is the matrix of the ith projection Rn → Rni. Moreover, Rep(A, n)

may be identified to the reduced scheme Rep(A, n)red, equivariantly for the natural action

of the closed subgroup GL(n) :=
∏r

i=1 GL(ni) of GL(n).

We now show how to build the representation scheme Rep(A, n) from the schemes

Rep(A, n), where n ∈ Nr satisfies |n| = n. To formulate the result, we introduce the

following:

Definition 3.3.1. The space of decompositions is the set Dec(n) of all vector space

decompositions

kn = E1 ⊕ · · · ⊕ Er .

The type of such a decomposition is the sequence

n = (dim E1, . . . , dim Er) ∈ N
r.

A decomposition E1⊕ · · ·⊕Er = kn is standard if each Ei is the span of the standard

basis vectors vji
, vji+1, . . . , vji+1−1 of kn, for some sequence of integers (j1, . . . , jr) such that

1 ≤ j1 < · · · < jr ≤ n.

The group GL(n) acts on Dec(n) via its linear action on kn. The orbits are the

subsets Dec(n) of decompositions of a fixed type, with representatives being the standard

decompositions; the isotropy group of such a decomposition kn = kn1⊕· · ·⊕knr is GL(n).

By Proposition 3.2.4 (and its proof), Dec(n) is the set of k-points of the represen-

tation scheme Rep(kr, n), where kr denotes the semi-simple algebra
∏r

i=1 k. Moreover,

Rep(kr, n) is non-singular, and its connected components are the orbits of GL(n).

The injective homomorphism of algebras

kr −→ A, (t1, . . . , tr) 7−→ t1 e1 + · · ·+ tr er

yields a GL(n)-equivariant morphism Φ : Rep(A, n) → Rep(kr, n), by composition. De-

noting (abusively) Rep(kr, n) by Dec(n), we thus obtain:
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Proposition 3.3.2. There is a natural GL(n)-equivariant morphism

Φ : Rep(A, n) −→ Dec(n).

The fiber of Φ at each standard decomposition is isomorphic to Rep(A, n), equivariantly

for the action of GL(n).

Next, consider the case where A = kQ for a quiver Q, and the idempotents ei are

those associated to the vertices. Then the representation scheme Rep(kQ, n) is easily

seen to be the affine space Rep(Q, n). Since the action of GL(n) on this space is linear,

the preimage in Rep(A, n) of the orbit Dec(n) ' GL(n)/ GL(n) has the structure of a

homogeneous vector bundle over that orbit. This shows the following:

Corollary 3.3.3. For any quiver Q and for any positive integer n, the representation

scheme Rep(kQ, n) is non-singular. Its components are the homogeneous vector bundles

over the homogeneous spaces GL(n)/ GL(n) associated with the representations Rep(Q, n)

of GL(n), where n ∈ NQ0 and |n| = n.
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Birkhäuser, Basel, 1998.

[19] G. Zwara, Degenerations of finite-dimensional modules are given by extensions,

Compositio Math. 121 (2000), 205–218.

Institut Fourier, B.P. 74

F-38402 Saint-Martin d’Hères Cedex

E-mail address: Michel.Brion@ujf-grenoble.fr

45


