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Introduction

These lectures are devoted to an introduction to singularities occurring in the
various flavors of Minimal Model Program. In these days an enormous interest
came back to the program thank to the amazing results of Birkar, Cascini, Hacon,
and Mc Kernan, [BCHM]. The Grenoble school is therefore a lucky coincidence
to attract even more interest on the subject.

The first chapter is a tribute to [YPG]. The wonderful paper of Miles Reid
that allowed various generation of mathematician to understand singularities and
how to work with them. It is not by chance that after more than twenty years this
is still a milestone of the theory. Here I revise the main constructions and results
of terminal and canonical 3-folds. My main aim is to give examples and geometric
intuition to this technical part of MMP theory. For this reason the first and the last
section are, hopefully, half way between examples and exercises one should work
out by himself on his desk.

The second chapter is dedicated to singularities of pairs. Here it is difficult to
put technicalities apart. I hope that the applications to birational and biregular
geometry given in the last two sections will help swallow all the definitions. For this
part there are various references, the ones that I mainly follow are, [U2], [KM2],
and [C+].

It is a pleasure to thank the organizers of this school for the great job they
did and for the warm hospitality they gave to my family and myself. I want to
thank all the participants for their interest and comments on both the oral and this
written presentation. A special thank to Laurent Bonavero, Stephane Druel and
Alex Kuronya for their comments and remarks.
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CHAPTER 1

Terminal and canonical singularities

1. Why bother with singular varieties ?

Doing algebraic geometry is quite hard. To simplify life usually one tries to
consider smooth varieties. Hironaka’s result [Hi] tells us that over a characteristic
zero field we always have a smooth model birational to the one we started with. This
suggests that in doing birational geometry it would be simpler to consider smooth
objects. This general belief was prevailing till the ’70’s. A further important
motivation was the successful classification of surfaces completed by the Italian
school of the beginning of the XXth century.

Let us briefly review the theory.

Definition 1.1.1. Let S be a smooth surface and C ⊂ S a smooth rational
curve. Then C is called a (−1)-curve if C2 = −1 and S is called minimal if it does
not contain (−1)-curves.

A central result is the following contraction theorem, you can find a modern
proof in [Ha].

Theorem 1.1.2 (Castelnuovo Contraction Theorem). Let C ⊂ S be a (−1)-
curve. Then there exists a smooth surface S′ and a birational map f : S → S′ such
that f(C) = p and f|S\C : S \ C → S′ \ p is an isomorphism.

Remark 1.1.3. Note that if you look at the morphism f : S → S′ from the
surface S′ this is just the blow up of the maximal ideal of the point p.

In other words if you have a (−1)-curve then you can contract it and the
resulting surface is still smooth. If you are interested in the birational geometry
of surfaces you can always assume that your surface is minimal. Starting from
this Castelnuovo and Enriques, with a lot of work, started the classification of
minimal surfaces and proved that any morphism between two smooth surfaces can
be factored by a series of these contractions.

For a long time an higher dimensional analog was looked for. The idea was to
find elementary contractions that kept smoothness and allowed to factor any map
between smooth objects. At the end of the ’70’s S. Mori and M. Reid explained to
the world that this was not the right approach. They realized that the main point
of Castelnuovo’s result was not the smoothness but the negativity of the canonical
class.

Definition 1.1.4. Let X be a normal variety and D a Cartier divisor. We say
that D is nef if D · C ≥ 0 for any curve C ⊂ X.

Remark 1.1.5. If you are worried to perform intersection on a singular variety
consider the pull-back of D, it is a Cartier divisor!, on a resolution and then use
the projection formula.
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6 1. TERMINAL AND CANONICAL SINGULARITIES

When you consider a smooth variety X there is a unique divisor class naturally
attached to X.

Definition 1.1.6. Let X be a smooth n-fold, ωX :=: Ωn
X is the invertible sheaf

generated by dx1 ∧ . . .∧ dxn, where (x1, . . . , xn) are local coordinates. We indicate
with KX the Cartier divisor associated to the sheaf ωX and we call it the canonical
divisor or canonical class.

There are many good reasons to consider this sheaf: it is intrinsic, makes Serre
duality work, vanishing theorems, adjunction formulas, the sections are a birational
invariant for smooth varieties, . . . see [YPG]

Let us consider a (−1)-curve C. Then due to adjunction formula

KS · C = deg ωC − C2 = −1

(−1)-curves have negative intersection with the canonical class of a surface. The
idea is to modify Definition 1.1.1 in the following way

Definition 1.1.7. Let X be a variety we say that X is a minimal model if KX

is nef.

Going in deeper 1.1.8. The two definitions are not equivalent. Think of a
minimal surface S, in the old definition, that is not a minimal model.

To get a minimal model it is therefore enough to get rid of all curves that
are negative with respect to the canonical class. To do this we are forced to leave
smooth objects and much more.

Example 1.1.9 (Cone over the Veronese). Consider a Veronese surface V ⊂ P5

and let X ⊂ P6 be the cone over it, with vertex v ∈ X. It is standard to realize X
by a morphism

ε : Y := PP2(O ⊕O(−2))→ X ⊂ P6

that contracts the section associated to O. The effective curves on Y are all linear
combinations of f , a line in the projective bundle structure over P2, and l, a line
in the ε-exceptional divisor E ∼= P2. It is easy to check that −KX · f = −2 and
−KX ·l = −1. Moreover the normal bundle of E reads E|E ∼ O(−2). Note that due
to Definition 1.1.6 KY \E

∼= KX\{v}. It is not difficult to see that 2KX ∼ OX(3)
and is therefore a Cartier divisor. We can therefore express the discrepancy between
KX and KY in the following form

KY = ε∗(KX) + 1/2E

To get rid of negative curves on Y we are forced, either to consider the bundle
structure or to contract the divisor E, introducing a singularity. In the latter case
we then obtain a 3-fold X where the canonical divisor is not Cartier. In this way
we produce a non Gorenstein 3-fold from a smooth one. It is hard to believe the
amazing world we enter from here.

Note that to resolve the singularity of X it is enough to blow up the maximal
ideal, one can do it directly in the embedding in P6. Further note that in the
language of weighted projective spaces (wps) X = P(1, 1, 1, 2).

This is bad but not too bad. The canonical class is no longer a Cartier divisor
but 2KX is Cartier therefore if we allow rational intersection numbers nothing really
changes.
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Definition 1.1.10. Let X be a normal variety and D a Weil divisor, i.e. a
combination of codimension 1 subvarieties. We say that D is Q-Cartier if there
exists an integer m such that mD is Cartier.

Remark 1.1.11. The intersection theory works perfectly well for Q-divisors.
We can still talk of nef Q-divisors. In particular if KX is Q-Cartier it is meaningful
to ask whether it is nef.

These kinds of singularities are not the worst thing can happen. The main
problem comes from “small” contractions when dim X ≥ 3. Assume that it is
possible to contract a finite number of curves, say Z such that KX · Z < 0. Let
f : X → W the contraction. I claim that KW cannot be Q-Cartier. If this
was the case then mKX and f∗mKW would agree outside a codimension 2 set and
therefore they would define the same Cartier divisor. On the other hand KX ·Z < 0
while f∗KW · Z = 0. This means that on W the notion of nef canonical class is
meaningless. To get rid of the curve Z we therefore cannot contract it to the variety
W .

One of the main point of MMP is to control the birational modifications orig-
inated by this “small” contractions. We realized that it is not allowed to contract
them. Something different has to be done.

Definition 1.1.12 (heuristic definition of 3-fold flip). Let f : X− → W be a
contraction of a curve Z = ∪Ci on the 3-fold X, with −KX relatively ample. The
flip of f is a modification χ

X
χ //_______

f   A
AA

AA
AA

A X+

f+
}}{{

{{
{{

{{

W

that makes KX+ f+-ample, in particular χ is an isomorphism outside of Z .

It is good to have at least a simple example of this both locally and in a
projective setting.

Example 1.1.13 (local Francia’s flip). Let C ⊂ X+ be an analytic neighborhood
of a smooth rational curve with NC/X+ ∼= O(−1) ⊕ O(−2). Then we can assume
that C = S ∩ T is a complete intersection of two smooth surfaces

You can convince yourself that there are no other effective curves numerically
proportional to l on X. The splitting of the normal bundle says that all these curves
stays in the intersection of the surfaces S and T .

Following figure 1 we blow up first C, to get F1
∼= F1 and then C ′ := S ∩ F1 to

get F0
∼= F0. Then we can contract with the morphism g, in the projective category!,

the other ruling of F0 and finally the g∗(F1) ∼= P2. Note that the latter has normal
bundle O(−2), this is easily read from the picture since a line of the P2 has self
intersection −2 inside T . This produces a curve C− with KX− · C− = −1/2 and
a singular point, v locally isomorphic to the one described in Example 1.1.9. We
just followed the inverse modification of the Francia flip, i.e. the birational map
χ : X− 99K X+. The modification on C ′ is called a flop.

The above analytic situation can be realized on projective 3-folds.
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Figure 1. Local Francia’s flip

Example 1.1.14 (Projective Francia’s flip). Let x ≡ (1, 0, 0, 0) ∈ P3 and con-
sider a weighted blow up (wbu) with weights (1, 2, 3), say ε : Y → P3, with excep-
tional divisor E ∼= P(1, 2, 3). You can think of it as follows.

Following figure 2, we blow up a point, to get an exceptional divisor F1
∼= P2.

Then blow up a point x1 ∈ F1, to get another exceptional divisor F2
∼= P2, note that

the coordinates with weight ≥ 2 are those passing through this point. Finally blow
up a line r ⊂ F2, to get the valuation E, this line gives you the weight 3 coordinate.

To go back onto Y one has to do an inverse Francia flip, and contract the
(strict transform of) divisors Fi.

Choose the coordinate in such a way that the local coordinates of the blow up
are (x1, x2, x3). Then consider the line l = (x2 = x3 = 0). It is easy to check
that lY = ε−1

∗ (l) is on the smooth locus and lY · E = 1. By standard formulas
we have KY = ε∗KP3 + 5E. Then KY · l = 1. Let S = ε−1

∗ (x2 = 0) and T =
ε−1
∗ (x3 = 0). To compute the normal bundle of lY it is enough to observe that

lY = S ∩ T . Moreover ε|S is just the wbu with weights (1, 3), while ε|T is the wbu
(1, 2). Therefore (lY · lY )S = 1− 3 = −2 while (lY · lY )T = 1− 2 = −1. This gives
NlY /Y

∼= O(−1)⊕O(−2).

Going in deeper 1.1.15. Do by yourself, in details:

. the flop of the curve with normal bundle O(−1)⊕O(−1), first locally and
then find a projective realization

. the flip and the contractions in the geometric description of the weighted
blow up.
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Figure 2. The wbu (1, 2, 3)

2. Terminal and Canonical singularities

It is time to define the singularities we are going to study.

Definition 1.2.1. A variety X is terminal (canonical) if the following condi-
tions are fulfilled:

. X is normal

. KX is Q-Cartier

. there exists a resolution f : Y → X such that

KY = f∗KX +
∑

aiEi

with ai > 0 (ai ≥ 0)
The rational numbers ai are called discrepancies and are associated to the valuation
Ei. To stress this dependence we write a(Ei, X) := ai. Note that the existence of
a resolution with this property forces all resolutions to enjoy the same bounds.

This definition needs some explanations, [Re1]. On a normal variety X there
is a one to one correspondence between

{rk1 reflexive sheaves} ←→ {Weil divisors D ⊂ X}/rational equivalence

Note that these are codimension 1 objects. That is they are defined outside a
codimension 2 set. On a normal projective variety the dualizing sheaf ωX (i.e.
the sheaf that gives the pairing Hom(F , ωX) × Hn(X,F) → Hn(X, ωX) ∼= C) is
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reflexive of rank 1. In particular to such a sheaf we can associate a Weil divisor,
KX . It is therefore meaningful to say it is Q-Cartier. A different viewpoint is to
consider the smooth locus X0 ⊂ X. The variety X is normal therefore (X \ X0)
is of codimension at least 2. Let j : X0 ↪→ X the natural inclusion then we can,
equivalently, define ωX := j∗(Ωn

X0)∗∗.

Example 1.2.2 (The surface case). It is interesting and a good training to
study the surface case. Consider a terminal surface S and a resolution f : Z → S,
then

KZ = f∗KS +
∑

aiEi with ai > 0

The normality of S ensures that the fibers are connected. A result of Mumford,
Grauert, see [BPvV], says that that the intersection matrix is negative definite. In
particular there is a j such that

Ej · (
∑

aiEi) < 0

This gives KZ · Ej < 0 and E2
j < 0. Then Ej is a (−1)-curve. By Castelnuovo

we can contract Ej and recursively prove that S is smooth. Terminal surfaces are
smooth!

Let us now consider canonical surfaces. Let S be a canonical surface and f :
Z → S a relatively minimal resolution, i.e. there are no (−1)-curves contracted by
f . The definition and the above calculation show that

KZ = f∗KS

Let E be a curve contracted by f . Then KZ ·E = 0 and E2 < 0. Then (KZ + E)|E
is not effective and E is a smooth rational curve with E2 = −2. Moreover the
negativity of the intersection matrix shows (Ei + Ej)2 < 0 for any pair of curves
therefore Ei · Ej ≤ 1 and any connected fiber of f is a tree of rational curves. The
negativity of the intersection matrix also forces the tree to be one of the Dynkin
diagrams An, Dn, E6, E7, and E8. This class of singularities are well known.
They are called Rational Double Points, Du Val singularities, ADE singularities,
in particular they are the singularities of canonical models of surfaces of general
type, see definition 1.3.1 for the equations

Note that slicing with a surface section you get that for a resolution f : Y → X
of a terminal variety −KY is not f -nef. One can even get a refined version of it via
Negativity Lemma [U2, Lemma 2.19].

The singularities we are interested in have a nice behavior when we pass from
X to a general hyperplane section. Fix a resolution f : Z → X. Let D be a general
Cartier divisor on X and DZ = f−1

∗ D. Then the adjunction formulas read

(KX + D)|D = KD

and
KZ + DZ = f∗(KX + D) +

∑
aiEi

Then the singularities of D are not worse than those of X, see Proposition 2.2.2 for
a more detailed account. The other direction, that is determine the discrepancies of
X from that of a section is called inversion of adjunction and is a central problem
in MMP theory, we will discuss some of its instances in Chapter 2. We have thus
proved that terminal singularities are smooth in codimension 2, while canonical
singularities are Du Val in codimension 2.
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Before exploiting other interesting features of the definition let us observe the
following.

Lemma 1.2.3. Let f : Y → X be a birational map between normal varieties
and Ei exceptional divisors. Then f∗(

∑
aiEi) = OX if and only if ai ≥ 0 for all i.

Proof. Consider the sheaf OY (D) as rational functions in K(Y ) with at worst
poles along D. Any divisor Ei correspond to some valuation with a center on X
of codimension at least two. Therefore to get OX we cannot have zero’s along any
Ei. �

It is also interesting to observe that canonical singularities are preserved by étale
morphism in codimension 1, [Re1] (square a resolution with the etale morphism
and consider the equivalent definition of canonical with f∗ωY = ωX that is the pull
back of a generator is a generator).

Definition-Theorem 1.2.4 (Reid). Let f : Y 99K X be a birational map
between canonical varieties, then

pn(X) := h0(X, nKX) = h0(Y, nKY ) =: pn(Y )

for all n. In other words the canonical rings R(X, KX) :=
⊕

H0(X, nKX) and
R(Y, KY ) are the same.

Proof. By considering a resolution of the map f we can assume that f is a
morphism. Then by hypothesis

nKY = f∗nKX +
∑

naiEi

where the Ei are f -exceptional and ai ≥ 0. By Lemma 1.2.3 there is a bijection
between the sections of nKY and nKX . �

The following example shows, if you are not convinced yet, the need of singu-
larities in the MMP.

Example 1.2.5. Let X := X14 ⊂ P(1, 1, 2, 2, 7) be an hypersurface in the
weighted projective space. The general such has terminal singularities and KX ∼
O(1). In particular K3

X = 1/2 and therefore

pn(X) ∼ 1
3!

1
2
n3

as n → ∞. No smooth minimal model can have this behavior in plurigenus. By
Kawamata–Viehweg vanishing theorem and Riemann–Roch theorem a minimal 3-
fold of general type has h0(X, mKX) = χ(X, mKX) ∼ 1/3!K3

Xm3.This shows that
X is not birational to any smooth minimal model.

Whenever you have a graded ring consider its Proj.

Definition 1.2.6. Let X be a canonical n-fold of general type, that is κ(X) = n
or KX big. Assume that R(X, KX) is finitely generated, this is now a Theorem
[BCHM]. Then Proj(R(X, KX)) is the canonical model of X.

Remark 1.2.7. You can think of the canonical model as the image of X via
sections of a pluricanonical system. In case KX is ample it is an isomorphism and
X is itself a canonical model. When KX is free then you maybe contract some
classes of curves. In general mKX has base locus and the map is rational.
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An important feature of canonical singularities is the following higher dimen-
sional analog of what we observed for surfaces.

Theorem 1.2.8 ([YPG], [Re1]). The canonical model has canonical singular-
ities.

Proof. By the birational invariance we can assume that X is smooth and
|kKX | = F +M where F is a fixed part and M is a free linear system. Let
g : X → Y ⊂ PN be the map given by M. By finite generation I can, and will,
assume that Y is independent of k. In particular Y is normal, this is the geometric
Stein factorization, [YPG]. Let us prove that codim g(F ) ≥ 2. Assume that there
is a divisorial component G ⊂ F that is mapped to a divisor. This means that for
any divisor D on G

h0(G, mM + D) ∼ mn−1

for m� 0 and M ∈M.

Claim 1. G ⊂ Bs |mM + G| for all m� 0.

proof fo the claim. Assume that G 6⊂ |mM + G|. Then we have a section
A ∈ |mM + mF | with multG A < m. On the other hand by finite generation we
have the equality

H0(X, m(M + F )) = ⊗mH0(X, M + F )

The contradiction proves the claim. �

By the claim we have that

H0(X, mM + G)→ H0(G, (mM + G)|G)

is the zero map. Then, from the structure sequence, we have

h1(X, mM) ∼ mn−1

On the other hand by Serre’s vanishing hi(OY (m)) = 0 for i = 1, 2 and m� 0.
Playing a bit with Leray’s spectral sequence gives

H1(X, mM) ∼= H0(Y, R1g∗mM)

The latter is supported on the image of the g-exceptional locus, then

h1(X, mM) ∼ mn−2

This contradiction proves that codim g(F ) ≥ 2.
It is now enough to consider the codimension 2 open set Y 0 ⊂ Y where g is an

isomorphism. Keep in mind that g−1(Y 0) 6⊃ F

OY 0(1) ∼= Og−1(Y 0)(mM) ∼= Og−1(Y 0)(mKX) ∼= OY 0(mKY )

Therefore KY is ample and

KX = g∗KY + effective

�

Remark 1.2.9. A crucial step in the finite generation proof of [BCHM] is to
prove that the map given by |m(KX + ∆)| contracts all the stable base locus.
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3. Three dimensional terminal singularities

We already proved that 3-fold terminal singularities are isolated. These singu-
larities have many interesting properties that allow a complete classification and
gave rise to the first proof of MMP for 3-fold, [Mo3]. The best reference is again,
[YPG]. In this section we draw the main lines of this classification keeping [YPG]
as a constant reference.

Definition 1.3.1. A cDV singularity is a 3-fold hypersurface singularity

(P ∈ X) ∼= (0 ∈ (F = 0) ⊂ C4)

given by an equation of the form

F (x, y, z, t) = f(x, y, z) + tg(x, y, z, t)

where f is the equation of a Du Val singularity, and g is arbitrary.

An : x2 + y2 + zn+1 for n ≥ 1
Dn : x2 + y2z + zn+1 for n ≥ 4
E6 : x2 + y3 + z4

E7 : x2 + y3 + yz3

E8 : x2 + y3 + z5

Note that cDV singularities can be interpreted as deformations of Du Val points
and have hyperplane sections with Du Val singularities, see also Corollary 2.2.7.

An important tool to study terminal and canonical singularities is the cyclic
covering trick. Let P ∈ X be a point in a normal variety and D ⊂ X a Weil Q-
Cartier divisor. Assume that rD is Cartier and r′D is not Cartier for any 0 < r′ < r.
This r is called the index of D. Fix a local basis s ∈ OX(−rD), maybe shrinking
X if necessary. We can then view s as an isomorphism

s : OX(rD) ∼→ OX

Let X0 be the open where D is Cartier. Then over X0 we have an invertible sheaf
OX0(−D) that correspond to a line bundle L0 → X0. Let z ∈ OX0(−D) be a local
generator. Next we consider Y 0 := (zr = s) ⊂ L0. Since s is nowhere vanishing
then the projection π0 : Y 0 → X0 is étale and with a bit of work one can extend this
to the whole of X. With the isomorphism s one can build up a sheaf of OX -algebras

OX ⊕OX(D)⊕ . . .⊕OX((r − 1)D)

to get the required extension.

Proposition 1.3.2 ([YPG]). There exists a cover π : Y → X which is Galois
with group µr, and such that the sheaves OX(iD) are the eigensheaves of the group
action on π∗OY , that is,

OX(iD) = {f ∈ π∗OY |ε(f) = εi · f for all ε ∈ µr}

Also, Y is normal, π is étale over X0 and π−1P = Q is a single point outside of
X0. The Q-divisor π∗D = E is Cartier on Y .

Apply Proposition 1.3.2 to the canonical class to get.

Proposition 1.3.3. Let P ∈ X be a canonical singularity then there is a local
µr-cover π : X ′ → X with KX′ Cartier and KX′ = π∗KX .
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This reduces the study of canonical, and terminal singularities, to that of canon-
ical (terminal) singularities with invertible canonical class.

A further crucial step in the classification is the following

Theorem 1.3.4 ([El][Fl]). Canonical singularities are rational. That is there
exists a resolution f : Y → X such that Rif∗OY = 0 for all i > 0.

There is a very nice and geometric proof of the above statement for 3-folds in
[YPG].

Next one studies the general hyperplane section of a rational Gorenstein singu-
larity and realizes that the section is either rational or elliptic, [YPG]. With this
and a subtle analysis of surface elliptic singularities (i.e. for a resolution f : T → S
we have f∗ωt = mx · ωS) Reid proved the following

Theorem 1.3.5 ([YPG],[Re2]). For a 3-fold X terminal Gorenstein is equiv-
alent to isolated cDV.

Remark 1.3.6. It is important to note that this analysis, crucial for the classi-
fication of terminal singularities, works only in the 3-fold case. No analog is possible
in higher dimensions.

Putting all together we have

Theorem 1.3.7 ([Re2]). Let p ∈ X be a terminal 3-fold point. Then

P ∈ X ∼= Y/µr

where Q ∈ Y is either a cDV singularity or smooth, and µr acts on Y freely outside
Q and such that on a generator s ∈ ωY ,

µr 3 ε : s 7→ εs

To conclude the classification it is therefore enough to understand which actions
give rise to terminal quotients. Assume Y is smooth then Y ∼= C3 and the action
can be diagonalized as

µr 3 ε : (x1, x2, x3) 7→ (εa1x1, ε
a2x2, ε

a3x3)

for a triple a1, a2, a3 ∈ Zr := Z/rZ. It is therefore quite natural to indicate the
type of the singularity as

1
r
(a1, a2, a3)

cDV are hypersurface singularities, therefore we can slightly modify the above to
consider an action on C4 and indicate the type as

1
r
(a1, a2, a3, a4), together with an invariant hypersurface Y = (f = 0) ⊂ C4

Understand the terminality is now a “game” to relate the ai’s and f to the discrep-
ancies of X, [YPG]. The output is

Theorem 1.3.8. A 3-fold cyclic singularity is terminal if and only if it is of
type

1
r
(a,−a, 1), with a coprime to r

Remark 1.3.9. Note that the first example we met, the singularity of the cone
over the Veronese surface is just 1/2(1,−1, 1). Note further that for canonical
singularities we have the following characterization, assuming the ai are minimal,
[YPG]. A cyclic quotient is canonical if and only if

∑
ai ≥ r, [Re1] and [YPG].
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The end of this story is the complete classification of 3-fold hypersurface quo-
tients given by Mori, [Mo2]. The result is a small list made up of infinite cases
that lie in a main series, namely

1
r
(a,−a, 1, 0) (xy + g(zr, t) = 0), with a coprime to r

and 5 special families with fixed r ≤ 4. For all these families it is possible to
explicitly describe a section of |−KX | with only Du Val singularities. This together
with inversion of adjunction says that the singularity is terminal, see Remark 2.2.8.
For instance in the smooth case

1
r
(a,−a, 1) C3, with a coprime to r

consider (z = 0), keep in mind that the (anti)canonical class correspond to the
eigenvalue 1. Then we come out with

1
r
(a,−a) C2, with a coprime to r

and since (a, r) = 1 this is the same as

1
r
(1,−1) C2

then the singularity is canonical by Remark 1.3.9, simply because 1 + (r − 1) ≥ r.
In this case it is nothing else than Ar−1.

Similarly one can compute

1
r
(a,−a, 1, 0) (xy + g(zr, t) = 0), with a coprime to r

consider (z = 0). Then we come out with

1
r
(a,−a, 0) (xy + tk = 0), with a coprime to r

for some k and since (a, r) = 1 this is the same as

1
r
(1,−1, 0) (xy + tk = 0)

also in this case the singularity is canonical by a generalization of the above in-
equality, see [Re1] and [YPG], this can be worked out as a Ark−1 singularity.

In all cases one can define a Q-smoothing, that is a deformation Xλ of the
singularity X = X0 such that Xλ has only terminal quotients, this is the reason for
the Q in front of smoothing. The latter allows to compute Riemann–Roch formula
for terminal 3-folds, [YPG].

With this framework it is also possible to study canonical singularities. Canon-
ical singularities could be singular in codimension 2 but of a very special type.
Slicing with a general hyperplane one sees immediately that on a general point of
a codimension 2 singular locus the singularity is analytically of type

(Du Val)× Cn−2

Definition-Theorem 1.3.10 ([Re2]). If S is a 3-fold with canonical singu-
larities then there exists a partial resolution f : Y → X where Y has only terminal
singularities and KY = f∗KX . Such a resolution is called crepant.
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We conclude with different applications of the covering trick to terminal Q-
factorial singularities. For 3-dimensional terminal singularities the canonical class
locally generates all divisors. This is a topological fact related to Reid’s theorem.

Lemma 1.3.11. Let P ∈ X be a terminal point in a Gorenstein 3-fold, and D
a Q-Cartier divisor. Then D is Cartier.

Proof. Let r be the index of D and π : Y → X the cyclic cover associated
to s ∈ OX(−rD). Then π : Y \ P → X \ P is étale. On the other hand X is an
isolated hypersurface singularity therefore π1(X \P ) = {1}, by the result of Milnor
[Mi]. This proves that π is trivial and r = 1. �

Remark 1.3.12. Let X be a terminal 3-fold of canonical index r, i.e. rKX is
Cartier and r1KX is not Cartier for any 0 < r1 < r. Then all the discrepancies are
in 1

r Z. It is possible to prove that actually the minimal discrepancy, namely 1/r is
always attained by some valuation, [Sh2, Appendix from Kawamata], [Ma].

We can use a similar argument to get the following

Lemma 1.3.13. Let X be a terminal Q-factorial 3-fold and E a smooth divisor
on X. Then E is out of the singularities of X.

Remark 1.3.14. Note that this is not the case even for canonical singularities
of surfaces. Take a line on the quadratic cone. The Q-factoriality assumption is
crucial, think of a quadratic cone in P4.

The notion of Q-factoriality is quite tricky. It is not difficult to give examples of
non Q-factorial analytic singularities that live in Q-factorial varieties. The ordinary
double point 0 ∈ (xy + zt = 0) ⊂ C4 is not analytically Q-factorial. Note that the
two planes (x = z = 0) and (y = t = 0) only intersect at the point 0 ∈ C4. On the
other hand a quartic hypersurface X4 ⊂ P4, with a unique ordinary double point is
always Q-factorial. This is just Lefschetz theorem.

Proof. Let x ∈ X be a point of canonical index i. Let p : Y → X be the
canonical cover. Then p is etale outside of x, and Y is C-M and Q-factorial. Let
p∗(E) = E1 ∪ . . . ∪ Er. The morphism p is etale in codimension 2 therefore r = 1.
Then

E1 \ p−1(x)→ E \ {x}
is etale and E \ {x} is simply connected. Therefore i = 1. The divisor E is Cartier
by Lemma 1.3.11 and x ∈ X is smooth. �

4. Explicit examples on 3-folds

Here we are concerned in giving explicit examples of contractions from and to
terminal 3-folds. If one starts from a smooth 3-fold the classification is due to Mori
and this has been the starting point of the whole MMP.

Theorem 1.4.1 ([Mo1]). Let f : Y → X be a birational morphism from a
smooth 3-fold Y to a terminal 3-fold X with an irreducible exceptional divisor E.
Then one of the following occurs:

- f is the blow up of a smooth point, E ∼= P2, a(E,X) = 2
- f is the blow up of a smooth curve, E = P(IC/I2

C), a(E,X) = 1
- f is the blow up of the maximal ideal of 0 ∈ (xy + z2 + tk) ⊂ C4, with

k ≤ 3, E is an irreducible quadric and a(E,X) = 1.
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- f is the blow up of the maximal ideal of 0 ∈ 1/2(1,−1, 1), E ∼= P2 and
a(E,X) = 1/2.

Remark 1.4.2. A similar statement has been proved by Cutkosky for Gorenstein
terminal 3-folds, [Cu]. The last case is the unique that lead to non Gorenstein
3-folds. It is almost unbelievable that from this an explosion of wild birational
modification enter in the scene.

Definition 1.4.3. A terminal extraction is a birational map f : Y → X
between terminal 3-folds with irreducible exceptional divisor E ⊂ Y and −KY

f -ample.

You may think of a terminal extraction as a way to realize a unique valuation
on X as a divisor, staying in the category of terminal models. The aim of this
section is to give some examples and working material of 3-fold geometry.

Here we collect some examples

Example 1.4.4. Let x ∈ X ∼= (0 ∈ (xy + z2 + tk = 0) ⊂ C4 and consider
f : Y → X the blow up of the maximal ideal, with exceptional divisor Ek. The
exceptional divisors are

E2
∼= (xy + z2 + t2 = 0) ⊂ P3 Ek

∼= (xy + z2 = 0) ⊂ P3 for k ≥ 3

Then E2
∼= Q2, while Ek

∼= P(1, 1, 2) for k ≥ 3 and Y is not smooth for k > 3,
a(E,X) = 1. Note that Y is always Gorenstein since X is Gorenstein and the
discrepancy is an integer.

One could expect that to extract a single valuation the discrepancy has to be
small. Here are a couple of examples in the opposite directions.

Example 1.4.5. Let x ∈ X be a smooth point, and f : Y → X be the weighted
blow up with weights (1, a, b), with (a, b) = 1. Then the exceptional divisor E ∼=
P(1, a, b), a(E,X) = a + b and Y is terminal.

Consider x ∈ X ∼= (0 ∈ (xy + zk + tkm = 0) ⊂ C4, and let f : Y → X be a
weighted blow up with weights (a, b, m, 1), where a + b = mk and (a, b) = 1. Then
one can compute that Y is terminal and a(E,X) = (a + b + m)− (a + b) = m. It
is therefore possible to extract a unique valuation with arbitrarily high discrepancy.

Example 1.4.6. Consider x ∈ X ∼= (0 ∈ (xy + z3 + t3 = 0) ⊂ C4 and blow up
the maximal ideal. Then we get f : Y → X, with exceptional divisor E = F1 + F2,
where: Fi

∼= P2, and, with a slight abuse of language, Y is singular at (x = 0)∩(y =
0) ∩ (z3 + t3 = 0) ⊂ E. In this case the exceptional divisor is not irreducible. This
means that we have extracted two valuations from the point x ∈ X. Note that E is
Cartier but Fi are not Q-Cartier, keep in mind Lemma 1.3.11. To extract a single
valuation consider a weighted blow up g : Z → X, with weights (2, 1, 1, 1). Then
the exceptional divisor F2

∼= (xy + z3 + t3 = 0) ⊂ P(2, 1, 1, 1) and a(F2, X) = 1.
Geometrically the weight on the first coordinate allow to contract the other P2 to
the singular point 1/2(1,−1, 1) by a small resolution of the 3 singular points on the
line of intersection.

We can follow this wbu in figure 3. The second blow up h is a Q-factorization
of (x = 0) = F2, in particular it extracts a P1 from each singular point. Then
we blow down with b the other exceptional divisor to the singularity 1/2(1,−1, 1).
Note that h is an isomorphism on F1 while b∗(F2) is the anticanonical model of P2
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Figure 3. The wbu (2, 1, 1, 1), (the dotted line is (z3 + t3 = 0) ∩ E).

blown up along three collinear points. One can show that this and the symmetric
wbu (1, 2, 1, 1) are the unique terminal extractions from this singular point, [CMu].

In few cases there is a complete classification of terminal extractions.

Theorem 1.4.7 ([Ka2]). The unique terminal extraction with a center that
contains a cyclic singularity of type 1/r(a,−a, 1) is the wbu with weights (a,−a, 1).

The idea of the proof is quite simple: the candidate is the valuation with mini-
mal discrepancy. When you try to extract something else this valuation introduces
non-terminal singularities. This is very special of this toric situation. We already
encountered extractions with arbitrarily high discrepancies.

Remark 1.4.8. Note that Kawamata’s results says that it is not possible to
blow up a curve, passing through a cyclic singularities and keep terminality.

Kawakita did an enormous work for extractions from points. Beside proving
the following theorem, classified many cases and gave structure theorems for almost
all possible situations, [Kw2], [Kw3], [Kw4].

Theorem 1.4.9 ([Kw1]). The unique terminal extractions from smooth points
are the wbu (1, a, b) with (a, b) = 1.

The case of curves is of a totally different nature. It is immediate that on the
general point one has to blow up the maximal ideal of the curve. It is enough to
consider the slice with a general surface section. It is not difficult to show that if
an extraction exists then it is unique. Assume that f : Y → X and g : Z → X
are terminal extractions with exceptional divisor EY and EZ . Then Y and Z are



4. EXPLICIT EXAMPLES ON 3-FOLDS 19

isomorphic in codimension 2 and as X-schemes the anticanonical class is ample.
This is enough to prove that Y ∼= Z. A completely different story is to understand
which sheaves one has to blow up and which curves admit a terminal extraction,
keep in mind Kawamata’s result. In this realm Tziolas has many results, [Tz1],
[Tz2], [Tz3].

Example 1.4.10. It is possible to “extract” a curve Γ ⊂ X with an ordinary
r-tuple point p on a smooth 3-fold if r ≤ 3. To see this consider the blow up of p,
with exceptional divisor E ∼= P2. Then blow up the (strict transform of the) curve
Γ , with exceptional divisor EΓ. Let f : Y → X the resulting map. By construction
rkPic(Y/X) = 2. It is easy to see that any line in E intersecting EΓ in two points
can be flopped. After the flop of these lines the (strict transform of the) divisor E
is either a smooth quadric, if r = 2, or a P2, if r = 3. Then we can blow it down
to get the required terminal extraction.

Note that for a 4-tuple point this is not possible. In this case the divisor E ⊂ Y
is covered by conics C such that KY · C = 0. It is therefore possible to contract E
from Y onto a not terminal singularity.

Flips in dimension three has been classified, in some sense. There are two
fundamental, very technical, papers [Mo3] [KM1] that describe almost everything
of a neighborhood of a flipping curve. On the other hand it is difficult to describe
the birational modification out of this local description. We try to give a simpler
description of special classes, inspired by M. Reid.

Consider the Segre embedding of P1×P1 as a quadric Q of equation (xy +zt =
0) ⊂ P3. Let X ⊂ P4 be the cone over Q. We already noticed that the blow up
of the vertex, X̃ has an exceptional divisor E ∼= Q. Then considering the strict
transform of the plane (x = z = 0) we realize that the curves in E are not numerical
proportional and we can blow down the two rulings of E independently, this is the
geometric reason for the non Q-factoriality of the quadric cone. This is equivalent
to consider the two ratios x/z = −t/y and x/t = −z/y.

X̃
f−

~~||
||

||
|| f+

  B
BB

BB
BB

B

X−

!!C
CC

CC
CC

C
χ // X+

}}{{
{{

{{
{{

X

The map χ is the famous Atiyah flop.
Miles Reid interpreted this construction in a different way. Consider the C∗

action on C4, with coordinates (x1, x2, y1, y2) given by

(x1, x2, y1, y2) 7→ (λx1, λx2, λ
−1y1, λ

−1y2)

It is clear that the ring of invariant polynomials is generated by the products xiyj

and with a bit more work one can prove that the the GIT quotient of C4 \ 0 is
exactly the cone X. The vertex comes from the non closed orbits originated by
points in either B− := {(x1, x2, 0, 0)} or B+ := (0, 0, y1, y2). Then I can produce
X± has GIT quotient of C4 \B±. One can extend this construction to different C∗

action and varieties and describe many classes of flips in terms of GIT. This has
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been done by G. Brown, [Br]. A very interesting interpretation and generalization
of Reid ideas has been given by Michael Thaddeus, [Th1], [Th2]

Example 1.4.11. Consider C4 and a C∗ action with weights (m, 1;−1 − 1).
We have bad locus B− = (x1 = x2 = 0) and B+ = (y1 = y2 = 0). The flipping
diagram is again as follows

X̃
f−

zzvvvvvvvvv
f+

$$H
HHHHHHHH

l− ⊂ X−

$$I
IIIIIIII

χ // X+ ⊃ l+

zzuuuuuuuuu

X

The invariants of the action are

(x1y
m
1 , x1y

m−1
1 y2, . . . , x2y1, x2y2) = (u0, u1, . . . , um, v0, v1)

Then computing the relation we get that X is the cone over the scroll S(m, 1), that
is the Hirzebruch surface Fm−1

rk
(

u0 . . . um−1 v0

u1 . . . um v1

)
= 1

To get X− := C4\B−/C∗ we introduce the ratio t = xm
2 /x1 this gives new invariants

uit− vm−i
0 vi

1

Let us consider the affine chart x2 6= 0, say X−
2 . There we can divide by x2 to get

ui = vm−i
0 vi

1t
−1 Therefore

X−
2 = SpecC[u0, . . . , um, v0, v1, t

−1]/(ui = vm−i
0 vi

1t
−1) = C3

For the chart X−
1 = (x1 6= 0), it is not difficult to convince yourself that the ring is

C[u0, . . . , um, v0, v1, t]/(rkM ≤ 1)

where

M =

 u0 u1 . . . um−1 v0

u1 u2 . . . um v1

vm−1
0 vm−2

0 v1 . . . vm−1
1 t


and with a bit of calculation one realizes it as the equation of the singularity
1/m(1,−1, 1). Note that for m = 2 this is just the cone over the Veronese sur-
face.

Similarly we can realize that X+ := C4 \ B+/C∗, obtained with s = y1/y0 is
smooth and Nl+ = O(−m)⊕O(−1). This is a generalization of Francia’s flip.

We have a geometric interpretation of this construction. The scroll structure
on S(m, 1) extend to a rational map ϕ : X 99K P 1, not defined on the vertex. To
resolve this indeterminacy we can consider the closure of the graph of ϕ in X ×P1.

We can do something more complicate by considering invariant hypersurfaces
in C5.
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Example 1.4.12. Consider A = (x1y1 + gm−1(x2, x3) = 0) ⊂ C5 and a C∗

action with weights (m, 1, 1;−1− 1). Then A is invariant and we can consider the
quotient A//C∗. We have bad locus B+ = (x1 = x2 = x3 = 0) and B− = (y1 =
y2 = 0). This time there are cDV singularities on X+ and the singularity on X−

are quotients of cDV.





CHAPTER 2

Log Pairs

Singularities of pairs are a technical subject. The number of different definitions
and bounds on the discrepancies tend to confine them to experts. On the other
hand the outstanding result that came out of this technicalities should convince
anyone to spend some time on them.

1. Definitions and flavors

Let us consider a Q-Weil divisor D =
∑

diDi on a normal variety X. We
always assume that the Di are distinct. Our aim is to give a reasonable sense to a
notion of singularities of the pair (X, D). The first requirement is that KX + D is
Q-Cartier. Then for a resolution f : Y → X we can write the discrepancy formula

KY = f∗(KX + D) +
∑

aiEi

where the Ei are either f -exceptional or strict transforms of Di. Thinking of a
smooth X with a badly singular D one realizes that a resolution of X is meaningless
for the pair (X, D). We have to ask for a “resolution” of D as well. To do this we
have first to decide what it means to resolve a divisor D =

∑
diDi ⊂ X.

Definition 2.1.1. A Weil divisor D =
∑

diDi ⊂ X on a smooth X is simple
normal crossing (snc) if for every point p ∈ X a local equation of

∑
Di is x1 · . . . ·xr

for independent local parameters xi in Op,X . A log resolution of the pair (X, D) is
a birational morphism f : Y → X such that Y is smooth and f−1D∪Exc(f) is snc

Remark 2.1.2. This is sometimes called normal crossing. Every irreducible
component of a snc divisor is smooth. This is the strictest possible notion. One
could relax the hypothesis allowing self intersections of the Di. Sometimes it is
better to have more room, on the other hand under this hypothesis everything works.
Note that thanks to Hironaka, [Hi], a log resolution always exists.

As usual our definitions will be related to bounds on the discrepancies ai.
Before stating the definitions of singularities for pairs (X, D) let us do this simple
calculation. Assume that X is smooth and consider (1+ ε)D with D smooth. Then
idX : X → X is a log resolution and

KX = id∗(KX + (1 + ε)D)− (1 + ε)D

In other terms we are assuming that there is a valuation with discrepancy −(1+ ε).
Let f1 : Y1 → X be the blow up of a codimension 2 smooth Z ⊂ D, with exceptional
divisor E1. Then we have

KY1 = f∗1 (KX + (1 + ε)D) + (1− (1 + ε))E1 − (1 + ε)D1

23
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where D1 is the strict transform of D on Y1. Let g : Y2 → Y1 be the blow up of
D1 ∩ E1 and f2 = (g ◦ f1) then

KY2 = f∗2 (KX + (1 + ε)D) + (1− (1 + ε)− ε)E2 − εE1 − (1 + ε)D2

Iterating this procedure we get arbitrarily negative discrepancies. That is a single
discrepancy less then −1 annihilates the notion of minimal discrepancy. With this
in mind we are ready to swallow the following definition.

Definition 2.1.3. Let X be a normal variety and D =
∑

diDi a Q-Weil
divisor. Assume that (KX + D) is Q-Cartier. Let f : Y → X be a log resolution of
the pair (X, D) with

KY = f∗(KX + D) +
∑

a(Ei, X,D)Ei

We call

discrep(X, D) := min
Ei

{a(Ei, X,D)|

Ei is an f -exceptional divisor for some log resolution}

totaldiscrep(X, D) := min
Ei

{a(Ei, X,D)|

Ei is a divisor in some log resolution}

Then we say that (X, D) is

terminal
canonical
klt
plt
lc

 if discrep(X, D)


> 0
≥ 0
> −1 and di < 1
> −1
≥ −1

Here klt (plt, lc) stands for Kawamata log terminal (purely log terminal, log
canonical).

Remark 2.1.4. In case D = 0 plt and klt are simply called lt (log terminal).
All these classes have a precise meaning. When D = 0 we already encountered
terminal and canonical as the singularities of minimal and canonical models.

Klt is the class of singularities where proofs work better. The result for canonical
singularities generalize “almost” completely to this wider setting. Klt singularities
are rational, and therefore CM. The main disadvantage is that one cannot use it
to study open varieties, and induction arguments do not work very well since the
coefficients of the boundary cannot be 1.

Plt are powerful in inductive arguments. lc is the widest class where all the
theory should in principle work, but no one knows how to do it.

lc singularities, even if harder then the other flavors, enjoy beautiful numerical
properties and have many natural applications outside the MMP. The presence of
more variants, we will introduce one more in a while and forget about few others,
for log terminal is probably due to the lack of the right definition.

It is common to define the log discrepancies as

al(E,X,D) := 1 + a(E,X,D)

This is sometimes useful in formulas.
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I advise to read Fujino’s beautiful paper, [C+, Chapter 3], to appreciate all the
colors of definitions of log pairs.

Remark 2.1.5. Instead of considering a fixed Weil divisor D one can consider
a movable linear system, H, and a general divisor in this linear system. This notion
of singularities measure the singularities of X and those of BsH. This turns out
to be very fruitful in birational geometry of 3-folds after Sarkisov.

A further important notion of log terminal useful in MMP is the following

Definition 2.1.6 ([KM2]). Let X be a normal variety and D =
∑

diDi a
Q-Weil divisor with 0 ≤ di ≤ 1. Assume that (KX + D) is Q-Cartier. We say that
(X, D) is dlt (divisorially log terminal) if there exists a closed subset Z ⊂ X such
that

- X \ Z is smooth and D|X\Z is a snc divisor
- If f : Y → X is birational and E ⊂ Y is an irreducible divisor such that

centerX E ⊂ Z then a(E,X,D) > −1

Remark 2.1.7. The snc assumption is crucial in the definition, see [C+, Chap-
ter 3]. The definition seems rather different from the previous but by Szabó’s work,
[Sz] we can reformulate it as follows. (X, D) is dlt if there exists a log resolu-
tion f : Y → X such that a(E,X,D) > −1 for every f-exceptional divisor E and
Exc(f) of pure codimension 1. This could be not true for other log resolutions. The
purity is crucial, see [C+, Example 3.8.4]. This clearly gives klt =⇒ plt =⇒ dlt.

It is time to work out a few examples.

Example 2.1.8. A nodal curve D ⊂ C2 is not dlt but is lc. The identity is not
a log resolution, it is not snc! The discrepancy of the node is -1. The divisor D is
not normal one should compare it with Corollary 2.2.10.

A cuspidal curve in C2 is not lc. To have a log resolution we have to blow up
three times and the final valuation has discrepancy -2. If we consider (x2 = y3) ⊂
C2 we can do a wbu with weights (3, 2) to have f : Y → C2 with exceptional divisor
E and a(E, C2, D) = 4− 6. It is easy to see that (Y, CY ) is lc.

It is clear that a snc divisor D =
∑

diDi, with 1 ≥ di ≥ 0 on a smooth X is
dlt (and is klt if di < 1) take Z = ∅.

A reducible connected snc integral divisor D is dlt but is not plt, think for
instance to (C2, (xy = 0)). Blowing up the intersection of two components gives
rise to LC singularities. This shows that to check plt you have really to go through
all possible log resolutions, this is not the case for klt and lc.

An effective klt pair is always dlt, consider Z = X. A dlt pair (X, D) is klt if
di < 1. This is immediate once you notice that there exists a log resolution that is
an isomorphism on the open set where X is smooth and D is snc, [C+, Chap. 3].
For surfaces there is a complete classification of all these singularities, see [U2].
The case of D = 0 is enlightening:
terminal is smooth
canonical is Du Val i.e. C2/(finite subgroup of SL(2, C))
lt is C2/(finite subgroup of GL(2, C))
lc is simple elliptic, cusp, smooth or a quotient of these

To better understand the differences between these notions it is interesting to
note the following
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Lemma 2.1.9. Let Y be a smooth variety, F =
∑

1 fiFi a snc divisor, and W
a smooth subvariety. Assume that codim W ≥ 2, W ⊆ F1 ∩ . . . ∩ Fk and W 6⊂ Fi

for i > k. Then we have

al(W,Y, F ) =
k∑
1

al(Fi, Y, F ) + codim W − k

In particular klt singularities have finitely many valuations with negative discrep-
ancy, and a dlt pair (X, D) with bDc =: S is an irreducible integer divisor is plt.

Proof. Let W ⊂ Y be as in the hypothesis and EW the valuation associated
to its maximal ideal. Note that by snc k ≤ codim W . Let µ : YW → Y be the blow
up of W , with exceptional divisor EW . Then

(1) al(EW , Y, F ) = codim W −
k∑
1

fi =
k∑
1

al(Fi, Y, F ) + codim W − k

Assume now that (X, D) is klt. Let f : Y → X be a log resolution of the pair
(X, D), with KY = f∗(KX +D)+

∑
ai(Ei, X,D)Ei. Then (Y,−

∑
ai(Ei, X,D)Ei)

is klt and the identity is a log resolution. It is enough to prove the statement for
(Y,−

∑
ai(Ei, X,D)Ei) =: (Y, F ). Fix ε = min{al(Ei, X,D)} > 0. By equation

(1) a valuation E has negative discrepancy for (Y, F ) only if the center of E on Y
is an irreducible component of a complete intersections of the Ei’s. By definition
and equation (1) we have

ai(EW , Y, F ) ≥ ai(Ei, X,D) + ε

for any Ei ⊃ W . By Hironaka we can realize any valuation of K(Y ) with a suc-
cession of smooth blow ups and therefore after finitely many blow ups no more
negative valuations can be introduced.

Assume now that (X, D) is dlt and bDc = S is irreducible. We have to check
only the discrepancies outside of Z, with center of codimension at least 2. There
(X, D) is snc and the assumption on the round down and equation (1) tell us that
al(E,X,D) ≥ 0 with equality if and only if E = S. �

Remark 2.1.10. Note that a plt pair can have infinitely many negative discrep-
ancies. We can blow up a codimension 2 intersection of an integer Weil divisors
D1 in D and any other divisor D2 in D.

2. Inversion of adjunction

The first intuition in this direction is due to Shokurov, [Sh2]. Here we follow
[KM2] and [U2]. Let (X, S + D) be a log pair with S a reduced Weil divisor
and D a Q-divisor. Our aim is to compare discrepancies of (X, S + D) to those of
(S, D|S). Clearly every result in this direction is important in induction statements
and many questions of lifting properties of divisors to the ambient variety. For
simplicity, following [KM2], I assume that S is Cartier in codimension 2. Then
adjunction formula for S is the usual one, [U2, §16]. To avoid this assumption one
has to consider a correction to the adjunction formula which is called Different,
[U2, §16]. With this in mind everything work under this wider hypothesis.
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Definition 2.2.1. Let (X, D) be a pair and Z ⊂ S ⊂ X closed subschemes.
Define

discrep(center ⊂ Z,X, D) := inf{a(E,X,D)|
E is exceptional and centerX(E) ⊂ Z}

and

discrep(center ∩ S ⊂ Z,X, D) := inf{a(E,X,D)|
E is exceptional and centerX(E) ∩ S ⊂ Z}

and similarly for totaldiscrep.

This is the easy way to relate the discrepancies.

Proposition 2.2.2 ([U2, 17.2]). Let X be a normal variety, S a normal Weil
divisor which is Cartier in codimension 2, Z ⊂ S a closed subvariety and D =∑

diDi a Q-divisor. Assume that KX + S + D is Q-Cartier. Then

totaldiscrep(center ⊂ Z, S, D|S) ≥ discrep(center ⊂ Z,X, S + D)
≥ discrep(center ∩ S ⊂ Z,X, S + D)

Proof. Let f : Y → X be a log resolution, with Ei f -exceptional divisors and
SY , DY strict transform of S and D on Y . I assume that SY ∩DY = ∅. Therefore
we have if Ei ∩ SY 6= ∅ then centerX(Ei) ⊂ S. Write

KY + SY ≡ f∗(KX + S + D) +
∑

eiEi

apply adjunction formula to both sides to get

KSY
≡ f∗(KS + D|S) +

∑
ei(Ei ∩ SY )

The divisor SY is disjoint from DY therefore if Ei ∩ SY 6= ∅ then Ei is f -
exceptional and centerX(Ei) ⊂ S. This is enough to prove that every discrepancy
that enter in SY → S comes from f -exceptional divisors. Note that SY ∩ Ei could
well be non f|SY

-exceptional. �

To go in the other direction one has to avoid this consideration. In general
there are divisors Ei that do not intersect SY and there is no good reason to expect
that equality holds. Nonetheless this was the conjecture. After many special cases
checked, see [Kw5], and [La] for a detailed account. This has been proved by
[BCHM] as a byproduct of finite generation following arguments in [U2, §17].

The main theorem here is Shokurov connectedness result, [Sh2]. Here we
present the n-dimensional proof of [U2].

Theorem 2.2.3. [U2, 17.4] Let g : Y → X be a proper birational morphism,
Y smooth and X normal. Let D =

∑
diDi be a snc Q-divisor on Y such that g∗D

is effective and −(KY + D) is g-nef. Write

A =
∑

i:di<1

diDi and F =
∑

i:di≥1

diDi

Then SuppF = SuppbF cF is connected in a neighborhood of any fiber of g.
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Remark 2.2.4. One of the most useful application of the theorem is the fol-
lowing. Consider a log resolution g : Y → X of a pair (X, DX) with

KY = f∗(KX + DX) +
∑

aiEi

Then −f∗(KX + DX) is f-nef ! and we let D = −
∑

aiEi. Let Z ⊂ Y be the locus
where (Y, D) is not klt. Then Z is connected in a neighborhood of any fiber of g.

Proof. Consider the following divisor

d−Ae − bF c = KY − (KY + D) + fractional effective

The morphism g is birational therefore g-nef is equivalent to g-nef and big. By
Kawamata–Viehweg relative vanishing I get

R1g∗(OY (d−Ae − bF c)) = 0

Apply g∗ to the structure sequence of bF c to get

g∗OY (d−Ae)→ g∗ObFc(d−Ae) is surjective

Note that d−Ae is g-exceptional and effective therefore g∗OY (d−Ae) ∼ OX . As-
sume that bF c has at least two connected components, say F1∪F2 in a neighborhood
of g−1(x) for some x ∈ X. Then

g∗(ObFc(d−Ae)(x)
∼= F1 + F2

and neither of the summand is zero. Thus g∗(ObFc(d−Ae)(x) is not a quotient of
the cyclic module OX,x. �

A corollary of connectedness theorem is a weak version of Inversion of adjunc-
tion

Theorem 2.2.5 ([U2, 17.6]). Let X be normal and S ⊂ X a normal Weil
divisor which is Cartier in codimension 2. Let D be an effective Q-divisor and
assume that KX + S + D is Q-Cartier. Then (X, S + D) is plt near S if and only
if (S, D|S) is klt.

Proof. We have to prove the if part. Let g : Y → X be a log resolution of
(X, S + D) and write

KY = g∗(KX + S + D)−A− F

with the notation of the proof of theorem 2.2.3. Let SY = g−1
∗ S and F = SY + F ′.

By adjunction formula

KSY
= g∗(KS + D|S) + (A− F ′)|SY

We have to prove that F ′ = ∅ if F ′ ∩ SY = ∅. By Theorem 2.2.3 F = SY ∪ F ′ is
connected in a neighborhood of g−1(x) for any x ∈ X, therefore F ′ = ∅ if and only
if F ′ ∩ SY = ∅ in a neighborhood of S. �

Remark 2.2.6. Note that we used a property of lc singularities to prove plt
singularities of a pair. This is not unusual but always amazing. We will see other
applications of Theorem 2.2.3 in the following sections.

As a byproduct of this weak inversion of adjunction we can easily prove that
isolated cDV on a 3-fold are terminal.

Corollary 2.2.7. Let p ∈ X be an isolated cDV singularity of a 3-fold Then
p ∈ X is terminal.
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Proof. Let D be a hyperplane section with Du Val singularities, in the nota-
tion of Definition 1.3.1 (t = 0) ⊂ C4. Consider the log pair (X, D). By construction
(D, 0) is canonical hence klt. Then inversion of adjunction gives (X, D) plt. On the
other hand D is a Cartier divisor hence the contribution of D to the discrepancy
of any valuation E centered in p is at least 1. This shows that a(E,X) > 0. �

Remark 2.2.8. With the full inversion of adjunction we conclude that p is
terminal even if D is a Weil divisor. Indeed the hypothesis give (X, D) canonical
and since D has a positive discrepancy on any valuation centered at p we conclude.

A technical but important property of dlt is that a dlt pair is the limit of klt
pairs with an arbitrary perturbation. With this I mean the following. Let (X, D)
be dlt. Then there exist Q-divisors D1 such that Supp(D1) ⊇ Supp(D), and for any
sufficiently small positive ε, (X, D − ε(D1 − ∆)) is klt, [KM2, Proposition 2.43],
for any divisor ∆. The same property is immediate for plt.

With argument as in the proof of Theorem 2.2.3 one can prove.

Proposition 2.2.9 ([KM2, Proposition 5.51]). Assume that (X, D) is dlt then
the following are equivalent:

- (X, D) is plt
- bDc is normal
- bDc is the disjoint union of its irreducible components.

Putting everything together we get.

Corollary 2.2.10. Let (X, D) be dlt. Then every irreducible component of
bDc is normal.

Proof. Let S ⊂ bDc be an irreducible component and set D1 := D − S.
Then (X, D − εD1) is dlt and bD − εD1c = S. Therefore by Proposition 2.2.9 S is
normal. �

This gives us an interesting inductive behavior of dlt with respect to adjunction
formula.

Let (X, D) be a dlt pair where D = S+
∑

diDi and f : Y → X a log resolution.
Then

KY + SY = f∗(KX + S +
∑

diDi) +
∑

ai(Ei, X,D)

Note that f|SY
: SY → S is a log resolution for (S, (

∑
diDi)|S) Then S is normal

by Corollary 2.2.10 and (S, (
∑

diDi)|S) is dlt by taking the same Z.
As a further application of Theorem 2.2.3 we will classify terminal extractions

from the ordinary double point. It has to be said that Kawakita’s algebraic ap-
proach gives much stronger results. But still I believe that the geometric beauty of
connectedness theorem is worthwhile.

Theorem 2.2.11 ([Co2]). Let P ∈ X be a 3-fold germ analytically isomorphic
to an ordinary node

xy + zt = 0

and f : (E ⊂ Y )→ (P ∈ X) a terminal extraction; assume in addition that f(E) =
P . Then f is the blow up of the maximal ideal at P .
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Proof. Let n be a sufficiently large and divisible positive integer; fix a finite
dimensional very ample linear system

HY ⊂ | − nKY |

Denote H = f∗(HY ) the image of HY in X, so that

KY +
1
n
HY = p∗

(
KX +

1
n
H

)
By construction

multE(H) = na(E,X)
while

(2) multG(H) < na(G, X)

for all valuations G 6= E.
Let ν : Z → X be the blow up of the maximal ideal, with exceptional divisor a

quadric F . Let W = centerZ E ⊂ F and S ⊂ X a general Cartier divisor through
x. Then (X, 1/nH+ S) is not klt both on S and on E. By Theorem 2.2.3, applied
to the morphism ν this forces the existence of a non klt curve C ⊂ F for this pair.

W ⊂ F ⊂ Z
ϕ+

xxrrrrrrrrrr
ϕ−

&&LLLLLLLLLL

ν

��

X+

&&LLLLLLLLLLL X−

xxrrrrrrrrrrr

X

Let ϕ± : Z → X± be the two contraction on the small resolutions of X.
Applying again Theorem 2.2.3 to ϕ± we conclude that a(F,X, 1/nH, S) ≤ −1.
On the other hand by equation (2) we have that a(G, X, 1/nH, S) > −1 for any
valuation G 6= E. Therefore we conclude that E = F . �

3. Birational geometry

Here we apply some of the theory of pairs to the birational geometry of 3-folds.
This is one of the few places where the philosophy of MMP comes down to earth
and therefore get filled by mud.

We start with a definition

Definition 2.3.1. A Mori fiber Space (MfS) is a morphism π : X → S satis-
fying the following conditions

. X is terminal Q-factorial

. −KX is π ample

. dim S < dim X

. rk Pic(X/S) = 1

MfS’s are the output of MMP applied to uniruled varieties. It is quite clear that
one can have different MfS’s attached to a variety X. Think of Pn and the blow up
of Pn along a linear space. It is much less clear when two MfS’s are birational to
each other. The aim of the maximal singularities method and Sarkisov Theory in
to put some order in this. The former tries to exclude the existence of birational
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maps between MfS’s while the latter is a way to factor birational maps between
MfS’s in “elementary” steps, called links.

Remark 2.3.2. Note that if dim X = 2 MfS’s are quite simple. The only
possibilities are either ruled surfaces when dimW = 1, this is quite simple if you
assume Tsen’s theorem (i.e. the existence of a section of the fibration), and P2

when dim W = 0, this is not immediate. Already in the 3-fold case this simplicity is
completely lost. There are few hundred cases with dim W = 0, del Pezzo fibrations
and conic bundles without sections. A good point in between, to train your intuition,
are surfaces over non algebraically closed fields.

3.1. The Sarkisov category.

Definition 2.3.3. (1) The Sarkisov category is the category whose ob-
jects are Mori fiber spaces and whose morphisms birational maps (regard-
less of the fiber structure).

(2) Let X → S and X ′ → S′ be Mori fiber spaces. A morphism in the
Sarkisov category, that is, a birational map f : X 99K X ′, is square if it
fits into a commutative square

X
f //___

��

X ′

��
S

g //___ S′

where g is a birational map (which thus identifies the function field L of
S with that of S′) and, in addition, the induced birational map of generic
fibers fL : XL 99K X ′

L is biregular. In this case, we say that X → S and
X ′ → S′ are square birational, or square equivalent.

(3) A Sarkisov isomorphism is a birational map f : X 99K X ′ which is bireg-
ular and square.

(4) If X is an algebraic variety, we define the pliability of X to be the set

P(X) =
{
MfS Y → T | Y is birational to X

}
/square equivalence.

We say that X is birationally rigid if P(X) consists of one element.

To say that X is rigid means that it has an essentially unique model as a
Mori fiber space; this implies in particular that X is nonrational, but it is much
more precise than that. For example, it is known that a nonsingular quartic 3-
fold is birationally rigid [IM], [Pu2], [Co2]; a quartic 3-fold with only ordinary
nodes is birationally rigid [Me3]. Note that a general determinantal quartic has
only ordinary nodes it is not Q-factorial and it is rational. Similar results are also
known in arbitrary dimensions, see [Pu3] for a survey.

3.2. Birational geometry, classification theory and commutative al-
gebra. It is not difficult, and fun, for someone experienced in the use of the known
lists of Fano 3-folds, and aware of certain constructions of graded rings, to gener-
ate many examples of birational maps between Fano 3-folds. In particular many
Fano 3-fold codimension 2 weighted complete intersections are birational to special
Fano 3-fold hypersurfaces. To name but a few, a general Y6,7 ⊂ P(1, 1, 2, 3, 3, 4) is
birational to a special X7 ⊂ P(1, 1, 1, 2, 3) with a singular point y2 + z2 +x6

1 +x6
2, a

general Y14,15 ⊂ P(1, 2, 5, 6, 7, 9) is birational to a special X15 ⊂ P(1, 1, 2, 5, 7) with
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a singular point u2 + z2y + y7 + x14, etc. It is remarkable that a significant part
of the list of Fano weighted complete intersections can be generated in this way,
starting from singular hypersurfaces. Note that here Q-factoriality of MfS plays a
crucial role. These singular hypersurfaces are in general non Q-factorial and do not
contribute to the pliability.

Let us work out a simple case in some details. Let X ⊂ P4 be a quartic with a
unique ordinary double point at p0 ≡ (1, 0, 0, 0) and equation

((x1x2 − x3x4)x2
0 + Cx0 + D = 0) ⊂ P4

Let ν : Y → X be the blow up of p0 with exceptional divisor E. The information
on X and Y allow to compute the anticanonical ring of Y , namely R(Y,−KY ). It
is not difficult to realize that there are four generators in degree 1 and one in degree
3. The nice part is that we can write them down easily as follows. Let me abuse
the notation and call xi the strict transform on Y of (xi = 0) ∩X. Then

{x1, x2, x3, x4} ∈ H0(Y,−KY )

indeed −KY = −ν∗KX − E = ν∗OX(1)− E. Let us look for the other generator.
We have to find a cubic with multiplicity at least three along E and not in the
tensor of (x1, x2, x3, x4). The best candidate is

y := x0(x1x2 − x3x4) ∈ H0(Y,−3KY )

This allows to realize the anticanonical model of Y as an hypersurface

Z ⊂ P(1, 1, 1, 1, 3)

To write it down we have to eliminate x0 from the equation of X and introduce y.
Consider

(x1x2 − x3x4)[(x1x2 − x3x4)x2
0 + Cx0 + D] = y2 + yC + D(x1x2 − x3x4)

then Z is a hypersurface of degree 6 in P(1, 1, 1, 1, 3) with equation

y2 + yC + D(x1x2 − x3x4)

The projection from q ≡ (0, 0, 0, 0, 1) ⊂ P(1, 1, 1, 1, 3) induces a biregular map onto
Z and then we can go back to Y and X to produce a birational not biregular map.

Y
ν

~~~~
~~

~~
~

��@
@@

@@
@@

X Z ff

Note that geometrically the birational map involved here is just the reflection
trough the singular point p0 and the birational involution on X becomes biregular
on Z because in going from Y to Z we contracted the lines through p0. That is
exactly the locus where the involution is not defined. This can also be accomplished
by flopping the lines on Y . Further note that Z is not Q-factorial because the
birational map from Y to Z contracts the lines of X through p0. In particular Z
is not a MfS and does not contribute to the pliability of X. Here is the diagram of
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the construction

Y
ν

~~~~
~~

~~
~

&&NNNNNNNNNNNNN
flop of the lines // Y

xxppppppppppppp
ν

  @
@@

@@
@@

X Z X

This is a fairly general phenomenon. When trying to classify Fano 3-folds, the
problem is often to construct a variety Y with a given Hilbert function. Usually Y
has high codimension; in the absence of a structure theory of Gorenstein rings, one
method to construct Y starts by studying a suitable projection Y 99K X to a Fano
X in smaller codimension (the work of Fano, and then Iskovskikh, is an example
of this). The classification of Fano 3-folds involves the study of the geometry of
special members of some families (like our special singular quartics), as well as
general members of more complicated families; the two points of view match like
the pieces of a gigantic jigsaw puzzle.

The ideas here are due to Miles Reid, see for example [Re4]; for these and
other issues, I also refer to [Re5].

3.3. Pliability and rationality. Traditionally, we like to think of Fano 3-
folds as being “close to rational”. We are now confronted with a view of 3-fold
birational geometry of great richness, on a scale much larger than accessible with
the methods of calculation and theoretical framework prior to Mori theory.

The notion of pliability is more flexible; a case division in terms of the various
possibilities for P(X) allows to individuate a wider spectrum of behavior ranging
from birationally rigid to rational.

If X is a quartic with only ordinary nodes as singularities, then X is Q-factorial
if and only if the nodes impose independent linear conditions on cubics. Indeed if
X̃ is the blowup of the nodes, H1(X̃,Ω2

X̃
) arises from residuation of 3-forms

PΩ
F 2

on P4 with a pole of order two along X = {F = 0}. Here Ω =
∑

xi dx0 · · · d̂xi · · · dx4

and P is a cubic containing all the nodes of X, see e.g. [Cl].
Consider a quartic 3-fold Z containing the plane x0 = x1 = 0. The equation of

Z can be written in the form x0a3+x1b3 = 0 and, in general, Z has 9 ordinary nodes
x0 = x1 = a3 = b3 = 0. The linear system |a3, b3| defines a map to P1; blowing
up the base locus gives a Mori fiber space Z → P1 with fibers cubic Del Pezzo
surfaces. The quartic Z is not Q-factorial. The plane {x0 = x1 = 0} ⊂ Z is not a
Cartier divisor and then by Lemma 1.3.11 we conclude that Z is not Q-factorial.
Thus Z is not a Mori fiber space; it doesn’t even make sense to say that it is rigid.
(Note in passing: introducing the ratio y = a3/x1 = b3/x0, gives a birational map
Z 99K Y3,3 ⊂ P(15, 2) to a Fano 3-fold Y3,3, the complete intersection of two cubics
in P(15, 2), a Mori fiber space birational to Z. In the language of the Sarkisov
program, Z is the midpoint of a link X 99K Y3,3.) However, a quartic 3-fold with 9
nodes is factorial in general, and it is birationally rigid, [Me3]. The factoriality of
projective hypersurfaces is the subject of a lovely papers by C. Ciliberto and V. Di
Gennaro [CDG], and Cheltsov [Ch].
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3.4. How it works. How one can study all birational map between a fixed
Mori space, X/S, and any other Mori spaces. The idea, that goes back to Noether
and Fano, and has been reformulated and improved by Iskovskikh, Sarkisov, Reid
and Corti is quite simple. A birational, not biregular, map has a base locus in
codimension at least 2. When the map is between Mori spaces this base locus has
quite nice properties when we look at it from the point of view of singularities of
pairs.

Theorem 2.3.4 (Noether–Fano–Iskovskikh Inequality [Co2]). Let χ : X/S 99K
Y/W be a birational not biregular map between Mori spaces. Let HY be a base
point free linear system on Y and H = χ−1

∗ HY . Then KX + 1/µH ≡π 0 and either
(X, 1/µH) has not canonical singularities or KX + 1/µH is not nef.

Proof when X = Y = Pn, (the original case of Noether).
Let HY = OPn(1) then H ⊂ |O(d)| for some d > 1. Take a resolution of χ

W
p

}}||
||

||
|| q

!!B
BB

BB
BB

B

Pn //_______ χ
Pn

and pull back the divisor KPn +((n+1)/d)H and KPn +((n+1)/d)O(1) via p and
q respectively.

We have

KW + ((n + 1)/d)HW =

p∗OPn +
∑

i

aiEi = q∗OPn((n + 1)(1/d− 1)) +
∑

i

biEi

where the Ei are either p or q exceptional divisors.
Let l ⊂ Pn be a general line in the right hand side Pn. In particular q is an

isomorphism on l and therefore biEi · q∗l = 0 for all i.
The crucial point is that on the right hand side we have some negativity coming

from the non effective divisor KPn + ((n + 1)/d)O(1) that has to be compensated
by some non effective exceptional divisor on the other side.

More precisely, since d > 1, we have on one hand that

(KW + ((n + 1)/d)HW ) · q∗l = (q∗OPn((n + 1)(1/d− 1)) +
∑

i

biEi) · q∗l < 0,

so that

0 > (KW + ((n + 1)/d)HW ) · q∗l = (p∗OPn +
∑

i

aiEi) · q∗l.

and ah < 0 for some h, that is (Pn, ((n+1)/d)H) has not canonical singularities. �

Example 2.3.5. Observe that in the case of P2 this forces the existence of a
point with multpH > d/3. Out of this, with some work, one can prove Noether
Castelnuovo Theorem on factorization of birational self maps of P2, [AM].

Note that if X is Fano and χ : X 99K Y/W is a birational map then this forces
the existence of linear systems with (X, 1/µH) with non canonical singularities.

Our next task is to show how it is possible to exclude the existence of these
linear systems and thus prove that no birational map exists. We will do it on a
special foundational case.
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Theorem 2.3.6 ([IM]). Let X4 ⊂ P4 be a smooth quartic 3-fold, then any
birational map X4 99K Y/W is biregular and an automorphism.

Today a very simple and neat proof is available. We will use it to describe the
philosophy and the main technical tools of the maximal singularities method on
3-folds.

Fix a birational map χ : X4 → Y/W if it not biregular then there exists
H ⊂ |O(d)| with (X, 1/dH) with non canonical singularities. Note that by taking
a log resolution and running a relative MMP one concludes that there exists a
terminal extraction ε : Y → X with exceptional divisor E and a(E,X, 1/dH) < 0.
We want to study centerX(E).

Assume that centerX(E) = Γ is a curve. Let γ := multΓH then the inequality
a(E,X, 1/dH) < 0 translates into γ > d. Intersect a general curve section with H

4d = OX(1)2 · H ≥ γ deg Γ > d deg Γ

to get deg Γ < 4. Assume first that Γ is not planar. Then Γ is a twisted cubic
and IΓ(2) is generated. Let T ∈ |IΓ(2)| be a general element and S = T ∩ X,
then we can assume that S is smooth and by adjunction formula (Γ ·Γ)S = −5 Let
H|S =M+ γΓ forM a linear system without base curves. This gives

0 ≤M2 = (H|S − γΓ)2 ≤ 8d2 − 6dγ − 5γ2 < 0

and proves that Γ cannot be the center of ε. With similar arguments we can exclude
all the plane curve of degree ≤ 3.

Assume that centerX(E) = x is a point. Then by Kawakita’s result, Theorem
1.4.9, ε is a wbu with weight (1, a, b), and a(E,X, 1/dH) < 0. That is ε∗H =
HY + mE with

m > d(a + b)
Keep in mind the numerology E3 = 1/ab and a(E,X) = a + b. Fix a general
hyperplane section S 3 x, then ε∗S = SY + E. By assumption

0 ≤ SY · H2
Z = (ε∗S − E)(ε∗H−mE)2 = 4d2 −m2E3 < d2(4− (a + b)2

ab
) < 0

Therefore no center of this kind exists on X and we proved Iskovskikh–Manin
theorem.

Here we singled out a pair of technical points. First it is important to know all
possible terminal extractions from a center. Second there are special surfaces on
X where the numerology work. The maximal singularity method is a mixture of
these two ingredients.

4. Biregular geometry

The main references are [Re3], [Ko1], [Ka4], [C+, Chapter 8]. In this section
we always assume that X is lt. All results stay true, with an heavier notation for
(X, ∆) klt.

Definition 2.4.1 ([Ka4]). Let X be a normal variety and D =
∑

diDi an
effective Q-divisor such that KX + D is Q-Cartier. A subvariety W of X is said to
be a non klt center, or simply a center, for the pair (X, D), if there is a birational
morphism from a normal variety µ : Y → X and a prime divisor E on Y , not
necessarily µ-exceptional, with the discrepancy coefficient a(E,X,D) ≤ −1 and
such that µ(E) = W . For another such µ′ : Y ′ → X, if the strict transform E′ of
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E exists on Y ′, then we have the same discrepancy coefficient for E′. The divisor
E′ is considered to be equivalent to E, and the equivalence class of these prime
divisors is called a place of non klt singularities for (X, D). The set of all centers of
non klt singularities is denoted by CLC(X, D), the locus of all centers of non klt
singularities is denoted by LLC(X, D).

Let (X, D) be a log variety and W ∈ CLC(X, D) a center. This means that
we have a log resolution µ : Y → X with

KY = µ∗(KX + D) +
∑

eiEi,

and µ(E0) = W with a(E0, X,D) ≤ −1. In general there is more than one valuation
with low discrepancy and more than one center in CLC(X, D). On the other hand
it is quite clear that if we have both a unique center and a unique valuation the
situation is nicer.

Our first goal is to explore how much one can say in this direction by perturbing
the divisor D. Let us start with the following properties of centers.

Proposition 2.4.2 ([Ka4]). Let X be a normal variety and D an effective
Q-Cartier divisor such that KX + D is Q-Cartier. Assume that X is lt and (X, D)
is lc. If W1,W2 ∈ CLC(X, D) and W is an irreducible component of W1 ∩W2,
then W ∈ CLC(X, D). In particular, there exist minimal elements in CLC(X, D)
with respect to inclusion.

Proof. Let Di be general members among effective Cartier divisors which
contain Wi. Let f : Y → X be a log resolution of the pair (X, D + D1 + D2). Let
ei := multWi D, note that multWi Dj = δij .

Since (X, D) is lc for any rational 0 < ε� 1 we have

LLC(X, (1− ε)D + εe1D1 + εe2D2) = W1 ∪W2

By the connectedness Theorem 2.2.3, there exist f -exceptional divisors Fi = Fi(ε)
such that f(Fi) ⊆ Wi, a(Fi, X, (1− ε)D + εe1D1 + εe2D2) ≤ −1 and F1 ∩ F2 6= ∅.
Since there are only a finite number of f -exceptional divisors then for a convergent
sequence ε→ 0 the Fi are fixed, f(Fi) = Wi, and

f(F1 ∩ F2) = W1 ∩W2 ∈ LLC(X, D)

�

One of the most important feature of minimal centers is the possibility to
perturb the boundary D in order to accomplish special features. Fix a minimal
center W ∈ CLC(X, D). Our aim is to manipulate D to an effective D′ in such a
way that (X, D′) is lc and W is the unique center of non klt singularities for (X, D′).
This is called the “tie breaking”, [C+, Chapter 8], or perturbation argument, and
was first explained by Reid, [Re3], see also [Ka4].

Definition 2.4.3. Let (X, D) be lc. Then W is an isolated center if W ∩Z = ∅
for all centers Z 6= W of the pair (X, D). An isolated center is called exceptional if
there is a unique valuation E with a(E,X,D) = −1 and centerX E = W .

The assumption (X, D′) lc is not a big problem for any pair (X, D) one can
define

lc0(X, D) := max{t ∈ Q|(X, tD) is lc}
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to get a lc pair. This could of course erase the center W . In this case it is enough
to consider lc0(X, D + αA) where A is a general divisor vanishing along W and α
a suitable rational number.

We can therefore assume that (X, D) is lc and W is a minimal center for the
pair. The next step is to make W isolated, by erasing all other centers. Choose a
generic very ample M such that W ⊂ Supp(M) and no other Z ∈ CLC(X, D)\{W}
is contained in Supp(M), this is always possible since W is minimal in a dimensional
sense. Note that (X, (1−ε)D) is klt for any 0 < ε, therefore it is enough to consider
D1 := (1 − ε)D + δM , for some appropriate δ = δ(ε). To have (X, D1) lc and W
the only center of non klt singularities.

To get an exceptional center is a bit more subtle. We sketch it here and refer
to [C+, Chapter 8] for a detailed analysis. We want to have a unique discrepancy
with coefficient -1 for the log pair (X, D′).

Keep in mind that D1 := (1− ε1)D + δM ,and fix a log resolution µ : Y → X,
then

. (X, D1) is LC

. CLC(X, D1) = W

. µ∗δM =
∑

miEi + P , with P ample; this is possible by Kodaira Lemma
. KY +

∑k
j=0 Ej + ∆−A = µ∗(KX + D1)− P where

. the Ej ’s are integer irreducible divisors with µ(Ej) = W ,

. A is a µ-exceptional integral divisor

. b∆c = 0

. A, ∆ and the Ei’s have no common components
It is now enough to use the ampleness of P to choose just one of the Ej . Indeed

for small enough δj > 0 P ′ := P −
∑k

j=1 δjEj is still ample. In this way one can
produce the desired resolution

(3) KY + E0 + ∆′ −A = µ∗(KX + D′)− P ′;

Remark 2.4.4. If instead of an ample M we choose a nef and big divisor, we
can repeat the above argument with Kodaira Lemma, but this time we cannot choose
the center µ(E0) like before, and in particular we cannot assume that at the end we
are on a minimal center for (X, D). To do this one has to be able to control the
effective part of the decomposition of µ∗M .

The study of these objects has been developed by Kawamata and we can sum-
marize the main results in the following Theorem.

Theorem 2.4.5 ([Ka4],[Ka3]). Let X be a normal variety and D an effective
Q-Cartier divisor such that KX + D is Q-Cartier. Assume that X is lt and (X, D)
is lc.

i) If W ∈ CLC(X, D) is a minimal center then W is normal
i) (subadjunction formula)Let H be an ample Cartier divisor and ε a positive

rational number. If W is a minimal center for CLC(X, D) then there
exists an effective Q-divisor DW on W such that (KX + D + εH)|W ≡
KW + DW and (W,DW ) is KLT.

Remark 2.4.6. The first statement is essentially, a consequence of Vanishing
theorem as in Shokurov Connectedness Lemma. The subadjunction formula is quite
of a different flavor and is related to semipositivity results for the relative dualizing
sheaf of a morphism, see also [C+, Chapter 8].
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One should compare this with Fujino’s [C+, Proposition 3.9.2] where the CLC
of a dlt pair are proved to be dlt.

Example 2.4.7. It is in fact not so difficult to work out all possible minimal
centers W ∈ CLC(X, D), where X is a smooth surface and D any divisor (i.e a
curve). The same, a little harder, if X is a smooth threefold, see [Ka4]. Keep in
mind that klt singularities are rational singularities.

4.1. How to get base point free-type theorems. (i.e. the multiplier ideal
method for everybody)

Assume now that X is a variety with log terminal and Q-Gorenstein singulari-
ties and let L be an ample line bundle on X.

Let D be an effective Q-Cartier divisor such that D ≡ tL for a rational number
t < 1. Let W ∈ CLC(X, D) be a minimal center. Up to a perturbation one can
always assume that W is exceptional and (X, D) is lc.

Let f : Y → X be a log resolution of the pair (X, D) with

KY + E = µ∗(KX + D) + F

where E is an irreducible divisor such that µ(E) = W and dF e is effective and
exceptional. Then we have

KY + (1− t)µ∗L ≡ µ∗(KX + L)− E + F

and by the vanishing

H1(Y, µ∗(KX + L)− E + dF e) = 0

In particular there is the following surjection

H0(Y, µ∗(KX + L) + dF e)→ H0(E,µ∗(KX + L) + dF e).
The divisor dF e is effective and exceptional therefore

H0(X, KX + L) = H0(Y, µ∗(KX + L) + dF e)
and we also have

H0(X, KX + L)→ H0(E,µ∗(KX + L) + dF e)→ 0.

Thus to find a section of KX + L not vanishing on W it is sufficient to find a
non zero section in H0(E,µ∗(KX + L) + dF e), or equivalently in

H0(W, (KX + L + µ|E ∗ (dF e))|W )

The ideal case happens when W = x is a point. In this case H0(W,µ∗(KX +
L)) = C and therefore x is not in Bs |K + L|. In this way one can produce base
point free statements like in Fujita’s conjecture. The hard part is clearly to be able
construct a log pair with a point as exceptional center.

Another nice situation occurs when X is a Fano variety. In this case one has
good control on possible minimal centers.

Definition 2.4.8. Let (X, ∆) be a klt pair. We say that it is a log Fano variety
if −(KX + ∆) ≡ iH for some H ∈ Pic(X) and i > 0. The largest possible such i is
called the index of (X, ∆) and H is called the fundamental divisor.

Lemma 2.4.9. Let X be a lt Fano variety with −KX ≡ γH, for some ample
Cartier H on X. Let D ≡ tH be an effective divisor, with t < γ, and assume that
W is an exceptional center of (X, D). Let DW = (D + εH)|W for 0 < ε� 1. Then
(W,DW ) is a klt log-Fano with −(KW + DW ) ≡ (γ − t− ε)H|W .
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Proof. By Kawamata’s subadjunction formula (W,DW ) is klt and

−(KW + DW ) ≡ −(KX + (t + ε)H)|W ≡ (γ − t− ε)H|W

In particular (W,DW ) is Fano and (−KW + D)|W ≡ (γ − t− ε)H|W �

The nice point is that thanks to the usual vanishings and Serre’s duality if the
index is quite high with respect to the dimension then the fundamental divisors of
klt log Fanos have sections, [Ale]. Therefore one can use Lemma 2.4.9 to prove
that W is not in Bs |H|. Coupling this with Bertini Theorem and some tricks of tie
breaking one can prove the following.

Theorem 2.4.10 ([Me1]). Let X be a Mukai variety with at worst log terminal
singularities. Then X has good divisors except in the following cases:

i) X is a singular terminal Gorenstein 3-fold which is a “special” (see [Me1])
complete intersection of a quadric and a sextic in P(1, 1, 1, 1, 2, 3)

ii) let Y ⊂ P(1, 1, 1, 1, 1, 2) be a “special” complete intersection of a quadric
cone and a quartic; let σ be the involution on P(1, 1, 1, 1, 1, 2) given by
(x0 : x1 : x2 : x3 : x4 : x5) 7→ (x0 : x1 : x2 : −x3 : −x4 : −x5) and let
π be the map to the quotient space. Then X = π(Y ) is a terminal not
Gorenstein 3-fold.

In both exceptional cases the generic element of the fundamental divisor has canon-
ical singularities and Bs | −KX | is a singular point. It has to be stressed that the
generic 3-fold in i) and ii) has good divisors, but there are “special” complete inter-
sections whose quotient has a singular point in the base locus of the anticanonical
class, see [Me1, Examples 2.7, 2.8] for details.

With similar arguments one can prove a good divisor problem for other MfS,
for details and related results see [Me2].

Beside many applications of the Base Point Free I think it is important to recall
the following conjecture.

Conjecture 2.4.11 ([Ka5]). Let X be a complete normal variety, D an ef-
fective Q-divisor on X such that the pair (X, B) is klt, and L a Cartier divisor
on X. Assume that L is nef, and that H = L − (KX + B) is nef and big. Then
H0(X, L) > 0.

The conjecture is proved for surfaces and few other special cases, note that a
special case is that 2KX has sections for any Gorenstein minimal model of general
type.
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