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1 Introduction

The goal of this course is to introduce inequalities as Poincaré or logarithmic Sobolev for
diffusion semigroups. We will focus more on examples than on the general theory of diffusion
semigroups.

A main tool to obtain those inequalities is the so called Bakry-Emery Γ2-criterium. This
criterium is well known to prove such inequalities and has been also used many times for
other problems (see for example [BÉ85, ABC+00, Bak06]).

In Section 4, we will explain an alternative method to get a logarithmic Sobolev in-
equality under the Γ2-crierium. It is called the Mass transportation method and has been
introduced recently (see [CE02, OV00, CENV04, Vil09]). By this way we will also get a
another inequality called the Talagrand inequality or T2 inequality.

2 The Ornstein-Uhlenbeck semigroup and the Gaussian

measure

A Markov semigroup on R
n (for n > 0) is associated to a Markov process, there are two

famous example of diffusion semigroups. The first one is the heat semigroup which is associ-
ated to the Brownian motion on R

n. In this course we will study the second one which is the
Ornstein-Uhlenbeck semigroup. As we will see in the next section, the Ornstein-Uhlenbeck
semigroup is associated to a linear stochastic differential equation driven by a Brownian
motion.

In this note a smooth function f in R
n is a function such that all computation done as

integration by parts are justified.

2.1 Definition and general properties

Definition 2.1 Let define the family of operator (Pt)t>0 : if f ∈ Cb(Rn) then

Ptf(x) =

∫

f(e−tx+
√

1 − e−2ty)dγ(y), (1)

where

dγ(y) =
e−|y|2

2
/2

(2πn)
n/2

dy

is the standard Gaussian distribution in R
n and |·| is the Euclidean norm on R

n.
The family of operator (Pt)t>0 is called the Ornstein-Uhlenbeck semigroup.



Remark 2.2 If (Xt)t>0 is the Markov process defined by the stochastic differential equation

{

dXt =
√

2dBt −Xtdt
X0 = 0

(2)

then the Itô formula gives that for all continuous and bounded functions f on R
n,

Ptf(x) = Ex(f(Xt)).

Since the stochastic differential equation is linear, one can give an explicit solution, equa-
tion (1) is known as the Mehler Formula,

Xt = e−tX0 +

∫ t

0

√
2es−tdBs.

Proposition 2.3 The Ornstein-Uhlenbeck semigroup is a linear operator satisfying the fol-
lowing properties :

(i) P0 = Id

(ii) For all functions f ∈ Cb(Rn), the map t 7→ Ptf is continuous from R
+ to L2(dγ).

(iii) For all s, t > 0 one has Pt ◦ Ps = Ps+t.

(iv) Pt1 = 1 and Ptf > 0 if f > 0.

(v) ‖Pt‖∞ ≤ ‖f‖∞.

We say that the Ornstein-Uhlenbeck semigroup is a Markov semigroup on (Cb(Rn), ‖·‖∞).

Proof

⊳ We will give only some indications of the proof. First it is easy to prove items (i), (ii),
(iv) and (v).

For the item (iii), you just have to compute the Ornstein-Uhlenbeck as follow : Ptf(x) =
E(f(e−tx+

√
1 − e−2tY )) where Y is a random variable with a Gaussian distribution. Then

compute Pt(Psf) to obtain Pt+sf . In fact, since the solution of the stochastic differential
equation (2) is a Markov process then (iii) is a natural property of the Ornstein-Uhlenbeck
semigroup. ⊲

Proposition 2.4 For all functions f ∈ C2(Rn) bounded with bounded derivatives then one
has

∀x ∈ R
n, ∀t > 0,

∂

∂t
Ptf(x) = L(Ptf)(x) = Pt(Lf)(x),

where for all smooth functions f , Lf = ∆f − x · ∇f .
The linear operator L is known as the infinitesimal generator of the Ornstein-Uhlenbeck

semigroup.

Proof

⊳ Let us give a sketch of the proof. Let f be a smooth function, then

∂

∂t
Ptf(x) =

∫
(

−e−tx+
e−2t

√
1 − e−2t

y

)

· ∇f
(

e−tx+
√

1 − e−2ty
)

dγ(y).

By definition of the Ornstein-Uhlenbeck semigroup one gets

−xe−t ·
∫

∇f
(

e−tx+
√

1 − e−2ty
)

dγ(y) = −x · ∇Ptf(x)

whereas the second term, after an integration by parts gives

e−2t

√
1 − e−2t

∫

y · ∇f
(

e−tx+
√

1 − e−2ty
)

dγ(y) = ∆Ptf(x),
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which finishes the proof.

Using the same computation one can prove the commutation property between Pt and
the generator L. ⊲

More generally, if L is an infinitesimal generator associated to a linear semigroup (Pt)t>0

(not necessary a Markov semigroup) then the commutation LPt = PtL holds.

Proposition 2.5 (Some properties of the O-U semigroup) The Ornstein-Uhlenbeck semi-
group is γ-ergodic, that means for all f ∈ Cb(Rn),

∀x ∈ R
n, lim

t→∞
Ptf(x) =

∫

fdγ, (3)

in L2(dγ).

The probability measure γ is then the unique invariant measure, for all smooth functions
f ∈ Cb(Rn) :

∫

Ptfdγ =

∫

fdγ, (4)

or equivalently for all smooth functions f ,

∫

Lfdγ = 0.

In fact we have the fundamental identity,

∫

gLfdγ =

∫

fLgdγ = −
∫

∇f · ∇gdγ, (5)

for all smooth functions on R
n. We say that the Gaussian distribution is reversible with

respect to the Ornstein-Uhlenbeck semigroup, L is symmetric in L2(dγ).

Proof

⊳ Let us give the proof of (5):

∫

fLgdγ =

∫

f∆gdγ −
∫

(fx · ∇g)dγ

= −
∫

∇ · (fγ) · ∇gdx−
∫

fx · ∇gdγ

= −
∫

∇f · ∇gdγ,

where ∇ · f stands for the divergence of f .

In fact (4) is clear due to the fact if a semigroup is ergodic for some probability measure
then the measure is always invariant. ⊲

As we have seen in the proof of the proposition 2.4 the Ornstein-Uhlenbeck semigroup
satisfies the equality for all f and x:

∀t > 0, ∇Ptf(x) = e−tPt∇f(x), (6)

where Pt∇f = (Pt∂if)1≤i≤n and for all norms ‖·‖ in R
n, one gets easily

∀t > 0, ‖∇Ptf(x)‖ ≤ e−tPt‖∇f‖(x), (7)

those equations are known as the commutation property of the gradient and the semigroup.
In the next part we will use inequality (7) applied to the Euclidean norm.
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2.1.1 The Poincaré and logarithmic Sobolev inequalities

Theorem 2.6 The following Poincaré inequality for the Gaussian measure holds, for all
smooth functions f on R

n,

Varγ(f) :=

∫

f2dγ −
(
∫

fdγ

)2

≤
∫

|∇f |2dγ. (8)

The term Varγ(f) is called the variance of f under the probability measure γ. Moreover,
the inequality is optimal and extremal functions are given by smooth functions satisfying
∇f = C for some constant C ∈ R

n.

Proof

⊳ Let f be a smooth function on R
n then P0f = f and by the ergodicity property gives

P∞f =
∫

fdγ (see (3)). The Ornstein-Uhlenbeck semigroup gives a nice interpolation be-
tween f and

∫

fdγ.

Varγ(f) = −
∫ +∞

0

d

dt

∫

(Ptf)
2
dγdt

= −2

∫ +∞

0

∫

LPtfPtfdγdt

= 2

∫ +∞

0

∫

|∇Ptf |2dγdt

≤ 2

∫ +∞

0

∫

e−2t(Pt|∇f |)2dγdt

≤ 2

∫ +∞

0

∫

e−2tPt

(

|∇f |2
)

dγdt

= 2

∫ +∞

0

∫

e−2t|∇f |2dγdt

=

∫

|∇f |2dγ,

where we use equality (7), Cauchy-Schwarz inequality and the invariance property of the
standard Gaussian distribution (4). ⊲

Theorem 2.7 The following logarithmic Sobolev inequality for the Gaussian measure holds,
for all smooth and non-negative functions f on R

n,

Entγ(f) :=

∫

f log
f

∫

fdγ
dγ ≤ 1

2

∫ |∇f |2
f

dγ. (9)

The term Entγ(f) is known as the entropy of f under the measure γ. Moreover, the in-
equality (9) is optimal and extremal functions are given by ∇f = Cf for some constant
C ∈ R

n.

Proof

⊳ Let us mimic the proof of the Poincaré inequality, let f be a smooth and non-negative
function on R

n.

Entγ(f) = −
∫ +∞

0

d

dt

∫

Ptf logPtfdγdt

= −
∫ +∞

0

∫

LPtf logPtfdγdt

=

∫ +∞

0

∫

∇Ptf · ∇ logPtfdγdt

=

∫ +∞

0

∫ |∇Ptf |2
Ptf

dγdt,

≤
∫ +∞

0

∫

e−2t (Pt|∇f |)2
Ptf

dγdt
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where we have used the same argument as for Poincaré inequality. Now Cauchy-Schwarz
inequality implies

(Pt|∇f |)2
Ptf

≤ Pt

(

|∇f |2
f

)

,

or the convexity of the
(x, y) 7→ x2/y

for x, y > 0, then one gets

Entγ(f) ≤
∫ +∞

0

∫

e−2tPt

(

|∇f |2
f

)

dγdt =
1

2

∫ |∇f |2
f

dγ.

⊲

The logarithmic Sobolev inequality is often noted for the f2 instead of f , which gives for
all smooth functions f ,

Entγ
(

f2
)

≤ 2

∫

|∇f |2dγ.

At the light of the Theorems 2.6 and 2.7, we say that the standard Gaussian satisfies a
Poincaré and a logarithmic Sobolev inequality.

More generally a logarithmic Sobolev inequality always implies a Poincaré inequality by
using a Taylor expansion (see Chapter 1 of [ABC+00]).

In proposition 2.5, we proved that the Ornstein-Uhlenbeck semigroup is ergodic with
respect to the Gaussian distribution. In fact one of the main application of the Poincaré and
the logarithmic Sobolev inequalities is to give an estimate of the speed of convergence in two
different spaces.

Theorem 2.8 The Poincaré inequality (8) is equivalent to the following inequality

Varγ(Ptf) ≤ e−2tVarγ(f) , (10)

for all smooth functions f .
And in the same way, the logarithmic Sobolev inequality (9) is equivalent to

Entγ(Ptf) ≤ e−2tEntγ(f) , (11)

for all non-negative and smooth functions f .

Proof

⊳ For the first assertion, an elementary computation gives that

d

dt
Varγ(Ptf) = −2

∫

|∇Ptf |2dγ,

then the Poincaré inequality and Grönwall lemma gives (25). Conversely, the derivation at
time t = 0 of (25) implies the Poincaré inequality.

For the second assertion, we use the same method and the derivation of the entropy,

d

dt
Entγ(Ptf) = −

∫ |∇Ptf |2
Ptf

dγ. (12)

⊲

One of the main difference between the two inequalities is that the initial condition is
in L2(dγ) for the Poincaré inequality whereas the initial condition is in L logL(dγ) for the
logarithmic Sobolev inequality.
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3 Poincaré and Logarithmic Sobolev inequalities under

curvature criterium

The main idea of this section is to obtain criteria for a probability measure µ such that the
two inequalities (8) and (9) hold for the measure µ. We will study a particular case of the
curvature-dimension criterium (or Γ2-criterium) introduced by D. Bakry and M. Emery in
[BÉ85]. This criterium gives conditions on an infinitesimal generator L such that all the
computations done for the Ornstein-Uhlenbeck semigroup could be applied to L.

Let a function ψ ∈ C2(Rn), and define the infinitesimal generator:

Lf = ∆f −∇ψ · ∇f, (13)

for all smooth functions f .

Assume that
∫

e−ψdx < +∞ and define the probability measure dµψ(x) = e−ψdx
Zψ

dx,

where Zψ =
∫

e−ψdx. It is easy to see that the operator L satisfies for all smooth functions
f and g on R

n,
∫

fLgdµψ =

∫

gLfdµψ = −
∫

∇f · ∇gdµψ , (14)

and
∫

Lfdµψ = 0. We recover the same property as for the Ornstein-Uhlenbeck semigroup,
see (5). As for the Ornstein-Uhlenbeck semigroup, L is symmetric in L2(dµψ) and the
probability measure µψ is also invariant with respect to L.

Let define the Carré du champ, for all smooth functions f ,

Γ(f, f) =
1

2

(

L(f2) − 2fLf
)

, (15)

we note usually Γ(f) instead of Γ(f, f). The carré du champ is a quadratic form and the
bilinear form associated is given by

Γ(f, g) =
1

2
(L(fg) − fLg − gLf).

If we iterate the process one gets the Γ2-operator, for all smooth functions f ,

Γ2(f, f) =
1

2
(L(Γ(f)) − 2Γ(f,Lf)). (16)

Definition 3.1 We say that the linear operator L, satisfies the Γ2-criterium CD(ρ,+∞)
with some ρ ∈ R if for all smooth functions f

Γ2(f) > ρΓ(f). (17)

Remark 3.2 Since for all smooth functions f , Lf = ∆f − ∇ψ · ∇f , a straight forward
computation gives,

Γ(f) = |∇f |2,
and

Γ2(f) = ‖Hess(f)‖2
H.S.+ < ∇f,Hess(ψ)∇f >,

where the Hilbert-Schmidt norm is given by ‖Hess(f)‖2
H.S. =

∑

i,j

(

∂2

∂xi∂xj
f
)2

.

Then the linear operator L defined in (13) satisfies the Γ2-criterium CD(ρ,+∞) with
some ρ ∈ R if for all x ∈ R

n

Hess(ψ)(x) > ρId, (18)

in the sense of the symmetric matrix, i.e. for all Y ∈ R
n,

< Y,Hess(ψ)(x)Y >> ρ|Y|2,

where < ·, · > is the Euclidean scalar product.
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Theorem 3.3 Let ψ ∈ C2(Rn) and assume that there exists ρ > 0 such that the linear
operator (13) satisfies a Γ2-criterium CD(ρ,+∞), then the probability measure µψ satisfies
a Poincaré inequality

Varµψ (f) ≤ 1

ρ

∫

|∇f |2dµψ , (19)

and a logarithmic Sobolev inequality

Entγ(f) ≤ 1

2ρ

∫ |∇f |2
f

dγ, (20)

for all smooth and non-negative functions f .

Lemma 3.4 Let (Pt)t>0 be the Markov semigroup associated to the infinitesimal generator
L. Assume that ρ > 0 then (Pt)t>0 is µψ-ergodic that means for all smooth functions f

lim
t→+∞

Ptf(x) =

∫

fdµψ,

in f ∈ L2(dµψ) and µψ almost surely.

Lemma 3.5 Let ϕ be a C2 function, then for all smooth functions f ,

Lϕ(f) = ϕ′(f)Lf + ϕ′′(f)Γ(f) and Γ(log f) =
1

f2
Γ(f), (21)

moreover one has

Γ2(log f) =
1

f2
Γ2(f) − 1

f3
Γ(f,Γ(f)) +

1

f4
(Γ(f))

2
(22)

Proof of the Theorem 3.3

⊳ First we will prove the first inequality (19). As for the Ornsten-Uhlenbeck semigroup,
one gets if (Pt)t>0 is the Markov semigroup associated to the infinitesimal generator L,

Varµψ(f) = −
∫ +∞

0

d

dt

∫

(Ptf)2dµψdt

= −2

∫ +∞

0

∫

LPtfPtfdµψdt

Since µψ is invariant,

∫

2PtfLPtfdµψ =

∫

(

2PtfLPtf − L(Ptf)2
)

dµψ = −2

∫

Γ(Ptf)dµψ,

which gives

Varµψ (f) =

∫ +∞

0

2

∫

Γ(Ptf)dµψdt. (23)

Let now consider for all t > 0,

Φ(t) = 2

∫

Γ(Ptf)dµψ ,

The time derivative of Φ is equal to

Φ′(t) = 4

∫

Γ(Ptf,LPtf)dµψ =

2

∫

(2Γ(Ptf,LPtf) − L(Γ(Ptf)))dµψ = −4

∫

Γ2(Ptf)dµψ.
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The Γ2-criterium implies that Φ′(t) ≤ −2ρΦ(t) which gives Φ(t) ≤ e−t2ρΦ(0). The last
inequality with (23) implies

Varµψ (f) ≤
∫ +∞

0

e−t2ρdt

∫

2Γ(f)dµψ =
1

ρ

∫

Γ(f)dµψdt.

Let now prove the logarithmic Sobolev inequality for the measure µψ. Let f be a non-negative
and smooth function on R

n,

Entµψ (f) = −
∫ +∞

0

d

dt

∫

Ptf logPtfdµψdt

= −
∫ +∞

0

∫

LPtf logPtfdµψdt

Since L is symmetric and by lemma 3.5 one gets

∫

LPtf logPtfdµψ =

∫

PtfL logPtfdµψ = −
∫

Γ(Ptf)

Ptf
dµψ = −

∫

Γ(log Ptf)Ptfdµψ,

which gives

Entµψ (f) =

∫ +∞

0

∫

Γ(logPtf)Ptfdµψdt. (24)

As for Poincaré inequality, let consider for all t > 0,

Φ(t) =

∫

Γ(Ptf)

Ptf
dµψ

where Ptf = g. The time derivative of Φ is equal to

Φ′(t) =

∫
(

2
Γ(Lg, g)

g
− LgΓ(g)

g2

)

µψ =

∫
(

2
Γ(Lg, g)

g
− LgΓ(g)

g2
− L

(

Γ(g)

g

))

µψ.

Since

L

(

Γ(g)

g

)

= 2Γ

(

Γ(g),
1

g

)

+
1

g
LΓ(g) + L

(

1

g

)

Γ(g),

by Lemma 3.5 one has

Φ′(t) = −2

∫

Γ2(logPtf)Ptfdµψ.

The Γ2-criterium implies that Φ′(t) ≤ −2ρΦ(t) which gives Φ(t) ≤ e−2ρtΦ(0). This inequality
with (24) implies that

Entµψ (f) ≤
∫ +∞

0

e−2ρtdt

∫

Γ(log f)fdµψ =
1

2ρ

∫

Γ(log f)fdµψ =
1

2ρ

∫ |∇f |
f

dµψ.

⊲

The meaning of this result is : if µψ is more log-concave than the Gaussian distribution
then µψ satisfies both inequalities.

Remark 3.6 The Γ2-criterium is in fact a more general criterium. The definition of a
diffusion semigroup could be a Markov semigroup such that for all smooth functions ϕ, the
equations (21) and (22) hold for the generator associated to the semigroup.

In fact that means that the infinitesimal generator L of the Markov semigroup is given
by,

∀x ∈ R
n, Lf(x) =

∑

i,j

Di,j(x)∂i,jf(x) −
∑

i

ai(x)∂if(x),
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where D(x) = (Di,j(x))i,j is a symmetric and non-negative matrix and a(x) = (ai(x))i is a
vector.

Then the conditions Γ2(f) > ρΓ(f) for some ρ > 0 implies that there exists an invariant
measure µ of the semigroup and µ satisfies the Poincaré and a logarithmic Sobolev inequality
with the same constant as before. One of the difficulties of this general case is to find tractable
conditions on functions D and a such that the Γ2-criterium holds. Some others examples
can be found in [BG09].

Let us also note that the Γ2-criterium CD(ρ,∞) is a particular case of the CD(ρ, n)
criterium where n ∈ N

∗ :

Γ2(f) > ρΓ(f) +
1

n
(Lf)

2
,

for all smooth functions f . For example, the Ornstein-Uhlenbeck semigroup satisfies the
CD(1,∞) criterium and the heat equation L = ∆ satisfies the CD(0, n).

Theorem 3.7 As for the Ornstein-Uhlenbeck semigroup, the Poincaré inequality (19) is
equivalent to the following inequality

Varµψ(Ptf) ≤ e−
2

ρ
tVarµψ (f) , (25)

for all smooth functions f ∈ L2(dµψ).
And in the same way, the logarithmic Sobolev inequality (20) is equivalent to

Entµψ (Ptf) ≤ e−2tEntµψ (f) , (26)

for all non-negative and smooth functions f ∈ L logL(dµψ) (it means that Entµψ (f) < +∞).

The logarithmic Sobolev inequality has two main applications. The first one the asymp-
totic behaviour in term of entropy, this is the result of Theorem 3.7. The second application
is about concentration inequality, a probability measure µ satisfying a logarithmic Sobolev
inequality has the same tail as the Gaussian distribution.

This properties can also be found in the Talagrand inequality described in the next section.

4 The Logarithmic Sobolev and transportation inequal-

ities by transportation method

Let us see how the Brenier’s Theorem and the Wasserstein distance can be used in this
context. The method come from [OV00, CE02] and has been generalized for many inequalities
in [AGK04, CENV04, Naz06].

Let recall the Wasserstein distance between two probability measures µ and ν,

T2(µ, ν) =

(

inf

{
∫

|x− y|2dπ(x, y) ; π ∈ P (µ, ν)

})1/2

. (27)

where the infimum is running over all probability measure π on R
n × R

n with respective
marginals µ and ν: for all functions g and h

∫

(g(x) + h(y))dπ(x, y) =

∫

gdµ+

∫

hdν.

Let f be non-negative such that
∫

fdγ = 1. Let ∇Φ be the Brenier map between fdγ
and γ: for all bounded and measurable functions h,

∫

h(∇Φ)fdγ =

∫

hdγ,

and

W 2
2 (fdγ, dγ) =

∫

|∇θ|2fdγ,
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where θ(x) = Φ(x) − 1
2 |x|

2. Denoting by Id the identity matrix, we have Id + Hess(θ) > 0.
The Monge-Ampére equation holding fdγ-a.e. is:

f(x)e−|x|2/2 = det(Id + Hess(θ))e−|x+∇θ(x)|2/2. (28)

After taking the logarithm, we have:

log f(x) = −1

2
|x+ ∇θ(x)|2 +

1

2
|x|2 + log det(Id+ Hess(θ))

= −x · ∇θ(x) − 1

2
|∇θ(x)|2 + log det(Id+ Hess(θ))

≤ −x · ∇θ(x) − 1

2
|∇θ(x)|2 + ∆θ(x),

where we used log(1 + t) ≤ t whenever 1 + t > 0. We integrate with respect to fdγ :

Entγ(f) ≤
∫

f(∆θ − x · ∇θ)dγ −
∫

1

2
|∇θ(x)|2fdγ.

By integration by parts (14) we get:

Entγ(f) ≤ −
∫

∇θ · ∇fdγ −
∫

1

2
|∇θ(x)|2fdγ

≤ −1

2

∫
∣

∣

∣

∣

√

f∇θ +
∇f√
f

∣

∣

∣

∣

2

dγ +
1

2

∫ |∇f |2
f

dγ

≤ 1

2

∫ |∇f |2
f

dγ,

which is inequality (9).

Hence we have proved, using the Brenier’s map, the logarithmic Sobolev inequality for
the Gaussian measure.

Let us see what can be done if now ∇Φ be the Brenier map between dγ and fdγ that is
for all bounded and measurable functions h:

∫

hfdγ =

∫

h(∇Φ)dγ,

and if x+ ∇θ(x) = ∇θ then

W 2
2 (fdγ, dγ) =

∫

|∇θ|2dγ.

In that case the Monge-Ampère equation gives

det(Id + Hess(θ))f(x + ∇θ(x))e−|x+∇θ(x)|2/2 = e−|x|2/2. (29)

Which implies

log f(x+ ∇θ(x)) =
1

2
|x+ ∇θ(x)|2 − 1

2
|x|2 − log det(Id+ Hess(θ))

= x · ∇θ(x) +
1

2
|∇θ(x)|2 − log det(Id+ Hess(θ))

> x · ∇θ(x) +
1

2
|∇θ(x)|2 − ∆θ(x)

= −Lθ +
1

2
|∇θ(x)|2.

Then

Entγ(f) =

∫

f log fdγ

=

∫

log f(∇Φ)dγ

>

∫

−Lθdγ +

∫

1

2
|∇θ(x)|2dγ

=
∫ 1

2
|∇θ(x)|2dγ =

1

2
T 2

2 (fdγ, dγ)
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We prove that for all function f such that fdγ is a probability measure, one has

T2(fdγ, dγ) ≤
√

2Entγ(f). (30)

This inequality is called Talagrand inequality for the Gaussian distribution (or T2 inequality)
and has been proved by Talagrand in [Tal96].

As for Poincaré and logarithmic Sobolev inequalities, we says that a probability measure
µ satisfies a Talagrand inequality if there exists C > 0 such that,

T2(fdµ, dµ) ≤
√

CEntµ(f), (31)

for all functions f such that fdµ is a probability measure,

4.1 Remarks and extensions

This method can also be used is the context of the section 3. Assume that ψ is uniformly
convex, satisfying

Hess(ψ) > ρI,

with some ρ > 0. The mass transportation method implies that the measure

dµψ(x) =
e−ψdx

Zψ
dx

satisfies the logarithmic Sobolev inequality (20) with the same constant 1/(2ρ). This is an
alternative proof of Theorem 3.3. Let us remark that the method is not useful to get directly
a Poincaré inequality.

Of course, as for Ornstein-Uhlenbeck semigroup, the mass transportation method gives
also a talagrand inequality (31).

T2(fdµψ, dµψ) ≤
√

1

ρ
Entµψ (f),

for all probability measure fdµψ.

In fact we have the general result,

Theorem 4.1 (Otto-Villani 2000) Let µ be a probability measure on R
n satisfying a log-

arithmic Sobolev inequality

Entµ
(

f2
)

≤ C

∫

|∇f |2dµ,

for all smooth functions f and for some constant C > 0.

Then µ satisfies a Talagrand inequality

T2(fdµ, dµ) ≤
√

2CEntµ(f),

for all probability measure fdµ.

The original proof comes from [OV00] and an easier one, using Hamilton-Jacobi equation,
can be seen in [BGL01]. These two inequalities are quite similar but it has been proved
in [CG06, Goz07] that they are not equivalent.

The main application of the Talagrand inequality is the same as for the logarithmic
Sobolev inequality, a probability measure satisfying a Talagrand inequality has the same tail
as the Gaussian distribution.
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