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Abstract. The material of this chapter is based on a series of three lectures for
graduate students that the author gave at the Journées mathématiques de Glanon
in July 2006. We introduce moduli spaces of smooth and stable curves, the tauto-
logical cohomology classes on these spaces, and explain how to compute all possible
intersection numbers between these classes.

0 Introduction

This chapter is an introduction to the intersection theory on moduli spaces of
curves. It is meant to be as elementary as possible, but still reasonably short.

The intersection theory of an algebraic variety M looks for answers to the
following questions: What are the interesting cycles (algebraic subvarieties)
of M and what cohomology classes do they represent? What are the interesting
vector bundles over M and what are their characteristic classes? Can we
describe the full cohomology ring of M and identify the above classes in this
ring? Can we compute their intersection numbers? In the case of moduli space,
the full cohomology ring is still unknown. We are going to study its subring
called the “tautological ring” that contains the classes of most interesting
cycles and the characteristic classes of most interesting vector bundles.

To give a sense of purpose to the reader, we assume the following goal: after
reading this paper, one should be able to write a computer program evaluating
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all intersection numbers between the tautological classes on the moduli space
of stable curves. And to understand the foundation of every step of these
computations. A program like that was first written by C. Faber [5], but our
approach is a little different.

Other good introductions to moduli spaces include [10] and [20].
Section 1 is an informal introduction to moduli spaces of smooth and stable

curves. It contains many definitions and theorems and lots of examples, but
no proofs.

In Section 2 we define the tautological cohomology classes on the moduli
spaces. Simplest computations of intersection numbers are carried out.

In Section 3 we explain how to reduce the computations of all intersection
numbers of all tautological classes to those involving only the so-called ψ-
classes. This involves a variety of useful techniques from algebraic geometry,
in particular the Grothendieck-Riemann-Roch formula.

Finally, in Section 4 we formulate Witten’s conjecture (Kontsevich’s theo-
rem) that allows one to compute all intersection numbers among the ψ-classes.
Explaining the proof of Witten’s conjecture is beyond the scope of this paper.

The chapter is based on a series of three lectures for graduate students that
the author gave at the Journées mathématiques de Glanon in July 2006. I am
deeply grateful to the organizers for the invitation. I would also like to thank
M. Kazarian whose unpublished notes on moduli spaces largely inspired the
third section of the chapter.
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1 From Riemann surfaces to moduli spaces

1.1 Riemann surfaces

Terminology. The main objects of our study are the smooth compact com-
plex curves also called Riemann surfaces with n marked numbered pairwise
distinct points. Unless otherwise specified they are assumed to be connected.

Every compact complex curve has an underlying structure of a 2-
dimensional oriented smooth compact surface, that is uniquely characterized
by its genus g.

Example 1.1. The sphere possesses a unique structure of Riemann surface
up to isomorphism: that of a complex projective line CP1 (see [6], IV.4.1). A
complex curve of genus 0 is called a rational curve. The automorphism group
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of CP1 is PSL(2,C) acting by(
a b
c d

)
z =

az + b

cz + d
.

Proposition 1.2. The automorphism group PSL(2,C) of CP1 allows one to
send any three distinct points x1, x2, x3 to 0, 1, and ∞ respectively in a unique
way.

We leave the proof as an exercise to the reader.

Example 1.3. Up to isomorphism every structure of Riemann surface on the
torus is obtained by factorizing C by a lattice L ' Z2 (see [6], IV.6.1). A
complex curve of genus 1 is called an elliptic curve. The automorphism group
Aut(E) of any elliptic curve E contains a subgroup isomorphic to E itself
acting by translations.

Proposition 1.4. Two elliptic curves C/L1 and C/L2 are isomorphic if and
only if L2 = aL1, a ∈ C∗.

Sketch of proof. An isomorphism between these two curves is a holomor-
phic function on C that sends any two points equivalent modulo L1 to two
points equivalent modulo L2. Such a holomorphic function is easily seen to
have at most linear growth, so it is of the form z 7→ az + b.

1.2 Moduli spaces

Moduli spaces of Riemann surfaces of genus g with n marked points can be
defined as smooth Deligne-Mumford stacks (in the algebraic-geometric setting)
or as smooth complex orbifolds (in an analytic setting). The latter notion is
simpler and will be discussed in the next section. For the time being we define
moduli spaces as sets.

Definition 1.5. For 2 − 2g − n < 0, the moduli space Mg,n is the set of
isomorphism classes of Riemann surfaces of genus g with n marked points.

Remark 1.6. The automorphism group of any Riemann surface satisfying
2 − 2g − n < 0 is finite (see [6], V.1.2, V.1.3). On the other hand, every
Riemann surface with 2 − 2g − n ≥ 0 has an infinite group of marked point
preserving automorphisms. For reasons that will become clear in Section 1.3,
this makes it impossible to define the moduli spaces M0,0, M0,1, M0,2, and
M1,0 as orbifolds. (They still make sense as sets, but this is of little use.)
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Example 1.7. Let g = 0, n = 3. Every rational curve (C, x1, x2, x3) with
three marked points can be identified with (CP1, 0, 1,∞) in a unique way.
Thus M0,3 = point.

Example 1.8. Let g = 0, n = 4. Every curve (C, x1, x2, x3, x4) can be
uniquely identified with (CP1, 0, 1,∞, t). The number t 6= 0, 1,∞ is deter-
mined by the positions of the marked points on C. It is called the modulus
and gave rise to the term “moduli space”. If C = CP1, then t is the cross-
ratio of x1, x2, x3, x4. The moduli space M0,4 is the set of values of t, that is
M0,4 = CP1 \ {0, 1,∞}.

Example 1.9. Generalizing the previous example, take g = 0 and an
arbitrary n. The curve (C, x1, . . . , xn) can be uniquely identified with
(CP1, 0, 1,∞, t1, . . . , tn−3). The moduli space M0,n is given by

M0,n = {(t1, . . . , tn−3) ∈
(
CP1

)n−3 | ti 6= 0, 1,∞, ti 6= tj}.

Example 1.10. According to Example 1.3, every elliptic curve is isomorphic
to the quotient of C by a rank 2 lattice L. The image of 0 ∈ C is a natural
marked point on E. Thus M1,1 = {lattices}/C∗. Consider a direct basis
(z1, z2) of a lattice L. Multiplying L by 1/z1 we obtain a lattice with basis
(1, τ), where τ lies in the upper half-plane H. Choosing another basis of the
same lattice we obtain another point τ ′ ∈ H. Thus the group SL(2,Z) of direct
base changes in a lattice acts on H. This action is given by(

a b
c d

)
τ =

aτ + b

cτ + d
.

We have M1,1 = H/SL(2,Z). The matrix −Id ∈ SL(2,Z) acts trivially on H.
The group PSL(2,Z) = SL(2,Z)/ ± Id has a fundamental domain shown in
the figure. The moduli space M1,1 is obtained from the fundamental domain
by identifying the arcs AB and AB′ and the half-lines BC and B′C ′.

Example 1.11. Let g = 2, n = 0. By Riemann-Roch’s theorem, every Rie-
mann surface of genus g carries a g-dimensional vector space Λ of abelian
differentials (that is, holomorphic differential 1-forms). Each abelian differen-
tial has 2g − 2 zeroes. (See [6], III.4.)

For g = 2, we have dim Λ = 2. Let (α, β) be a basis of Λ, and consider
the map f : C → CP1 given by the quotient f = α/β. (In intrinsic terms the
image of f is the projectivization of the dual vector space of Λ. Choosing a
basis in Λ identifies it with CP1.) The map f is of degree at most 2, because
both α and β have two zeroes and no poles. But f cannot be a constant
(because then α and β would be proportional to each other and would not
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form a basis of Λ) and cannot be of degree 1 (because then it would establish
an isomorphism between its genus 2 domain and its genus 0 target, with is
not possible). Thus deg f = 2. The involution of C that interchanges the two
sheets of f or, in other words, interchanges the two zeroes of every holomorphic
differential, is called the hyperelliptic involution. By an Euler characteristic
count (or applying the Riemann-Hurwitz formula, which is the same) we obtain
that f must have 6 ramification points, that is, 6 distinct points in CP1 that
have one double preimage rather than two simple preimages. The 6 preimages
of these points on C are the fixed points of the hyperelliptic involution and
are called Weierstrass points.

Summarizing, we see that giving a genus 2 Riemann surface is equivalent
to giving 6 distinct nonnumbered points on a rational curve. Thus M2,0 =
M0,6/S6, where S6 is the symmetric group. However, this equality only holds
for sets. The moduli spacesM2,0 andM0,6/S6 actually have different orbifold
structures, because every genus 2 curve has an automorphism that the genus 0
curve with 6 marked points does not have: namely, the hyperelliptic involution.

1.3 Orbifolds

Here we give a minimal set of definitions necessary for our purposes. Readers
interested in learning more about orbifolds and stacks are referred to [2, 15, 21].

A smooth complex n-dimensional orbifold is locally isomorphic to an open
ball in Cn factorized by a finite group action. Let us give a precise definition.

Let X be a topological space.

Definition 1.12. An orbifold chart on X is the following data:

U/G
ϕ→ V ⊂ X,

where U ⊂ Cn is a contractible open set endowed with a bi-holomorphic action
of a finite group G, V ⊂ X is an open set, and ϕ is a homeomorphism from
U/G to V .

Sometimes the chart will be denoted simply by V if this does not lead to
ambiguity. Note that a nontrivial subgroup of G can act trivially on U .

Definition 1.13. A chart

U ′/G′
ϕ′→ V ′ ⊂ X

is called a subchart of

U/G
ϕ→ V ⊂ X,

if V ′ is a subset of V and there is a group homomorphism G′ → G and a
holomorphic embedding U ′ ↪→ U such that (i) the embedding and the group
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morphism commute with the group actions; (ii) the G′-stabilizer of every point
in U ′ is isomorphic to the G-stabilizer of its image in U ; (iii) the embedding
commutes with the isomorphisms ϕ and ϕ′.

The following figure shows a typical example of a sub-chart.

Definition 1.14. Two orbifold charts V1 and V2 are called compatible if every
point of V1 ∩ V2 is contained in some chart V3 that is a subchart of both V1

and V2.

Note that any attempt to define a chart V1 ∩ V2 would lead to problems,
because V1 ∩ V2 is, in general, not connected and the preimages of V1 ∩ V2 in
U1 and in U2 are not necessarily contractible.

Definition 1.15. A smooth complex orbifold is a topological space X entirely
covered by a family of compatible charts.

Definition 1.16. Let X be an orbifold and x ∈ X a point. The stabilizer
of x is the stabilizer in G of a preimage of x in U under ϕ in some chart. (By
definition it does not depend on the chart or of the preimage.)

Example 1.17. If M is a smooth complex manifold endowed with an action
of a finite group G, then X = M/G has a natural orbifold structure.

All notions related to manifolds and possessing a local definition can be
automatically extended to orbifolds.

For instance, a differential form α on a chart V is defined as a G-invariant
differential form αU on U . The integral of α over a chain C ⊂ V is defined as

1
|G|

∫
ϕ−1(C)

αU .

Further, a vector bundle over a chart V is defined as a vector bundle over
the open set U together with a fiberwise linear lifting of the G-action to the
total space of the bundle. We can define a connection on a vector bundle and
the curvature of the connection in the natural way.

Defining global characteristics of orbifolds, for instance, their cohomology
rings or their homotopy groups, is more delicate. It is possible to define the
ring H∗(X,Z) for an orbifold X, but we won’t do it here. Instead, we content
ourselves with the straightforward definition of the cohomology ring over Q.

Definition 1.18. The homology and cohomology groups of an orbifold over Q
are defined as the homology cohomology groups of its underlying topological
space (also over Q).
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Theorem 1.19 ([3]). Poincaré duality holds for homology and cohomology
groups over Q of smooth compact orbifolds.

Remark 1.20. Let X be an orbifold and Y an irreducible sub-orbifold. De-
note by X̂ and Ŷ the underlying topological spaces. By convention, the ho-
mology class [Y ] ∈ H∗(X,Q) = H∗(X̂,Q) is equal to 1

|GY | [Ŷ ] ∈ H∗(X̂,Q),
where GY is the stabilizer of a generic point of Y .

Example 1.21. Consider the action of Z/kZ on CP1 by rotations and let X
be the quotient orbifold. Then the class [0] ∈ H0(X,Q) is 1/k times the class
of a generic point.

It turns out that the moduli space Mg,n (for 2 − 2g − n < 0) possesses
a natural structure of a smooth complex (3g − 3 + n)-dimensional orbifold.
Moreover, the stabilizer of a point t ∈ Mg,n is equal to the automorphism
group of the corresponding Riemann surface with n marked points Ct. Let us
explain how to endow the moduli space with an orbifold structure.

We say that p : C → B is a family of genus g Riemann surfaces with
n marked points if p is endowed with n disjoint sections si : B → C (so that
p◦si = Id) and every fiber of p is a smooth Riemann surface. The intersections
of the sections with every fiber of p are the marked points of the fiber. If we
have two families p1 : C1 → B1 and p2 : C2 → B2 and a subset B′2 ⊂ B2, we say
that the restriction of p2 to B′2 is a pull-back of p1 if there exists a morphism
ϕ : B′2 → B1 such that C2 restricted to B′2 is isomorphic to the pull-back of C1
under ϕ.

Theorem 1.22 ([10], 2.C). Let C be a genus g Riemann surface with n marked
points. Let G be its (finite) isomorphism group.

There exists (a) an open bounded simply connected domain U ⊂ C3g−3+n;
(b) a family p : C → U of genus g Riemann surfaces with n marked points;
(c) a group G with an action on C commuting with p and thus descending
to an action of G on U satisfying the following conditions: (i) The fiber C0

over 0 ∈ C3g−3+m is isomorphic to C. (ii) The action of G preserves C0 and
acts as the symmetry group of C0. (iii) For any family of smooth curves with
n marked points CB → B such that Cb is isomorphic to C for some b ∈ B, the
restriction of the family to some open subset b ∈ B′ ⊂ B is a pull-back of the
family C → U .

Theorem 1.22 leads to a construction of two smooth orbifolds.
The first one, Mg,n, covered by the charts U/G, is the moduli space. It

follows from the theorem that the stabilizer of t ∈ Mg,n is isomorphic to the
symmetry group of the surface Ct.
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The second one, Cg,n is covered by the open sets C (these are not charts,
because they are not simply connected, but it is easy to subdivide them into
charts). There is an orbifold morphism p : Cg,n →Mg,n between the two.

Definition 1.23. The map p : Cg,n → Mg,n is called the universal curve
over Mg,n.

The fibers of the universal curve are Riemann surfaces with n marked
points, and each such surface appears exactly once among the fibers.

If we consider the induced map of underlying topological spaces p̂ : Cg,n →
Mg,n, then its fibers are of the form C/G, where C is a Riemann surface and G
its automorphism group.

Example 1.24. As we explained in Example 1.10, the moduli space M1,1

is isomorphic to H/SL(2,Z). The stabilizer of a lattice L in SL(2,Z) is the
group of basis changes of L that amount to homotheties of C. These can be
viewed as isomorphisms of the elliptic curve C/L. Thus the stabilizer of a
point in the moduli space is indeed isomorphic to the automorphism group of
the corresponding curve.

The stabilizer of a generic lattice L (case A) is the group Z/2Z composed
of the identity and the central symmetry.

The stabilizer of the lattice Z + iZ (case B) is the group Z/4Z of rotations
by multiples of 90◦.

The stabilizer of the lattice Z + 1+i
√

3
2 Z (case C) is the group Z/6Z of

rotations by multiples of 60◦.

By abuse of language we will often “forget” that the moduli spaces are
orbifolds and treat them as manifolds, bearing in mind the above definitions.

1.4 Stable curves and the Deligne-Mumford
compactification

As the examples of Section 1.2 show, the moduli space Mg,n is, in general,
not compact. We are now going to compactify it by adding new points that
correspond to the so-called “stable curves”. Let us start with an example.

1.4.1 The case g = 0, n = 4 As explained in Example 1.8, the moduli
space M0,4 is isomorphic to CP1 \ {0, 1,∞}. A point t ∈ CP1 \ {0, 1,∞}
encodes the following curve Ct:

(C, x1, x2, x3, x4) ' (CP1, 0, 1,∞, t).
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What will happen as t → 0? At first sight, we will simply obtain a curve
with four marked points, two of which coincide: x1 = x4. However, such
an approach is unjust with respect to the points x1 and x4. Indeed, without
changing the curve Ct, we can change its local coordinate via the map x 7→ x/t
and obtain the curve

(C, x1, x2, x3, x4) ' (CP1, 0, 1/t,∞, 1).

What we see now in the limit is that x1 and x4 do not glue together any longer,
but this time x2 and x3 do tend to the same point.

Since there is no reason to prefer one local coordinate to the other, neither
of the pictures is better than the other one. Thus the right thing to do is to
include both limit curves in the description of the limit:

The right-hand component corresponds to the initial local coordinate x, while
the left-hand component corresponds to the local coordinate x/t.

In can be, at first, difficult to imagine, how a sphere can possibly tend
to a curve consisting of two spheres. To make this more visual, consider the
following example. Let xy = t be a family of curves in CP2 parameterized
by t. On each of these curves we mark the following points:

(x1, y1) = (0,∞), (x2, y2) = (1, t), (x3, y3) = (∞, 0), (x4, y4) = (t, 1).

Then, for t 6= 0, the curve is isomorphic to CP1 with four marked points, while
for t = 0 it degenerates into a curve composed of two spheres (the coordinate
axes) with two marked points on each sphere.

Now we go back to the general case.

1.4.2 Stable curves Stable curves are complex algebraic curves that are al-
lowed to have exactly one type of singularities, namely, simple nodes. The
simplest example of a curve with a node is the plane curve given by the equa-
tion xy = 0, that has a node at the origin. The neighborhood of a node is
diffeomorphic to two discs with identified centers. A node can be desingular-
ized in two different ways. We say that a node is normalized if the two discs
with identified centers that form its neighborhood are unglued, i.e., replaced
by disjoint discs. A node is resolved if the two discs with identified centers
that form its neighborhood are replaced by a cylinder.

Definition 1.25. A stable curve C with n marked points x1, . . . , xn is a com-
plex algebraic curve satisfying the following conditions. (i) The only singular-
ities of C are simple nodes. (ii) The marked points are distinct and do not
coincide with the nodes. (iii) The curve (C, x1, . . . , xn) has a finite number of
automorphisms.
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Unless stated otherwise, stable curves are assumed to be connected.
The genus of a stable curve C is the genus of the surface obtained from C

by resolving all its nodes.
The normalization of a stable curve C is the smooth not necessarily con-

nected curve obtained from C by normalizing all its nodes.

Condition (iii) in the above definition can be reformulated as follows. Let
C1, . . . , Ck be the connected components of the normalization of C. Let gi be
the genus of Ci and ni the number of special points, i.e., marked points and
preimages of the nodes on Ci. Then Condition (iii) is satisfied if and only if
2− 2gi − ni < 0 for all i. In this form, the condition is, of course, much easier
to check.

The stable curve in the picture below is of genus 4.

Proposition 1.26. Let C be a stable curve of genus g with n marked points.
Then the Euler characteristic of C\(marked points and nodes) equals 2−2g−n.

Corollary 1.27. There is only a finite number of topological types of stable
curves of genus g with n marked points.

We leave the proof as an exercise to the reader.

Theorem 1.28 ([10], Chapter 4). There exists a smooth compact complex
(3g−3+n)-dimensional orbifoldMg,n, a smooth compact complex (3g−2+n)-
dimensional orbifold Cg,n, and a map p : Cg,n → Mg,n such that (i) Mg,n ⊂
Mg,n is an open dense sub-orbifold and Cg,n ⊂ Cg,n its preimage under p;
(ii) the fibers of p are stable curves of genus g with n marked points; (iii) each
stable curve is isomorphic to exactly one fiber; (iv) the stabilizer of a point
t ∈Mg,n is isomorphic to the automorphism group of the corresponding stable
curve Ct.

Definition 1.29. The space Mg,n is called the Deligne-Mumford compactifi-
cation of the moduli space Mg,n of Riemann surfaces. The family p : Cg,n →
Mg,n is called the universal curve.

Definition 1.30. The set Mg,n \Mg,n parametrizing singular stable curves
is called the boundary of Mg,n.

The boundary is a sub-orbifold of Mg,n of codimension 1, in other words,
a divisor. The term “boundary” may lead one to think that Mg,n has a
singularity at the boundary, but this is not true: as we have already stated,
Mg,n is a smooth orbifold, and the boundary points are as smooth as any
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other points ofMg,n. A generic point of the boundary corresponds to a stable
curve with exactly one node. If a point t of the boundary corresponds to a
stable curve Ct with k nodes, there are k local components of the boundary
that intersect transversally at t. Each of these components is obtained by
resolving k − 1 out of k nodes of Ct. Thus the boundary is a divisor with
normal crossings in Mg,n. The figure below shows two components of the
boundary divisor in Mg,n and the corresponding stable curves.

1.4.3 Examples

Example 1.31. We have M0,3 = M0,3 = point. Indeed, the unique stable
genus 0 curve with 3 marked points is smooth.

Example 1.32. Consider the projection p̃ : CP1 × CP1 → CP1 on the first
factor. Consider further four distinguished sections s̃i : CP1 → CP1 × CP1:
s̃1(t) = (t, 0), s̃2(t) = (t, 1), s̃3(t) = (t,∞), s4(t) = (t, t). Now take the
blow-up X of CP1 × CP1 at the three points (0, 0), (1, 1), and (∞,∞) where
the fourth section intersects the three others. We obtain a map p : X → CP1

endowed with four nonintersecting sections. Its fiber over t ∈ CP1\{0, 1,∞} is
the Riemann sphere with four marked points 0, 1,∞, and t. The three special
fibers over 0, 1, and∞ are singular stable curves. Thus the map p : X → CP1

is actually the universal curve C0,4 →M0,4.

CP1 =M0,4

CP1

0

1

∞

0 1 ∞

s1

s2

s3

s4

C0,4

p

Example 1.33. The moduli spaceM1,1 is obtained fromM1,1 by adding one
point corresponding to the singular stable curve:

Example 1.34. In Example 1.11 we saw thatM2,0 is isomorphic toM0,6/S6

up to a Z/2Z action. One can prove that M2,0 is isomorphic to M0,6/S6 up
to a Z/2Z. As an exercise the reader can enumerate the topological types of
genus 2 stable curves and show that the hyperelliptic involution extends to all
of them uniquely.
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1.4.4 The universal curve at the neighborhood of a node. As in Sec-
tion 1.4.1, consider the map p : C2 → C given by (x, y) 7→ t = xy. Then the
fibers of p over t 6= 0 are smooth (and isomorphic to C∗) while the fiber over
t = 0 has a node (and is isomorphic to two copies of C glued together at the
origin).

It turns out that this example gives a local model for every node in every
universal curve.

Proposition 1.35 (See [10], 3.B, Deformations of stable curves). Let p :
Cg,n → Mg,n be the universal curve and z ∈ Cg,n a node in a singular fiber.
Then there is a neighborhood of z in Cg,n with a system of local coordinates
T1, . . . , T3g−4+n, x, y and a neighborhood of p(z) inMg,n with a system of local
coordinates t1, . . . , t3g−3+n such that in these coordinates p is given by

ti = Ti (1 ≤ i ≤ 3g − 4 + n), t3g−3+n = xy.

1.4.5 The compactness of Mg,n illustrated We do not prove the com-
pactness of Mg,n here, but to get a feeling of it we give several examples of
families of smooth or stable maps and find their limits in Mg,n.

Example 1.36. Let C a smooth curve of genus 2 and x1(t), x2(t) ∈ C two
marked points depending on a parameter t. Suppose that, as t → 0, x1 and
x2 tend to the same point x. Then the limit stable curve of this family looks
as follows:

The curve C “sprouts” a sphere, on which lie the points x1 and x2. This
sphere is attached to C at the point x.

This limit can be explained as follows. If we choose a fixed local coordinate
at the neighborhood of x on C, then, in this local coordinate, the two points
tend to x, so we obtain the picture that we see on the genus 2 component of
the limit curve. If, however, we choose a local coordinate that depends on t in
such a way that x1 and x2 remain fixed, then in this local coordinate all the
“non-trivial” part of C moves further and further away to ∞. So we end up
with a rational curve containing the points x1 and x2, while the genus 2 curve
seems to be “concentrated” at the point ∞ of this rational curve. This is the
picture we see on the genus 0 component of the limit curve.

Example 1.37. Consider the curve C = CP1 with 5 marked points depending
on a parameter t: x1 = 0, x2 = 1, x3 = ∞, x4 = t, x5 = t2. As t → 0, this
curve tends to

The coordinate on the rightmost sphere is the initial coordinate x. The coor-
dinate on the central sphere is x/t. That on the leftmost sphere is x/t2.
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Example 1.38. Let C be the genus 2 curve obtained as a 2-sheeted covering
of CP1 ramified over the points x1, . . . , x6 ∈ CP1. If x5 and x6 tend to the
same point x, then C tends to the following stable curve:

2 Cohomology classes on Mg,n

In this section we introduce several natural cohomology classes on the moduli
space. The ring generated by these classes is called the tautological cohomology
ring ofMg,n. Although it is known that for large g and n the rank of the tau-
tological ring is much smaller than that of the full cohomology ring of Mg,n,
most natural geometrically defined cohomology classes happen to be tautolog-
ical and it is actually not so simple to construct examples of nontautological
cohomology classes [8].

2.1 Forgetful and attaching maps

2.1.1 Forgetful maps. The idea of a forgetful map is to assign to a genus g
stable curve (C, x1, . . . , xn+m) the curve (C, x1, . . . , xn), where we have “for-
gotten” m marked points out of n+m. The main problem is that the resulting
curve (C, x1, . . . , xn) is not necessarily stable. Assume that 2 − 2g − n < 0.
Then, either the curve (C, x1, . . . , xn) is stable, or it has at least one genus 0
component with 1 or 2 special points. In the latter case this component can
be contracted into a point. For the curve thus obtained we can once again ask
ourselves if it is stable or not, and if not find another component to contract.
Since the number of irreducible components decreases with each operation, in
the end we will obtain a stable curve. This curve is called the stabilization of
(C, x1, . . . , xn).

Definition 2.1. The forgetful map p :Mg,n+m →Mg,n is the map that as-
signs to a curve (C, x1, . . . , xn+m) the stabilization of the curve (C, x1, . . . , xn).

The following picture illustrates the action of p :M3,8 →M3,2.

Proposition 2.2. The universal curve Cg,n → Mg,n and the forgetful map
Mg,n+1 →Mg,n are isomorphic as families over Mg,n.

Proof. A point t ∈Mg,n+1 encodes a stable curve (C, x1, . . . , xn+1). Denote
by (Ĉ, x̂1, . . . , x̂n) the stabilization of (C, x1, . . . , xn) and by y ∈ Ĉ the image
of xn+1 under the stabilization. Then (Ĉ, x̂1, . . . , x̂n, y) is an element of Cg,n.
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To understand this isomorphism more precisely, let us distinguish three
cases.

Mg,n+1
Mg,n

Cg,n+1 Cg,n

xn+1

xi xn+1

xn+1

x̂i

(i) Suppose the curve (C, x1, . . . , xn) is stable. Then (Ĉ, x̂1, . . . , x̂n) =
(C, x1, . . . , xn). In this case y = xn+1 on the curve C = Ĉ.

(ii) Suppose xn+1 lies on a genus 0 component C0 of C that contains another
marked point xi, a node, and no other special points. Then Ĉ is obtained from
C by contracting the component C0, and x̂i is the image of C0. In this case,
y = x̂i.

(iii) Finally, suppose xn+1 lies on a genus 0 component C0 of C that, in
addition, contains two nodes, and no other special points. Then Ĉ is obtained
from C by contracting the component C0. In this case, y is the image of C0

and it is a node of Ĉ.
It is easy to construct the inverse map and thus to prove that we have

constructed an isomorphism.
The figure shows three points in Mg,n+1 and their images in Cg,n. ♦

The following proposition is an example of application of forgetful maps.

Proposition 2.3. The following cohomological relation holds in H2(M0,6,Q):

(Each picture represents the divisor whose points encode the curves as shown
or more degenerate stable curves.)

Proof. The right-hand side and the left-hand side are pull-backs under the
forgetful map p :M0,6 →M0,4 of the divisors

respectively. Both represent the class of a point in M0,4. ♦
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2.1.2 Attaching maps. Let I t J be a partition of the set {1, . . . , n+ 2} in
two disjoint subsets such that n+1 ∈ I, n+2 ∈ J . Choose two integers g1 and
g2 in such a way that g1 +g2 = g. Denote byMg1,I the moduli space of stable
curves whose marked points are labeled by the elements of I, and likewise for
Mg2,J .

Definition 2.4. The attaching map of separating kind q :Mg1,I ×Mg2,J →
Mg,n assigns to two stable curves the stable curve obtained by identifying the
marked points with numbers n+ 1 and n+ 2.

The attaching map of nonseparating kind q :Mg−1,n+2 →Mg,n assigns to
a stable curve the stable curve obtained by identifying the marked points with
numbers n+ 1 and n+ 2.

2.1.3 Tautological rings: preliminaries We will now start introducing
tautological classes, see also the chapter by G. Mondello in Volume II of this
Handbook [17].

Before going into details let us give a definition that motivates the appear-
ance of these classes.

Definition 2.5. The minimal family of subrings R∗(Mg,n) ⊂ H∗(Mg,n) sta-
ble under the pull-backs and push-forwards under the forgetful and attaching
maps is called the family of tautological rings of the moduli spaces of stable
curves.

Thus 1 ∈ H0(Mg,n) lies in the tautological ring (since a subring contains
the unit element by definition), the classes represented by boundary strata lie
in the tautological ring (since they are images of 1 under attaching maps), the
self-intersection of a boundary stratum lies in the tautological ring, and so on.
Now we will give an explicit construction of other tautological classes.

The relative cotangent line bundle. Let p : Cg,n →Mg,n be the univer-
sal curve and ∆ ⊂ Cg,n the set of nodes in the singular fibers. Over Cg,n \∆
there is a line bundle L cotangent to the fibers of the universal curve. We are
going to extend this line bundle to the whole universal curve. To do that, it
is enough to consider the local picture p : (x, y) 7→ xy (see Section 1.4.4). In
coordinates (x, y), the line bundle L is generated by the sections dx

x and dy
y

modulo the relation d(xy)
xy = dx

x + dy
y = 0. Since the restriction of the 1-form

d(xy) on every fiber of p vanishes, the line bundle thus obtained is indeed
identified with the cotangent line bundle to the fibers of Cg,n.

Definition 2.6. The line bundle L extended to the whole universal curve is
called the relative cotangent line bundle.
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The restriction of L to a fiber C of the universal curve is a line bundle
over C. If C is smooth, then L|C is the cotangent line bundle and its holomor-
phic sections are the abelian differentials, that is, the holomorphic differential
1-forms. By extension, the holomorphic sections of L|C are called abelian
differentials for any stable curve. They can be described as follows.

Definition 2.7. An abelian differential on a stable curve C is a meromorphic
1-form α on each component of C satisfying the following properties: (i) the
only poles of α are at the nodes of C, (ii) the poles are at most simple, (iii) the
residues of the poles on two branches meeting at a node are opposite to each
other.

Remark 2.8. More generally, when we speak about meromorphic forms on a
stable curve with poles of orders k1, . . . , kn at the marked points x1, . . . , xn,
we will actually mean meromorphic sections of L with poles as above, or,
in algebro-geometric notation, the sections of L(

∑
kixi). In other words, in

addition to the poles at the marked points, we allow the 1-forms to have simple
poles at the nodes with opposite residues on the two branches.

Example 2.9. The figure in Example 1.33 represents a stable curve obtained
by identifying two points of the Riemann sphere. On the Riemann sphere we
introduce the coordinate z such that the marked point is situated at z = 1,
while the identified points are z = 0 and z =∞. In this coordinate, the abelian
differentials on the curve have the form λdzz . The residues of this differential
at 0 and ∞ equal λ and −λ respectively.

Proposition 2.10. The abelian differentials on any genus g stable curve form
a vector space of dimension g.

Sketch of the proof. Use the Riemann-Roch formula on every component
of the normalization of the curve. ♦

It follows from standard algebraic-geometric arguments (see [11], Exercise
5.8) that, since the dimension of these vector spaces is the same for every
curve, they actually form a rank g holomorphic vector bundle over Mg,n.

Definition 2.11. The Hodge bundle Λ is the rank g vector bundle overMg,n

whose fiber over t ∈ Mg,n is constituted by the abelian differentials on the
curve Ct.

2.2 The ψ-classes

Definition of ψ-classes. First we construct n holomorphic line bundles
L1, . . . ,Ln over Mg,n. The fiber of Li over a point x ∈Mg,n is the cotangent
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line to the curve Cx at the ith marked point. More precisely, let si :Mg,n →
Cg,n the section corresponding to the ith marked point (so that p ◦ si = Id).
Then Li = s∗i (L).

Definition 2.12. The ψ-classes are the first Chern classes of the line bun-
dles Li,

ψi = c1(Li) ∈ H2(Mg,n,Q).

2.2.1 Expression ψi as a sum of divisors for g = 0 Over M0,n it is
possible to construct an explicit section of the line bundle Li and to express
its first Chern class ψi as a linear combination of divisors.

For pairwise distinct i, j, k ∈ {1, . . . , n}, denote by δi|jk the set of stable
genus 0 curves with a node separating the ith marked point from the jth and
kth marked points.

The set δi|jk is a divisor on M0,n and we denote by [δi|jk] ∈ H2(M0,n) its
Poincaré dual cohomology class.

Proposition 2.13. On M0,n we have ψi = [δi|jk] for any j, k.

Proof. We construct an explicit meromorphic section α of the dual cotangent
line bundle L over the universal curve. Its restriction to the ith section si of
the universal curve will give us a holomorphic section of Li. The class ψi is
then represented by the divisor of its zeroes.

The meromorphic section α of L is constructed as follows. On each fiber of
the universal curve (i.e., on each stable curve) there is a unique meromorphic
1-form (in the sense of Remark 2.8) with simple poles at the jth and the kth
marked points with residues 1 and −1 respectively. This form gives us a section
of L on each stable curve. Their union is the section α of L over the whole
universal curve.

In order to determine the zeroes of the restriction α|si let us study α in
more detail. A stable curve C of genus 0 is a tree of spheres. One of the spheres
contains the jth marked point, another one (possibly the same) contains the
kth marked point. There is a chain of spheres connecting these two spheres
(shown in grey in the figure).

On every sphere of the chain, the 1-form α|C has two simple poles: one
with residue 1 (at the jth marked point or at the node leading to the jth
marked point) and one with residue −1 (at the kth marked point or at the
node leading to the kth marked point) The 1-form vanishes on the spheres
that do not belong to the chain. Thus α determines a nonvanishing cotangent
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vector at the ith marked point if and only if the ith marked point lies on the
chain. In other words, α|si

vanishes if and only if the curve C contains a node
that separates the ith marked point from the jth and the kth marked points.
But this is precisely the description of δi|jk.

We conclude that the divisor δi|jk represents the class ψi. ♦

Example 2.14. We have ∫
M0,4

ψ1 = 1,

because the divisor δ1|23 is composed of exactly one point corresponding to
the curve:

Example 2.15. Let us compute the integral∫
M0,5

ψ1ψ2.

It is possible to express both classes in divisors and then study the intersection
of these divisors, but this method is rather complicated, because it involves
a struggle with self-intersections. A better idea is to express the ψ-classes in
terms of divisors one at a time. We have

ψ1 = [δ1|23] = .

Now we must compute the integral of ψ2 over δ1|23. Each of the three com-
ponents of δ1|23 is isomorphic to M0,3 × M0,4, and we see that ψ2 is the
pull-back of a ψ-class either fromM0,3 (for the first component) or fromM0,4

(for the second and the third components). In the first case, the integral of ψ2

vanishes, while in the second and the third cases it is equal to 1 according to
Example 2.14. We conclude that∫

M0,5

ψ1ψ2 = 2.

Proposition 2.16. We have∫
M0,3

1 = 1;
∫
M0,4

ψ1 = 1;
∫
M0,5

ψ2
1 = 1;

∫
M0,5

ψ1ψ2 = 2;

∫
M0,6

ψ3
1 = 1;

∫
M0,6

ψ2
1ψ2 = 3;

∫
M0,6

ψ1ψ2ψ3 = 6.
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Proposition 2.17. Let p be the forgetful map p :Mg,n+1 →Mg,n. Consider
the set of stable curves that contain a spherical component with exactly three
special points: a node and the marked points number i and n+ 1.

The points encoding such curves form a divisor δ(i,n+1) of Mg,n+1. Now we
can consider the class ψi (1 ≤ i ≤ n) both on Mg,n and on Mg,n+1. We have

ψi − p∗(ψi) = [δ(i,n+1)].

Proposition 2.18. Let Di be the divisor of the ith special section in the
universal curve p : Cg,n →Mg,n. Then we have p∗(Dk+1

i ) = (−ψi)k.

We leave the proofs as an exercise to the reader.

2.2.2 Modular forms and the class ψ1 on M1,1 Recall that a lattice
L ⊂ C is an additive subgroup of C isomorphic to Z2.

Definition 2.19. A modular form of weight k ∈ N is a function F on the
set of lattices such that (i) F (cL) = F (L)/ck for c ∈ C∗ and (ii) the function
f(τ) = F (Z + τZ) is holomorphic on the upper half-plane Im τ > 0, and
(iii) f(τ) is bounded on the half-plane Im τ ≥ C for any positive constant C.

Since the lattice Z + τZ is the same as Z + (τ + 1)Z, the function f is
periodic with period 1. Therefore there exists a function ϕ(q), holomorphic
on the open punctured unit disc, such that f(τ) = ϕ(e2πiτ ). This fucntion is
bounded at the neighborhood of the origin, therefore it can be extended to a
holomorphic function on the whole unit disc and expanded into a power series
in q at 0, which is the usual way to represent a modular form.

Since −L = L for every lattice L, we see that there are no nonzero modular
forms of odd weight. On the other hand, there exists a nonzero modular form
of any even weight k ≥ 4, given by

Ek(L) =
∑

z∈L\{0}

1
zk
.

(For odd k this sum vanishes, while for k = 2 it is not absolutely convergent.)
The value of the corresponding function ϕk(q) at q = 0 is equal to

ϕk(0) = lim
Imτ→∞

Ek(Z + τZ) =
∑

z∈Z\{0}

1
zk

= 2ζ(k).

The relation between modular forms and the ψ-class on M1,1 comes from
the following proposition.

Proposition 2.20. The space of modular forms of weight k is naturally iden-
tified with the space of holomorphic sections of L⊗k1 over M1,1.
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Proof. Let F be a modular form of weight k. We claim that F (L)dzk is a
well-defined holomorphic section of L⊗k1 over M1,1.

First of all, if C/L is any elliptic curve, then the value of F (L)dzk at the
marked point (the image of 0 ∈ C) is indeed a differential k-form, that is, an
element of the fiber of L⊗k1 . If we apply a homothety z 7→ cz, replacing L
by cL, we obtain an isomorphic elliptic curve. However, the k-form F (L)dzk

does not change, because F (L) is divided by ck, while dzk is multiplied by ck.
Thus F (L)dzk is a well-defined section of L⊗k1 .

The fact that this section is holomorphic over M1,1 follows from the fact
that f(τ) is holomorphic. The fact that it is also holomorphic at the boundary
point follows from the fact the function ϕ(q) is holomorphic at q = 0.

Conversely, if s is a holomorphic section of L⊗k1 , then taking the value of s
over the curve C/L and dividing by dzk, we obtain a function on lattices L.
The same argument as above shows that it is a modular form of weight k. ♦

Proposition 2.21. We have ∫
M1,1

ψ1 =
1
24
.

Proof. We are going to give three similar computations leading to the same
result. Denote by fk(τ) and ϕk(q) the functions associated with the modular
form Ek. One can check (see, for instance [19], chapter VII) that in the
modular figure (i.e., on M1,1) the function f4 has a unique simple zero at
τ = 1

2 ±
√

3
2 i, while f6 has a unique simple zero at τ = i. (The fact that these

are indeed zeroes is an easy exercise for the reader.) Further, the function(
ϕ4

2ζ(4)

)3

−
(

ϕ6

2ζ(6)

)2

has a unique zero at q = 0. The stabilizers of the corresponding points in
M1,1 are Z/6Z, Z/4Z, and Z/2Z respectively (see Example 1.24). Thus the
first Chern class of L⊗4

1 equals 1/6, that of L⊗6
1 equals 1/4, that of L⊗12

1 equals
1/2. In every case we find that the first Chern class of L1 equals ψ1 = 1/24.
♦

Proposition 2.22. Denote by δ(irr), δ(1) ⊂M1,n the divisors

δ(irr) δ(1)

In other words, the points of δ(irr) encode curves with at least one nonseparating
node; the points of δ(1) encode curves with a separating node dividing the curve
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into a stable curve of genus 1 and a stable curve of genus 0 containing the
marked point number 1. Then the class ψ1 on M1,n equals

ψ1 =
1
12

[δ(irr)] + [δ(1)].

The proof follows from the computation of ψ1 on M1,1 and from Proposi-
tion 2.17.

2.3 Other tautological classes

All cohomology classes we consider are with rational coefficients.

2.3.1 The classes on the universal curve. On the universal curve we
define the following classes.
• Di is the divisor given by the ith section of the universal curve. In other

words, the intersection of Di with a fiber C of Cg,n is the ith marked
point on C. By abuse of notation we denote by Di ∈ H2(Cg,n) the
cohomology class Poincaré dual to the divisor.

• D =
∑n
i=1Di.

• ω = c1(L).
• K = c1(Llog) = ω + D ∈ H2(Cg,n), where Llog is the line bundle L

twisted by the divisor D.
• ∆ is the codimension 2 subvariety of Cg,n consisting of the nodes of the

singular fibers. By abuse of notation, ∆ ∈ H4(Cg,n) will also denote the
Poincaré dual cohomology class.

• Let N be the normal vector bundle to ∆ in Cg,n. Then we denote by

∆k,l = (−c1(N))k∆l+1.

To simplify the notation, we introduce two symbols ν1 and ν2 with the
convention ν1 + ν2 = −c1(N), ν1ν2 = c2(N). Since c2(N)∆ = ∆2, we also
identify ν1ν2 with ∆. Thus, even though the symbols ν1 and ν2 separately
are meaningless, every symmetric polynomial in ν1 and ν2 divisible by ν1ν2

determines a well-defined cohomology class. For instance, we have

∆k,l = ∆ · (ν1 + ν2)k(ν1ν2)l = (ν1 + ν2)k(ν1ν2)l+1.

Since ∆ is the set of nodes in the singular fibers of Cg,n, it has a natural
2-sheeted (unramified) covering p : ∆̃→ ∆ whose points are couples (node +
choice of a branch). Over ∆̃ we can define two natural line bundles Lα and Lβ
cotangent, respectively, to the first and to the second branch at the node. The
pull-back p∗N of N to ∆̃ is naturally identified with L∨α⊕L∨β . Thus, if P (ν1, ν2)
is a symmetric polynomial, we have p∗(∆ ·P (ν1, ν2)) = ∆̃ ·P (c1(Lα), c1(Lβ)).
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2.3.2 Intersecting classes on the universal curve

Proposition 2.23. For all 1 ≤ i, j ≤ n, i 6= j we have

KDi = DiDj = K∆ = Di∆ = 0 ∈ H∗(Cg,n).

Proof. The divisors Di and Dj do not intersect, so the intersection of the
corresponding classes vanishes. Similarly, the divisor Di does not meet ∆,
so their intersection vanishes. The restriction of the line bundle Llog to Di

is trivial. Indeed, the sections of Llog are 1-forms with simple poles at the
marked points, and the fiber at the marked point is the line of residues, so
it is canonically identified with C. The intersection KDi is the first Chern
class of the restriction of Llog to Di. Therefore it vanishes. The restriction of
Llog to ∆ is not necessarily trivial. However its pull-back to the double-sheeted
covering ∆̃ is trivial (because the fiber is the line of residues identified with C).
Alternatively, one can say that (Llog)⊗2 is trivial. Therefore K∆ = 0. ♦

Remark 2.24. A line bundle whose tensor power is trivial is called rationally
trivial. Although it is not necessarily trivial itself, all it characteristic classes
over Q vanish. This is the case of L|∆ = Llog|∆.

Corollary 2.25. Every polynomial in the classes Di,K,∆k,l on Cg,n can be
written in the form

PK(K) +
n∑
i=1

Pi(Di) + ∆ · P∆(ν1, ν2),

while PK and Pi, 1 ≤ i ≤ n are arbitrary polynomials, while P∆ is a symmetric
polynomial with the convention ν1ν2 = ∆, ν1 + ν2 = −c1(N).

Proof. Given a polynomial in Di,K,∆k,l, we can, according to the propo-
sition, cross out the “mixed terms”, that is, the monomials containing prod-
ucts DiDj , DiK, K∆k,l or Di∆k,l. We end up with a sum of powers of
Di, powers of K, and products of ∆k,l. Now, by definition, ∆k1,l1∆k2,l2 =
∆k1+k2,l1+l2+1. Therefore a polynomial in variables ∆k,l can be rewritten in
the form ∆P∆(ν1, ν2), where P∆ is a symmetric polynomial. ♦

2.3.3 The classes on the moduli space. Let p : Cg,n → Mg,n be the
universal curve. On the moduli space Mg,n we define the following classes.

• κm = p∗(Km+1) ∈ H2m(Mg,n).

• ψi = −p∗(D2
i ) ∈ H2(Mg,n).

• δk,l = p∗(∆k,l) ∈ Hk+2l+1(Mg,n).
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• λi = ci(Λ) ∈ H2i(Mg,n), where Λ is the Hodge bundle and ci the ith
Chern class.

Note that for the definition of the ψ-class we use Proposition 2.18. Thus,
with the exception of the λ-classes, the tautological classes onMg,n are push-
forwards of tautological classes on Cg,n and their products. For example, δ0,0
is the boundary divisor on Mg,n, i.e., δ0,0 =Mg,n \Mg,n.

Example 2.26. As an exercise, the reader can show that over M1,1 the line
bundles Λ and L1 are isomorphic. Hence∫

M1,1

λ1 =
1
24
.

Theorem 2.27. The classes ψi, κm, δk,l, and λi lie in the tautological ring
in the sense of Definition 2.5.

Proof. Let p : Mg,n+1 → Mg,n be the forgetful map. Then ψi =
−p∗(δ2

(i,n+1)), where δ(i,n+1) is defined in Propositions 2.17, while κm =
p∗(ψm+1

n+1 ). The class δk,l, is the sum of push-forwards under the attaching
maps of the class (ψn+1 + ψn+2)k(ψn+1ψn+2)l. Thus all these classes lie in
the tautological ring. The class λi is expressed via the ψ-, κ-, and δ-classes in
Theorem 3.16. It follows that it too lies in the tautological ring. ♦

3 Algebraic geometry on moduli spaces

In the previous section we introduced a wide range of tautological classes on
the moduli space Mg,n, namely, the ψ-, κ-, δ-, and λ-classes. Now we would
like to learn to compute all possible intersection numbers between these classes.

This is done in three steps.
First, by applying the Grothendieck-Riemann-Roch (GRR) formula we ex-

press λ-classes in terms of ψ-, κ-, and δ-classes. This gives us an opportunity
to introduce the GRR formula and to give an example of its application in a
concrete situation.

Second, by studying the pull-backs of the ψ-, κ-, and δ-classes under at-
taching and forgetful maps, we will be able to eliminate one by one the κ- and
δ-classes from intersection numbers.

The remaining problem of computing intersection numbers of the ψ-classes
is much more difficult. The answer was first conjectured by E. Witten [22]. It
is formulated below in Theorems 4.4 and 4.5. Witten’s conjecture now has at
least 5 different proofs (the most accessible to a non-specialist is probably [13]),
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and all of them use nontrivial techniques. In this note we will not prove
Witten’s conjecture, but give its formulation and say a few words about how
it appeared. Witten’s conjecture is also discussed in Mondello’s chapter of this
Hanbook [17].

3.1 Characteristic classes and the GRR formula

In this section we present the Grothendieck-Riemann-Roch (GRR) formula.
But first we recall the necessary information on characteristic classes of vector
bundles, mostly without proofs.

3.1.1 The first Chern class.

Definition 3.1. Let L → B be a holomorphic line bundle over a complex
manifold B. Let s be a nonzero meromorphic section of L and Z − P the
associated divisor: the set of zeroes minus the set of poles of s. Then [Z]−[P ] ∈
H2(B,Z) is called the first Chern class of L and denoted by c1(L).

The first Chern class is well-defined, i.e., it does not depend on the choice
of the section. Moreover, c1(L) is a topological invariant of L. In other words,
it only depends on the topological type of L and B, but not on the complex
structure of B nor on the holomorphic structure of L. Actually, there exists
a different definition of first Chern classes (which we won’t use) that does not
involve the holomorphic structure at all.

3.1.2 Total Chern class, Todd class, Chern character. Let V → B be
a vector bundle of rank k.

Definition 3.2. We say that V can be exhausted by line bundles if we can find
a line subbundle L1 of V , then a line subbundle L2 of the quotient V1 = V/L1,
then a line subbundle L3 of the quotient V2 = V1/L2, and so on, until the last
quotient is itself a line bundle Lk. The simplest case is when V = ⊕Li.

If V is exhausted by line bundles, the first Chern classes ri = c1(Li) are
called the Chern roots of V .

Definition 3.3. Let V be a vector bundle with Chern roots r1, . . . , rk. Its
total Chern class is defined by

c(V ) =
k∏
i=1

(1 + ri);
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Its Todd class is defined by

Td(V ) =
k∏
i=1

ri
1− e−ri

;

Its Chern character is defined by

ch(V ) =
k∑
i=1

eri .

The homogeneous parts of degree i of these classes are denoted by ci, Tdi, and
chi respectively.

If we know the total Chern class of a vector bundle, we can compute its
Todd class and Chern character (except ch0 that is equal to the rank of the
bundle). For instance, let us compute ch3. We have

ch3 =
1
6

∑
r3
i

=
1
6

(∑
ri

)3

− 1
2

(∑
ri

)(∑
i<j

rirj

)
+

1
2

∑
i<j<k

rirjrk

=
1
6
c31 −

1
2
c1c2 +

1
2
c3.

As an exercise, the reader can compute the expressions for ch1, ch2, Td1,
and Td2 in terms of Chern classes c1 and c2.

Not every vector bundle can be exhausted by line bundles. The character-
istic classes are defined in full generality by using the following proposition.

Proposition 3.4. For every vector bundle V → B there exists a map of
complex manifolds p : B′ → B such that p∗(V ) can be exhausted by line bundles
and the induced morphism p∗ : H∗(B,Z) → H∗(B′,Z) in cohomology is an
injection.

Sketch of proof. Let V → B be a vector bundle and p : P(V ) → B its
projectivization. Then the tautological line bundle over P(V ) is a subbundle
of p∗(V ) and p induces an injection from H∗(B,Z) to H∗(P(V ),Z). It suffices
to apply this construction several times. ♦

Thus, for instance, c(V ) is uniquely defined by the condition p∗(c(V )) =
c(p∗V ), and similarly for the Todd class and the Chern character.

Remark 3.5. In general, given a power series f , one can assign to every
vector bundle the corresponding character and class. The character is given
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by
∑
f(ri), while the class is given by

∏
f(ri). Thus for an exact sequence

0→ V1 → V2 → V3 → 0

of vector bundles, we have

class(V2) = class(V1) · class(V3),

character(V2) = character(V1) + character(V3).

For instance, the Todd class is defined using the series

f(x) =
x

1− e−x
= 1 +

x

2
+
∑
n≥1

B2n

(2n)!
x2n,

where B2n are the Bernoulli numbers:

B2 =
1
6
, B4 = − 1

30
, B6 =

1
42
, B8 = − 1

30
, B10 =

5
66
, . . .

One of the standard references for characteristic classes is [16]; for an
algebraic-geometric presentation see [7], Chapter 4.

3.1.3 Cohomology spaces of vector bundles. Our use of cohomology
spaces of vector bundles is very limited, so we introduce them in a very brief
way. See [9], Chapter 0 for more details.

To a vector bundle V over a compact complex algebraic variety B one
assigns its cohomology spaces, Hk(B, V ), k = 0, 1, . . .dimB. These are the
cohomology groups Ker ∂̄/Im ∂̄ of the complex

0 ∂̄→ A0,0(V ) ∂̄→ A0,1(V ) ∂̄→ A0,2(V ) ∂̄→ . . .

The terms of this complex are the spaces of smooth V -valued differential forms
of type (0, k). In local coordinates, such a differential form has the form∑

si1,...,ik(z) dz̄i1 ∧ · · · ∧ dz̄ik ,

where si1,...,ik is a smooth section of V . It is a nontrivial fact that Hk(B, V )
is a finite-dimensional vector space and that Hk(B, V ) = 0 for k > dimB.

We will use only two properties of the cohomology groups.
First, H0(V ) is the space of holomorphic sections of V . This follows directly

from the definition.
Second, let K be the canonical line bundle over B, in other words the

highest exterior power of the cotangent vector bundle. Let V ∨ be the dual
vector bundle of V . Then Hk(B, V ) and HdimB−k(B,K⊗V ∨) are dual vector
spaces. This property is called the Serre duality.
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3.1.4 K0, p∗, and p! Let X be a complex manifold. Consider the free
additive group generated by the vector bundles over X. To every short exact
sequence

0→ V1 → V2 → V3 → 0

we assign the relation V1−V2 +V3 = 0 in this group. The Grothendieck group
K0(X) is the factor of the free group by all such relations.

We would obtain the same group if the vector bundles were replaced by
coherent sheaves, because every coherent sheaf has a finite resolution by vector
bundles.

The Chern character determines a group morphism ch : K0(X) →
H∗(X,Q) from the Grothendieck group to the cohomology group of X.

Let p : X → Y be a morphism of complex manifolds with compact fibers.
Then p induces a morphism p∗ : H∗(X,Q)→ H∗(Y,Q) of cohomology groups
(the fiberwise integration). It is defined by 〈p∗α,C〉 =

〈
α, p−1(C)

〉
for any

cycle C ⊂ Y in general position.
On the other hand, p also determines a morphism p! : K0(X) → K0(Y ),

that we now describe.
Denote by Xy the fiber over a point y ∈ Y . Then we can consider the

cohomology spaces Hk(Xy, V ) (where V actually stands for the restriction of
V to Xy). For each k, the vector spaces Hk(Xy, V ) form a sheaf over Y . This
sheaf is denoted by Rk(p, V ). The morphism p! of Grothendieck groups is now
defined by

p!(V ) = R0(p, V )−R1(p, V ) + . . . .

Now we have the following diagram of morphisms.

K0(Y ) H∗(Y,Q)

K0(X) H∗(X,Q)

-

-

? ?

Td(p)

p! p∗

ch

ch

The question is: is it commutative? The answer, given by the GRR formula,
is that it is not, but can be made to commute if we add a multiplicative factor
Td(p).

3.1.5 The Grothendieck-Riemann-Roch formula Let p : X → Y be a
morphism of complex manifolds with compact fibers. Let V be a vector bundle
over X. Denote by

Td(p) =
Td(TX)

Td(p∗(TY ))
.
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Theorem 3.6 (GRR, see [7], Chapter 9). We have

ch(p!V ) = p∗ [ch(V )Td(p)] .

Example 3.7. Apply the GRR formula to the situation F → X → point,
where X is a (compact) Riemann surface and F is a sheaf. We obtain the
Riemann-Roch formula

h0(F)− h1(F) = c1(F) + 1− g,

where h0 and h1 are the dimensions of H0 and H1.

Example 3.8. Let p : X ↪→ Y be an embedding of smooth manifolds and
N → X the normal vector bundle to X in Y . Let n be the rank of N . Then
we have p∗(α) = cn(N) · α. Indeed, cn(N) · [X] is the self-intersection of X in
the total space of N . Applying GRR to the situation OX → X ↪→ Y we get

cn(N) = Td(N) ·
n∑
k=0

(−1)kch
(∧k

N∨
)
.

As an exercise, the reader can express both sides of this equality in terms of
Chern roots of N and check that they coincide.

3.1.6 The Koszul resolution The Koszul resolution (see [4], Chapter 17)
is an ingredient that we will need to apply the GRR formula to moduli spaces,
so let us introduce it here.

Let p : V → X be a vector bundle over a smooth complex manifold X.
Then X is embedded in the total space of V by the zero section, X ⊂ V . On
the total space V , consider the sheaf OX supported on X. Its sections over
an open set U ⊂ V are the holomorphic functions on U ∩X. Thus the fiber
of OX over a point of X is C, while its fiber over a point outside X is 0.

It is always unpleasant to work with sheaves that are not vector bundles,
therefore we would like to construct a resolution of OX , in other words, an
exact sequence of sheaves that contains OX , but whose all other terms are
vector bundles.

Example 3.9. Suppose V is a line bundle. Then over the total space of V
there are two sheaves: the sheaf OV of holomorphic functions and the sheaf
OV (X) of holomorphic functions vanishing on X. The short exact sequence

0→ OV (X)→ OV → OX → 0

is a resolution of OX .

Our aim is to generalize this example.
Denote by V the pull-back of the vector bundle V to the total space of V :
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V X

V V

-

-

? ?

Thus V is a vector bundle over the total space of V .
Denote by Ak(V) the sheaf of skew-symmetric k-forms on V. In particular,

A1(V) is the sheaf of sections of V∨, while A0(V) = OV .
Let x be a point in X, v ∈ Vx a point in the fiber Vx over x, and α be a

skew-symmetric k-form on Vx. Then the form ivα obtained by substituting v
as the first entry of α is a skew-symmetric (k−1)-form on Vx. Thus we obtain
a natural sheaf morphism d : Ak(V) → Ak−1(V) obtained by substituting v
into α.

Denote by p the rank of V .

Theorem 3.10. The following sequence of sheaves in exact.

0→ Ap(V)→ Ap−1(V)→ · · · → A1(V)→ OV → OX → 0.

This exact sequence is called the Koszul resolution of the sheaf OX .

Proof of Theorem 3.10 in the case of a rank 2 vector bundle.
For simplicity we restrict ourselves to the case p = 2, since it is the only

case that we will need.
Choose an open chart in X and a trivialization of the vector bundle V over

this chart. Let t = (t1, t2, . . . ) be the local coordinates on the chart and (x, y)
the coordinates in the fibers of V . The maps d of the Koszul resolution can
be explicitly written out as

0 17→ 0 · dx ∧ dy,

f(t;x, y) dx ∧ dy 27→ −yf(t;x, y) dx+ xf(t;x, y) dy,

gx(t;x, y) dx+ gy(t;x, y) dy 37→ xgx(t;x, y) + ygy(t;x, y),

h(t;x, y) 47→ h(t; 0, 0),

h(t; 0, 0) 57→ 0.

We must check that the image of each map coincides with the kernel of the
next map.

The image of map 1 and the kernel map 2 vanish.
The kernel of map 3 is given by the condition xgx + ygy = 0. In particular,

this implies that gx is divisible by y, while gy is divisible by x. Hence an
element of the kernel lies in the image of the first map, since we can take
f = −gx/y = gy/x. Conversely, if gx = −yf and gy = xf , then xgx + ygy = 0,
hence the image of map 2 is included in the kernel of map 3.
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The kernel of map 4 and the image of map 3 are composed of maps that
vanish at x = y = 0.

Finally, map 4 is surjective and map 5 takes everything to zero. ♦
We leave the generalization to the arbitrary rank as an exercise to the

reader.

3.2 Applying GRR to the universal curve

The aim of this section is to apply the GRR formula to the case where the
morphism of complex manifolds is the universal curve p : Cg,n →Mg,n, while
the vector bundle over Cg,n is the relative cotangent line bundle L from Defi-
nition 2.6. We follow Mumford’s paper [18].

A careful reader may wonder whether the GRR formula is applicable to
orbifolds. Such worries are well-founded, because in general it is not. As an
example, consider the line bundle L1 over M1,1. As we saw in Section 2.2.2,
the holomorphic sections of Lk1 are the modular forms of weight k. It is well-
known (see, for instance, [19], VII, 3, Theorem 4) that modular forms are
homogeneous polynomials in E4 and E6, which allows one to find the dimension
of H0(Lk1) and to work out the necessary modifications of the Riemann-Roch
formula in this example.

However, the GRR formula applies without changes to a morphism between
two orbifolds if every fiber of the morphism is a compact manifold, i.e., the
orbifold structure of the fibers is trivial. This is, of course, true for the universal
curve, because its fibers are stable curves. If the fibers have a nontrivial
orbifold structure, the GRR formula must be modified to take into account
the stabilizers of different points of the fibers.

Taking a look at the GRR formula, we see that we must compute three
things: ch(p!L), ch(L), and Td(p). Here “compute” means express either via
the ψ-, κ-, δ-, and λ-classes (on the moduli space) or via the classes Di, K, ∆
and ν1, ν2 (on the universal curve).

Proposition 3.11. We have p!L = Λ− C, where Λ is the Hodge bundle and
C the trivial line bundle over Mg,n.

Proof. Let C be a stable curve. Then H0(C,L) is the space of abelian
differentials on C. This means that R0(p,L) is the Hodge bundle Λ (Defini-
tion 2.11). By Serre’s duality, the space H1(C,L) is dual to H0(C,L⊗L∨) =
H0(C,C) = C. (In Section 3.1.3 we only described the Serre duality over
smooth manifolds, but it can be extended to stable curves by using the line
bundle L instead of the cotangent line bundle.) Thus the space H1(C,L) is
naturally identified with C, so R1(p,L) = C is the trivial line bundle. ♦
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Corollary 3.12. We have

ch(p!L) = ch(Λ)− 1.

Thus the left-hand side of the GRR formula involves λ-classes. Once we
have computed the right-hand side we will be able to express the λ-classes via
other classes.

Proposition 3.13. We have

ch(L) = eω.

Proof. Obvious. ♦

3.2.1 Computing Td(p) Computing the first two ingredients of the GRR
formula was easy, but the computation of Td(p) requires more work. If all
the fibers of the universal curve were smooth, there would have been an exact
sequence relating the vector bundles TMg,n, TCg,n and L. The Todd class
Td(p) would then be equal to the Todd class of −L. In reality, however, some
fibers of p are singular and the singularity locus is ∆. Therefore we will get
a more complicated expression for Td(p), involving L and the sheaf O∆. We
will then compute the Todd class of O∆ using the Koszul resolution.

For practical reasons, it is easier to write an exact sequence involving the
cotangent bundles T∨Mg,n and T∨Cg,n to the moduli space and the universal
curve. Let O∆ be the sheaf over Cg,n whose sections are functions on ∆ (so
the sheaf is supported on ∆).

Proposition 3.14. The sequence

0→ p∗(T∨Mg,n)
(dp)∨−→ T∨Cg,n → L → O∆ ⊗ L|∆ → 0

is an exact sequence of sheaves over Cg,n.

Proof. The maps in this exact sequence are (i) the adjoint map of the dif-
ferential of p, (ii) the restriction of a 1-form on the tangent space to Cg,n to
the tangent space of a fiber, and (iii) restricting a section of L to ∆.

First consider the map p at the neighborhood of a point z ∈ Cg,n \∆ and
let t = p(z) ∈Mg,n be its image in the moduli space. The cotangent space to
Mg,n at t is injected in the cotangent space to Cg,n at z by dp∨. The cokernel
is the cotangent space to the fiber, i.e., L. The fiber of O∆ is equal to 0, so
we obtain a short exact sequence.

Now take a point z ∈ ∆ and let t = p(z) ∈Mg,n be its image in the moduli
space. Consider the model local picture where p has the form p : (X,Y ) 7→
T = XY , where z is the point X = Y = 0 and t is the point T = 0. According
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to Section 1.4.4, in the general case the local picture is the direct product of
our model local picture with a trivial map p : B → B.

In the model local picture, the vector bundle T∨Mg,n is the line bundle
generated by dT . The vector bundle T∨Cg,n is generated by dX and dY .
Finally, the line bundle L is generated by the sections dX

X and dY
Y modulo the

relation dX
X + dY

Y = 0. The maps of the sequence can be explicitly written out
as follows.

f(T )dT
(i)7→ Y f(XY ) dX +X f(XY ) dY,

gX(X,Y ) dX + gY (X,Y ) dY
(ii)7→

(
XgX(X,Y )− Y gY (X,Y )

)dX
X

=
(
−XgX(X,Y ) + Y gY (X,Y )

)dY
Y
,

h(X,Y )
dX

X

(iii)7→ h(0, 0).

These maps are very close to the maps of the Koszul resolution from The-
orem 3.10 and the proof of the exactness is literally the same. ♦

Define

Td(p∨) =
Td(T∨Cg,n)

Td(p∗T∨Mg,n)
.

Then Td(p∨) is obtained from Td(p) by changing the signs of the odd degree
terms. Thus computing Td(p) is equivalent to computing Td(p∨).

Corollary 3.15. We have

Td(p∨) =
Td(L)

Td(O∆)
.

Proof. Using Proposition 3.14, we obtain

Td(p∨) =
Td(L)

Td(O∆ ⊗ L)
,

because the Todd class is multiplicative. On the other hand, we have Td(O∆⊗
L) = Td(O∆). Indeed, as we know, the restriction of the line bundle L to ∆
is rationally trivial. Hence all characteristic classes of L on ∆ are the same as
for a trivial line bundle. ♦

Td(L) is immediately evaluated to be

Td(L) =
ω

1− e−ω
.
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Evaluating the Todd class of O∆ will be the last step of our computation. To
do that we will use the Koszul resolution.

Let N be the normal vector bundle to ∆ in Cg,n. Rather than evaluat-
ing Td(O∆) on Cg,n we can evaluate Td(O∆) for the zero section ∆ of the
vector bundle N . (As we mentioned, the characteristic classes are topological
invariants of vector bundles. Therefore the characteristic classes of a sheaf
supported on ∆ depend only on its resolution in the neighborhood of ∆ in
Cg,n, which is topologically the same as the neighborhood of ∆ in the total
space of N .)

The Koszul resolution gives us the following exact sequence of sheaves:

0→
∧2

N∨ → N∨ → ON → O∆ → 0,

where ON is the sheaf of holomorphic functions on the total space of the vector
bundle N . Hence we have

Td(O∆) =
Td(N∨)

Td(
∧2

N∨)
=

ν1

1− e−ν1
· ν2

1− e−ν2
· 1− e−(ν1+ν2)

ν1 + ν2

=
ν1ν2

ν1 + ν2
· 1− e−(ν1+ν2)

(1− e−ν1)(1− e−ν2)
=

ν1ν2

ν1 + ν2
· 1− e−ν1 + e−ν1 − e−(ν1+ν2)

(1− e−ν2)(1− e−ν2)

=
ν1ν2

ν1 + ν2
·
[

1
1− e−ν2

+
e−ν1

1− e−ν1

]
=

ν1ν2

ν1 + ν2
·
[

1
1− e−ν2

+
1

1− e−ν1
− 1
]

= 1 + ∆ ·
∑
k≥1

B2k

(2k)!
ν2k−1

1 + ν2k−1
2

ν1 + ν2
,

where B2n are the Bernoulli numbers (see Remark 3.5).

3.2.2 The right-hand side of GRR Now we can assemble the right-hand
side of GRR from the results of our computations.

We have

Td(p∨) =
ω

1− e−ω

1 + ∆ ·
∑
k≥1

B2k

(2k)!
ν2k−1

1 + ν2k−1
2

ν1 + ν2

 .
We must change the signs of the odd degree terms to obtain Td(p). But the
part in brackets is even, while the only odd term of ω/(1− e−ω) is ω/2. Thus

Td(p) =
ω

eω − 1

1 + ∆ ·
∑
k≥1

B2k

(2k)!
ν2k−1

1 + ν2k−1
2

ν1 + ν2

 .
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Further,

ch(L)Td(p) =
eωω

eω − 1

1 + ∆ ·
∑
k≥1

B2k

(2k)!
ν2k−1

1 + ν2k−1
2

ν1 + ν2



=
ω

1− e−ω

1 + ∆ ·
∑
k≥1

B2k

(2k)!
ν2k−1

1 + ν2k−1
2

ν1 + ν2

 .
(By a coincidence, this is also equal to Td(p∨), but there is no reason to be
confused by that.) Now, taking into account that ω∆ = 0, we obtain

ch(L)Td(p) = 1 +
ω

2
+
∑
k≥1

B2k

(2k)!

[
ω2k + ∆ · ν

2k−1
1 + ν2k−1

2

ν1 + ν2

]

= 1 +
ω

2
+
∑
k≥1

B2k

(2k)!

[
K2k −

n∑
i=1

D2k
i + ∆ · ν

2k−1
1 + ν2k−1

2

ν1 + ν2

]
.

Finally, according to the GRR formula, the push-forward p∗ of this class is
equal to the class ch(Λ)− 1. For clarity, we separate this equality into homo-
geneous parts.

Theorem 3.16. We have

ch0(Λ)− 1 = g − 1;
ch2k(Λ) = 0;

ch2k−1(Λ) =
B2k

(2k)!

[
κ2k−1 −

n∑
i=1

ψ2k−1
i + δΛ

2k−1

]
,

where δΛ
2k−1 is the push-forward p∗ of the class ∆ · (ν2k−1

1 + ν2k−1
2 )/(ν1 + ν2).

A curious reader can check that

νp1 + νp2 =
[p/2]∑
l=0

(−1)l
p

p− l

(
p− l
l

)
(ν1ν2)l(ν1 + ν2)p−2l,

and hence the class δΛ
2k−1 is expressed via the standard classes δk,l as

δΛ
2k−1 =

k−1∑
l=0

(−1)l
2k − 1

2k − 1− l

(
2k − 1− l

l

)
δ2k−2−2l,l.

Theorem 3.16 expresses the Chern characters of the Hodge bundle via the
ψ-, κ-, and δ-classes. To conclude this section we show how to obtain similar
expressions for the classes λi = ci(Λ).
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Proposition 3.17. We have

1 + λ1 + λ2 + · · ·+ λg = exp
(

ch1 − ch2 +
ch3

2!
− ch4

3!
+ . . .

)

= exp
(

ch1 +
ch3

2!
+

ch5

4!
+ . . .

)
,

where chk = chk(Λ).

We leave the proof as an exercise to the reader.

Corollary 3.18. Every class λi is a polynomial in the ψ-, κ-, and δ-classes.

Corollary 3.19. We have c(Λ)c(Λ∨) = 1.

Example 3.20. Applying Theorem 3.16 and Proposition 3.17, we obtain

λ1 =
1
12

(κ1 −
n∑
i=1

ψi + δ0,0);

λ2 =
1
2
λ2

1;

λ3 =
1
6
λ3

1 −
1

360
(κ3 −

n∑
i=1

ψ3
i + δ2,0 − 3δ0,1).

3.3 Eliminating κ- and δ-classes

In the previous section we expressed the λ-classes in terms of ψ-, κ-, and
δ-classes.

Now we will reduce any integral over Mg,n involving ψ-, κ-, and δ-classes
to a combination of integrals involving only ψ-classes. This does not mean
that the κ- and δ-classes can be expressed in terms of ψ-classes. Indeed, the
integrals that we will obtain involve moduli spaces Mg′,n′ with g′ and n′ not
necessarily equal to g and n. To do that, we will use computations with
attaching and forgetful maps.

Before going into our computations, recall the following basic property that
we will use.

Let f : X → Y be a morphism of smooth compact manifolds. Then f in-
duces two maps in cohomology: the pull-back f∗ : H∗(Y,Q)→ H∗(X,Q) and
the fiberwise integration f∗ : H∗(X,Q)→ H∗(Y,Q). If the cohomology classes
are represented by generic Poincaré dual cycles, then f∗ and f∗ are the geo-
metric preimage and image of cycles. Let α ∈ H∗(X,Q) and β ∈ H∗(Y,Q). In
general f∗(f∗(α)) 6= α (and these classes have different degrees). Similarly, in
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general f∗(f∗(β)) 6= β (and these classes also have different degrees). Instead,
the following equality is true:

f∗(αf∗(β)) = f∗(α)β

and therefore ∫
X

αf∗(β) =
∫
Y

f∗(α)β.

This property is called the projection formula.

3.3.1 Equivalence between Mg,n+1 and Cg,n Recall that Mg,n+1 and
Cg,n are naturally isomorphic as families overMg,n (see Proposition 2.2). Let
us make a small dictionary between the tautological classes defined on this
family viewed as a moduli space and as a universal curve.

Consider the set of stable curves that contain a spherical component with
exactly three special points: a node and the marked points number i and n+1.

The points encoding such curves form a divisor δ(i,n+1) of Mg,n+1.
Further, consider the set of stable curves that contain a spherical com-

ponent with exactly three special points: two nodes and the marked point
number n+ 1.

The points encoding such curves form a codimension 2 subvariety δ(n+1) of
Mg,n+1.

♦

Lemma 3.21. Under the identification of Mg,n+1 with Cg,n, the divisor
δ(i,n+1) is identified with the divisor Di, the subvariety δ(n+1) is identified
with ∆, while the class ψn+1 is identified with K.

Proof. The first two identifications follow immediately from the proof of
Proposition 2.2: they correspond to cases (ii) and (iii).

The identification of ψn+1 with K is more delicate. Recall that K is the first
Chern class of L(D). In case (i), the fiber of Ln+1 over Mg,n+1 is naturally
identified with the fiber of L over Cg,n.

This identification fails in cases (ii) and (iii). However, case (iii) is not
important, since it only occurs on a codimension 2 subvariety, hence does not
influence the first Chern class. Case (ii), on the other hand, must be inspected
more closely.

A holomorphic section of L at the neighborhood of x̂i in the figure is a
holomorphic 1-form on the fibers of Cg,n. It is naturally extended by 0 on the
genus 0 component containing xi and xn+1 (cf Proposition 2.17). Thus the
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sections of Ln+1 acquire an additional zero whenever we are in case (ii). Thus
Ln+1 is identified not with L but with L(D). ♦

3.3.2 Eliminating κ-classes: the forgetful map The contents of this and
the next section are a reformulation of certain results of [1].

Let p :Mg,n+1 →Mg,n be the forgetful map. Our aim is to compare the
tautological classes on Mg,n+1 and the pull-backs of analogous tautological
class from Mg,n. It turns out that the difference is easily expressed if we
consider Mg,n+1 as the universal curve over Mg,n.

Theorem 3.22. We have

ψn+1
1= K,

ψdi − p∗ψdi
2= (−Di)d−1Di,

κm − p∗κm
3= Km,

δk,0 − p∗δk,0
4= (−D)kD + (ν1 + ν2)k+1 − νk+1

1 − νk+1
2 ,

δk,l − p∗δk,l
5= (ν1 + ν2)k+1∆l for l 6= 0.

Proof. We are going to prove Equalities (1), (2), and (3), leaving the last
two equalities as an exercise1.
1. According to Lemma 3.21, we have ψn+1 = K.
2. According to Proposition 2.17, we have ψi − p∗ψi = δ(i,n+1) ⇐⇒ ψi −
δ(i,n+1) = p∗ψi. On the other hand, the line bundle Li restricted to δ(i,n+1) is
trivial, hence ψiδ(i,n+1) = 0. Thus

(ψi − δ(i,n+1))d = p∗ψdi ⇐⇒ ψdi + (−δ(i,n+1))d = p∗ψdi

⇐⇒ ψdi − p∗ψdi = −(−δ(i,n+1))d.

It remains to note that, according to Lemma 3.21, δ(i,n+1) is identified with Di.
3. If p̃ : Cg,n+1 → Cg,n is the forgetful map for universal curves, we have
p̃∗K = K −Dn+1. On the other hand, KDn+1 = 0. Hence

(K −Dn+1)m+1 = p̃∗Km+1 ⇐⇒ Km+1 −Dm+1
n+1 = p̃∗Km+1.

The push-forward of this equality to the moduli spaces gives

κm − p∗κm = ψmn+1 = Km.

♦
1The last two equalities are not more complicated than then first three, but require some

juggling between ∆ ⊂ Cg,n, ∆ ⊂ Cg,n+1, and Mg,n+1 identified with Cg,n, which makes
the text of the proof rather ugly.
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Corollary 3.23. Let Q be a polynomial in variables κm, δk,l, ψ1, . . . , ψn. Let
Q̃ be the polynomial obtained from Q by the substitution κi 7→ κi−ψin+1. Then
we have ∫

Mg,n

κm Q =
∫

Mg,n+1

ψm+1
n+1 Q̃.

Proof. By definition, κm = p∗(Km+1). By the projection formula, we obtain∫
Mg,n

p∗(Km+1) ·Q =
∫

Cg,n=Mg,n+1

Km+1 · p∗Q.

According to Theorem 3.22, the pull-back p∗ modifies each term of the poly-
nomial Q. However most of these modifications play no role, because they
vanish when we multiply them by Km+1.

Indeed, the difference between ψdi and p∗ψdi is a multiple of Di, and we
know that DiK = 0. Similarly, the difference between δk,l and p∗δk,l is either
a multiple of ∆ (if l 6= 0), or a sum of a multiple of ∆ and a multiple of D (if
l = 0). But we know that K∆ = KD = 0.

The only remaining terms are κi, and for these the difference is important.
According to Theorem 3.22, we have p∗κi = κi − Ki+1. Recalling that K
(on Cg,n) is the same as ψn+1 (on Mg,n+1), we obtain that we must replace
every κi in Q by κi−ψi+1

n+1. Thus we obtain exactly the polynomial Q̃ and the
assertion of the corollary. ♦

Corollary 3.23 allows us to express an integral involving at least one κ-class
as a combination of integrals with fewer κ-classes.

Example 3.24. We have∫
M0,5

κ2
1 =

∫
M0,6

ψ2
6(κ1 − ψ6) =

∫
M0,7

ψ2
7ψ

2
6 −

∫
M0,6

ψ3
6 = 6− 1 = 5.

3.3.3 Eliminating δ-classes: the attaching map Recall that ∆ ⊂ Cg,n
is the set of nodes of the singular fibers. Take a singular stable curve, choose
a node, unglue the branches of the curve at the node and number the two
preimages of the node (there are two ways of doing that). We obtain a new
stable curve that has two new marked points. It can either be connected of
genus g − 1, or composed of two connected components of genera g1 and g2,
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g1 + g2 = g. Denote by Msplit the disjoint union

Msplit =
⊔

I1∪I2={1,...,n}

g1+g2=g

Mg1,I1∪{n+1} ×Mg2,I2∪{n+2}
⊔
Mg−1,n+2.

We have actually proved the following statement.

Lemma 3.25. Msplit is a 2-sheeted covering of ∆.

The same 2-sheeted covering was previously denoted by ∆̃.
Denote by j :Msplit →Mg,n the composition Msplit

c→ ∆
p→Mg,n. The

image of j is the boundary δ0,0 =Mg,n \Mg,n of the moduli space.
A tautological class on Msplit is defined by taking the same tautological

class on every component of Msplit.
Our aim is now to study the difference between a tautological class on

Msplit and the pull-back of the analogous class from Mg,n.

Theorem 3.26. We have

κm − j∗κm
1= 0,

ψdi − j∗ψdi
2= 0,

δk,l − j∗δk,l
3= (ψ1 + ψ2)k+1(ψ1ψ2)l.

Proof. Equalities (1) and (2) follow from the obvious fact that ̃∗K = K and
̃∗Di = Di, where ̃ is the map of universal curves associated with j.

For Equality (3) we only sketch the argument.
First consider the case k = l = 0. Rewrite the equality as

j∗δ0,0 = δ0,0 − (ψn+1 + ψn+2).

The class j∗δ0,0 is almost the same as the self-intersection of the boundary
δ0,0 of the moduli space. More precisely, different connected components of
Msplit are degree 2 coverings of irreducible components of δ0,0, and we are
interested in the pull-backs of the intersections of these components with δ0,0.

Some of the intersection points encode stable curves with two nodes. Such
intersections are transversal and they give rise to the term δ0,0 in the right-
hand side.

But when we try to intersect a component of δ0,0 with itself we obtain a
nontransversal intersection. To determine the intersection in cohomology we
need to know the first Chern class of the normal line bundle to δ0,0 in Mg,n.
It turns out that this first Chern class equals −j∗(ψn+1 + ψn+2). Thus we
obtain the term −(ψn+1 + ψn+2) in the right-hand side.



An introduction to moduli spaces of curves and its intersection theory 41

The case of general k, l is similar, since δk,l is the intersection of δ0,0 with
(ν1 + ν2)k(ν1ν2)l, which is transformed into (ψ1 + ψ2)k(ψ1ψ2)l on Msplit. ♦

Corollary 3.27. Let Q be a polynomial in variables κm, δk,l, ψ1, . . . , ψn. Let
Q̃ be the polynomial obtained from Q by the substitution

δi,j 7→ δi,j − (ψn+1 + ψn+1)i+1(ψn+1ψn+1)j .

Then we have∫
Mg,n

δk,l Q =
1
2

∫
Msplit

(ψn+1 + ψn+1)k(ψn+1ψn+1)l Q̃.

Proof. By definition,

δk,l =
1
2
j∗
(
(ψn+1 + ψn+2)k(ψn+1ψn+2)l

)
,

where the factor 1/2 appears because Msplit is a double covering of ∆. The
projection formula implies that

1
2

∫
Mg,n

j∗
(
(ψn+1 + ψn+2)k(ψn+1ψn+2)l

)
·Q =

1
2

∫
Msplit

(ψn+1 + ψn+1)k(ψn+1ψn+1)l · j∗Q.

According to Theorem 3.26, every term of Q remains unchanged after a pull-
back by j, except for the terms δk,l, that are transformed according to the
rule

j∗δk,l = δk,l − (ψn+1 + ψn+2)k+1(ψn+1ψn+2)l.

In other words, j∗Q = Q̃, so we obtain the claim of the corollary. ♦

Corollary 3.27 allows us to express an integral involving at least one δ-class
as a combination of integrals with fewer δ-classes.

Applying Corollaries 3.23 and 3.27 several times allow us to reduce any
integral involving ψ-, κ-, and δ-classes to a combination of integrals involving
only ψ-classes. These integrals are the subject of the next section.
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4 Around Witten’s conjecture

Now our aim is to compute the integrals∫
Mg,n

ψd11 · · ·ψdn
n .

4.1 The string and dilaton equations

Proposition 4.1. For 2− 2g − n < 0 we have∫
Mg,n+1

ψd11 . . . ψdn
n =

n∑
i=1

∫
Mg,n

ψd11 . . . ψdi−1
i . . . ψdn

n ;

∫
Mg,n+1

ψd11 . . . ψdn
n ψn+1 = (2g − 2 + n)

∫
Mg,n

ψd11 . . . ψdn
n .

These equations are called the string and the dilaton equations.

Proof. We will need to consider the line bundles Li both on Mg,n and on
Mg,n+1. We momentarily denote the former by L′i, 1 ≤ i ≤ n, the latter
retaining the notation Li, 1 ≤ i ≤ n+ 1. Further, denote by ψ′i the first Chern
class of the line bundle L′i onMg,n and, by abuse of notation, its pull-back to
Mg,n+1 by the map forgetting the (n+ 1)st marked point. Let ψi be the first
Chern class of Li on Mg,n+1.

According to Proposition 2.17, we have

ψi = ψ′i + δ(i,n+1). (1)

Moreover, we have

ψi · δ(i,n+1) = ψn+1 · δ(i,n+1) = 0 (2)

(because the line bundles Li and Ln+1 are trivial over δ(i,n+1)) and

δ(i,n+1) · δ(j,n+1) = 0 for i 6= j (3)

(because the divisors have an empty geometric intersection).
Let us first prove the string relation. We have

ψdi − (ψ′i)
d (1)

= δ(i,n+1)

(
ψd−1
i + · · ·+ (ψ′i)

d−1
) (2)

= δ(i,n+1) (ψ′i)
d−1,

where we set by convention (ψ′i)
−1 = 0. Thus

ψdi = (ψ′i)
d + δ(i,n+1) (ψ′i)

d−1.
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It follows that ∫
Mg,n+1

ψd11 . . . ψdn
n =

∫
Mg,n+1

[
(ψ′1)d1 + δ(1,n+1) (ψ′1)d1−1

]
. . .
[
(ψ′n)dn + δ(n,n+1) (ψ′n)dn−1

] (3)
=

∫
Mg,n+1

(ψ′1)d1 . . . (ψ′n)dn +
n∑
i=1

∫
Mg,n+1

(ψ′1)d1 . . . δ(i,n+1) (ψ′i)
di−1 . . . (ψ′n)dn .

The first integral is equal to 0, because the integrand is a pull-back fromMg,n.
As for the integrals composing the sum, we integrate the class δ(i,n+1) over the
fibers of the projection Mg,n+1 →Mg,n. This is equivalent to restricting the
integral to the divisor δ(i,n+1), which is naturally isomorphic toMg,n. Finally,
we obtain∫

Mg,n+1

ψd11 . . . ψdn
n =

n∑
i=1

∫
Mg,n

(ψ′1)d1 . . . (ψ′i)
di−1 . . . (ψ′n)dn .

This proves the string relation.
Now let us prove the dilaton relation. We have∫

Mg,n+1

ψd11 . . . ψdn
n ψn+1

(1)
=

∫
Mg,n+1

(
ψ′1 + δ(1,n+1)

)d1
. . .

(
ψ′n + ∆(n,n+1)

)dn

ψn+1
(2)
=

∫
Mg,n+1

(ψ′1)d1 . . . (ψ′n)dn ψn+1 =

(2g − 2 + n)
∫
Mg,n

(ψ′1)d1 . . . (ψ′n)dn .

The last equality is obtained by integrating the factor ψn+1 over the fibers of
the projection Mg,n+1 →Mg,n.

This proves the dilaton relation. ♦

Proposition 4.2. The string and the dilaton equations, together with the
initial conditions ∫

M0,3

1 = 1,
∫
M1,1

ψ1 =
1
24
,
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allow one to compute all integrals∫
Mg,n

ψd11 · · ·ψdn
n

for g = 0, 1.

We leave the proof as an exercise to the reader.

Example 4.3. Recall the first equality of Example 3.20:

λ1 =
1
12

(κ1 −
∑

ψi + δ0,0).

This equality is true for all g and n, but let us consider the case g = n = 1.
We have (Cf Example 2.26)∫
M1,1

λ1 =
1
24

;
∫
M1,1

κ1 =
∫
M1,2

ψ2
2 =

∫
M1,1

ψ1 =
1
24

;
∫
M1,1

δ0,0 =
1
2
.

Thus we have checked that the expression for λ1 over M1,1 is indeed correct:
1/24 = 1/12 · (1/24− 1/24 + 1/2).

4.2 KdV and Virasoro

It looks like we are very close to our goal of computing all intersection num-
bers of ψ-classes and thus of all tautological classes. However the last step
is actually quite hard; therefore we only formulate the theorems that make it
possible to compute the remaining integrals, but do not give the proofs.

Introduce the following generating series:

F (t0, t1, . . . ) =
∑

g≥0,n≥1

2−2g−n<0

∑
d1,...,dn

∫
Mg,n

ψd11 . . . ψdn
n

td1 . . . tdn

n!
.

The coefficients of this series encode all possible integrals involving ψ-classes.

Theorem 4.4. The series F satisfies the following partial differential equa-
tion:

∂2F

∂t0∂t1
=

1
2

(
∂2F

∂t20

)2

+
1
12
∂4F

∂t40
.
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This partial differential equation is one of the forms of the Korteweg -
de Vries or KdV equation2. The result of Theorem 4.4 was conjectured by
E. Witten in [22] and proved by M. Kontsevich [14]. Today several other
proofs exist, [13] being, probably the simplest one.

Let G(p1, p3, p5, . . . ) be the power series obtained from F by the substitu-
tion td = (2d−1)!!p2d+1. For k ≥ 1, denote by ak the operator of multiplication
by pk and by a−k the operator k ∂

∂pk
.

Theorem 4.5. For m ≥ −1 we havea−(2m+3) −
∑

i+j=−2m
i>j

aiaj −
1
8
δ0,m

 eG = 0.

These equations are called the Virasoro constraints.

Example 4.6. The Virasoro constraints corresponding to m = −1 and m = 0
are equivalent to the string and the dilaton equations.

It is straightforward to see that the Virasoro constraints together with the
initial condition F = t30/6 + . . . determine the series F completely. Indeed,
suppose that in the integrand

∏
ψdi
i the value m+1 is the biggest value of the

di’s and appears exactly k times. Then the application of the mth Virasoro
constraint leads to integrals where the value di = m + 1 appears less than k
times.

A slightly more ingenious argument shows that the KdV and the string
equations, together with the initial condition F = t30/6 + . . . , determine F
uniquely. (We leave this as an exercise to the reader.) Thus Theorems 4.4
and 4.5 describe the same series F in two different ways.

A modern proof of both theorems can be found in [12]. We do not give it
here; instead we will say a few words about the origins of Witten’s conjecture
in 2-dimensional quantum gravity.

In general relativity, the gravitational field is a quadratic form of signature
(1, 3) on the 4-dimensional space-time. Since the problem of constructing
a quantum theory of gravity is extremely difficult, physicists started with a
simpler model of 2-dimensional gravity. In this model, the space-time is a
surface, while the gravitational field is a Riemannian metric on this surface.

The aim of a quantum theory of gravity is then to define and compute
certain integrals over the space of all possible Riemannian metrics on all pos-
sible surfaces. The space of metrics is infinite-dimensional and does not carry
a natural measure, therefore the definition of such integrals is problematic.

2The usual form of the KdV equation is ∂U/∂t1 = U∂U/∂t0 + 1
12

∂3U/∂t30 obtained by

differentiating our equation once with respect to t0 and letting U = ∂2F/∂t20.
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Physicists found two ways to give a meaning to integrals over the space of
metrics.

The first way is to replace Riemannian metrics by a discrete approximation,
namely, surfaces obtained by glueing together very small equilateral triangles.
In this method, integrals over the space of metrics are replaced by sums over
triangulations. This leads to combinatorial problems of enumerating trian-
gulations. These problems, although difficult, can be solved, and the KdV
equation appeared in the works devoted to the enumeration of triangulations.

The second way to define infinite-dimensional integrals is to first perform
the integration over the space of conformally equivalent metrics.

Two Riemannian metrics are conformally equivalent if one is obtained from
the other by multiplication by a positive function. An equivalence class of
conformally equivalent metrics is exactly the same thing as a Riemann surface.
Indeed, one of the ways to introduce a complex structure on a surface is to
define a linear operator J acting on its tangent bundle such that J2 = −1.
The action of the operator is then interpreted as multiplication of the tangent
vectors by i. In the case where the surface is endowed with a Riemannian
metric, the operator J is simply the rotation by 90◦, and this does not change
if we multiply the metric by a positive function.

The space of positive functions is still infinite-dimensional, but it turns out
that one can perform the integration over this space by a formal trick. (It
would be more precise to say that the integral is defined in a meaningful way
and the trick serves as a motivation.) After that, there remains an integral
over the moduli space of Riemann surfaces. It so happens that this integral is∫

Mg,n

ψd11 . . . ψdn
n .

What Witten’s conjecture actually says is that we obtain the same answer
using the two methods of defining infinite-dimensional integrals.
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