
A MIRROR DUAL OF SINGLE HURWITZ NUMBERS
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Abstract. These are the lectures delivered at the Summer School on Moduli of Curves and
Gromov-Witten Theory that took place at the Fourier Institute in Grenoble, France, in summer

2011. The main purpose of these lectures is to explain an idea that mirror symmetry is the Laplace
transform for a certain class of mathematical problems, by going through a concrete example of

single Hurwitz numbers. We construct a B-model mirror partner of the single Hurwitz theory.

The key observation is that the Laplace transform of the combinatorial cut-and-join equation is
equivalent to the Eynard-Orantin topological recursion that lives on the B-model side.

Contents

1. Introduction 1
2. Single Hurwitz numbers 3
3. The Laplace transform of the single Hurwitz numbers 7
4. The power of the remodeled B-model 12
Appendix A. The Eynard-Orantin topological recursion on a genus 0 curve 17
Appendix B. The Lagrange Inversion Formula 19
References 20

1. Introduction

Mathematics thrives on mysteries. Mirror symmetry has been a great mystery for a
long time, and has provided a driving force in many areas of mathematics. Even after
more than two decades since its conception in physics, still it produces new mysteries for
mathematicians to solve.

One of such new mysteries is the remodeling conjecture of B-model. This idea has
been developed by Mariño [57], Bouchard-Klemm-Mariño-Pasquetti [5], and Bouchard-
Mariño [6], based on the theory of topological recursion formulas of Eynard and Orantin [24,
27]. The remodeling conjecture states that the open and closed Gromov-Witten invariants
of a toric Calabi-Yau threefold can be captured by the Eynard-Orantin topological recursion
as a B-model that is constructed on the mirror curve.

The goal of these lectures is to present an idea that mirror symmetry is the Laplace
transform. Instead of developing a general theory, we are focused on examining this idea
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2 M. MULASE

by going through a concrete example of single Hurwitz numbers here. Thus our main
question is the following.

Question 1.1. What is the mirror dual of the theory of single Hurwitz numbers?

Here our usage of the terminology mirror symmetry, which is not conventional, requires
an explanation. At least on surface our question does not seem to appeal to the idea of
the homological mirror symmetry [49] directly. About a year ago, Boris Dubrovin and the
author had the following conversation.

Mulase: Hi Boris, good to see you! At last I think I am coming close to understanding
what mirror symmetry is.
Dubrovin: Good to see you! And what do you think about mirror symmetry?
Mulase: It is the Laplace transform.
Dubrovin: Do you think so, too? But I have been saying so for the last 15 years!
Mulase: Oh, have you? But I’m not talking about the Fourier transform or the T-duality.
It’s the Laplace transform.
Dubrovin: I know.
Mulase: All right, then let’s check if we have the same understanding. Question: What is
the mirror dual of a point?
Dubrovin: It is the Lax operator of the KdV equations that was identified by Kontsevich.
Mulase: An operator is the mirror dual? Ah, I think you mean x = y2, don’t you?
Dubrovin: Yes, indeed! Now it is my turn to ask you a question. What is the mirror dual
of the Weil-Petersson volume of the moduli space of bordered hyperbolic surfaces discovered
by Mirzakhani?
Mulase: The sine function x = sin y.
Dubrovin: Exactly!
Mulase: And in all these cases, the mirror symmetry is the Laplace transform.
Dubrovin: Of course it is.
Mulase: A, ha! Then we seem to have the same understanding of the mirror symmetry.
Dubrovin: Apparently we do!

In the spirit of the above dialogue, the answer to our main question can be given as

Theorem 1.2 ([6, 25, 65]). The mirror dual to single Hurwitz numbers is the Lambert
function x = ye1−y.

A mathematical picture has emerged in the last few years since the discoveries of Eynard-
Orantin [27], Mariño [57], Bouchard-Klemm-Mariño-Pasquetti [5] and Bouchard-Mariño [6]
in physics, and many mathematical efforts including [11, 12, 25, 63, 54, 55, 64, 65, 88, 89,
90]. As a working hypothesis, we phrase it in the form of a principle.

Principle 1.3. For a number of interesting cases, we have the following general structure.
• On the A-model side of topological string theory, we have a class of mathematical

problems arising from combinatorics, geometry, and topology. The common feature
of these problems is that they are somehow related to a lattice point counting of a
collection of polytopes.
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• On the B-model side, we have a universal theory due to Eynard and Orantin [27].
It is a framework of the recursion formula of a particular kind that is based on a
spectral curve and two meromorphic functions on it that immerse an open part
of the curve into a plane.
• The passage from A-model to B-model, i.e., the mirror symmetry operation of the

class of problems that we are concerned, is given by the Laplace transform. The
spectral curve on the B-models side is defined as the Riemann surface of the
Laplace transform, which means that it is the domain of holomorphy of the Laplace
transformed function.

By now there are many examples of mathematical problems that fall in to this principle.
Among them is the theory of single Hurwitz numbers that we are going to study in these
lectures. Besides Hurwitz numbers, such examples as counting of Grothendieck’s dessins
d’enfants [11, 63, 67, 68, 69] and topological vertex [12, 88] have been mathematically
established. Among somewhat more speculative examples we find HOMFLY polynomials
of torus knots [9] and the Gromov-Witten invariants of P1 [70]. The study of single Hurwitz
numbers exhibits all important ingredients found in these examples.

In Lecture 1, single Hurwitz numbers are defined, and a combinatorial equation that
they satisfy (the cut-and-join equation) is proved. In Lecture 2, the Laplace transform
of the Hurwitz numbers is computed. The Laplace transformed holomorphic functions
live on the mirror B-side of the model, according to Princeple 1.3. The Lambert curve
is defined as the domain of holomorphy of these holomorphic functions. In Lecture 3, we
give the Laplace transform of the cut and join equation. The result is a simple polynomial
recursion formula and is equivalent to the Eynard-Orantin formula for the Lambert curve.
We also give a straightforward derivation of the Witten-Kontsevich theorem on the ψ-class
intersection numbers [16, 48, 86], and the λg-formula of Faber and Pandharipande [29, 30],
using the Eynard-Orantin topological recursion.

2. Single Hurwitz numbers

In this lecture we define the single Hurwitz numbers that we consider in these lectures,
and derive a combinatorial equation that they satisfy, known as the cut-and-join equation.
In all examples of Principle 1.3 we know so far, the A-model side always has a series of
combinatorial equations that should uniquely determine the quantities in question, at least
theoretically. But in practice solving these equations is quite complicated. As we develop
in these lectures, the Laplace transform changes these equations to a topological recursion
in the B-model side, which is an inductive formula based on the absolute value of the Euler
characteristic of a punctured surface.

A single Hurwitz number counts the number of certain type of meromorphic functions
defined on an algebraic curve C of genus g. Let µ = (µ1, . . . , µ`) ∈ Z`+ be a partition of

a positive integer d of length `. This means that |µ| def= µ1 + · · · + µ` = d. Instead of
ordering parts of µ in the decreasing order, we consider them as a vector consisting of `
positive integers. By a Hurwitz covering of type (g, µ) we mean a meromorphic function
h : C → C that has ` labelled poles {xi, . . . , x`}, such that the order of xi is µi for every
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i = 1, . . . , `, and that except for these poles, the holomorphic 1-form dh has simple zeros
on C \ {xi, . . . , x`} with distinct critical values of h. A meromorphic function of C is a
holomorphic map of C onto P1. In algebraic geometry the situation described above is
summarized as follows: h : C → P1 is a ramified covering of P1, simply ramified except for
∞ ∈ P1. We identify two Hurwitz coverings h1 : C1 → P1 with poles at {x1, . . . , x`} and
h2 : C2 → P1 with poles at {y1, . . . , y`} if there is a biholomorphic map φ : C1

∼→ C2 such
that φ(xi) = yi, i = 1, . . . , `, and

C1

h1   A
AA

AA
AA

A
φ

∼
// C2

h2~~}}
}}

}}
}}

P1 .

When C1 = C2, xi = yi, and h1 = h2 = h, such a biholomorphic map φ is called an
automorphism of a Hurwitz covering h. Since biholomorphic Hurwitz coverings are iden-
tified, we need to count a Hurwitz covering with the automorphism factor 1/|Aut(h)| by
consistency. And when φ : C1→C2 is merely a homeomorphism, we say h1 and h2 have
the same topological type.

We are calling a meromorphic function a covering. This is because if we remove the
critical values of h (including ∞) from P1, then on this open set h becomes a topological
covering. More precisely, let B = {z1, . . . , zr,∞} denote the set of distinct critical values
of h. Then

h : C \ h−1(B) −→ P1 \B
is a topological covering of degree d. Each zk ∈ P1 is a branched point of h, and a critical
point (i.e., a zero of dh) is called a ramification point of h. Since dh has only simple zeros
with distinct critical values of h, the number of ramification points of h, except for the
poles, is equal to the number of branched points, which we denote by r. Therefore, h−1(zk)
consists of d− 1 points. Then by comparing the Euler characteristic of the covering space
and its base space, we obtain

d(2− r − 1) = d · χ(P1 \B) = χ(C \ h−1(B)) = 2− 2g − r(d− 1)− `,
or the Riemann-Hurwitz formula

(2.1) r = 2g − 2 + |µ|+ `.

Let us define

Definition 2.1. The single Hurwitz number of type (g, µ) for g ≥ 0 and µ ∈ Z`+ that we
consider in these lectures is

(2.2) Hg(µ) =
1

r(g, µ)!

∑
[h] type (g,µ)

1
|Aut(h)|

,

where the sum runs all topological equivalence classes of Hurwitz coverings of type (g, µ).
Here

r = r(g, µ) = 2g − 2 + (µ1 + · · ·+ µ`) + `
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is the number of simple ramification points of h.

Remark 2.2. Our definition of single Hurwitz numbers differ from the standard definition
by two automorphism factors. The quantity hg,µ of [20] and Hg(µ) are related by

Hg(µ) =
|Aut(µ)|

r!
hg,µ,

where Aut(µ) is the group of permutations that permutes equal parts of µ considered as a
partition. This is due to the convention that we label the poles of h and consider µ ∈ Z`+
as a vector, while we do not label simple ramification points.

Note that interchanging the entries of µ means permutation of the label of the poles
{x1, . . . , x`} of h. Thus it does not affect the count of single Hurwitz numbers. Therefore,
as a function in µ ∈ Z`+, Hg(µ) is a symmetric function.

Single Hurwitz numbers satisfy a simple equation, known as the cut-and-join equation
[33, 84]. Here we give it in the format used in [65].

Proposition 2.3 (Cut-and-join equation). Single Hurwitz numbers satisfy

(2.3) r(g, µ)Hg(µ) =
∑
i<j

(µi + µj)Hg(µ(̂i, ĵ), µi + µj)

+
1
2

∑̀
i=1

∑
α+β=µi

αβ

Hg−1(µ(̂i), α, β) +
∑

g1+g2=g

ItJ=µ(̂i)

Hg1(I, α)Hg2(J, β)

 .
Here we use the following notations.

• µ(̂i) is the vector of `− 1 entries obtained by deleting the i-th entry µi.
• (µ(̂i), α, β) is the vector of ` + 1 entries obtained by appending two new entries α

and β to µ(̂i).
• µ(̂i, ĵ) is the vector of `− 2 entries obtained by deleting the i-th and the j-th entrs
µi and µj.
• (µ(̂i, ĵ), µi + µj) is the vector of ` − 1 entries obtained by appending a new entry
µi + µj to µ(̂i, ĵ).

The final sum is over all partitions of g into non-negative integers g1 and g2, and a disjoint
union decomposition of entries of µ(̂i) as a set, allowing the empty set.

Remark 2.4. Since Hg(µ) is a symmetric function, the way we append a new entry to a
vector does not affect the function value.

The idea of the formula is to reduce the number r of simple ramification points. Note
that

h : C \ h−1(B)−→P1 \B
is a topological covering of degree d. Therefore, it is obtained by a representation

ρ : π1(P1 \B)−→Sd,
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where Sd is the permutation group of d letters. The covering space Xρ of P1 \B is obtained
by the quotient construction

Xρ = X̃ ×π1(P1\B) [d],

where X̃ is the universal covering space of P1 \ B, and [d] = {1, 2, . . . , d} is the index set
on which π1(P1 \B) acts via the representation ρ.

To make Xρ a Hurwitz covering, we need to specify the monodromy of the representation
at each branch point of B. Let {γ1, . . . , γr, γ∞} denote the collection of non-intersecting
loops on P1, starting from 0 ∈ P1, rotating zk counter-clockwise, and coming back to 0,
for each k = 1, . . . , r. The last loop γ∞ does the same for ∞ ∈ P1. Since P1 is simply
connected, we have

π1(P1 \B) = 〈γ1, . . . , γr, γ∞|γ1 · · · γr · γ∞ = 1〉.

Since Xρ must have r simple ramification points over {z1, . . . , zr}, the monodromy at zk is
given by a transposition

ρ(γk) = (akbk) ∈ Sd,
where ak, bk ∈ [d] and all other indices are fixed by ρ(γk). To impose the condition on
poles {x1, . . . , x`} of h, we need

ρ(γ∞) = c1c2 · · · c`,

where c1, . . . , c` are disjoint cycles of Sd of length µ1, . . . , µ`, respectively.
We want to reduce the number r by one. To do so, we simply merge zr to ∞. The

monodromy at ∞ then changes from c1c2 · · · c` to (ab) · c1c2 · · · c`, where (ab) = (arbr) is
the transposition corresponding to γr. There are two cases we have now:

(1) Join case: a and b belong to two disjoint cycles, say a ∈ ci and b ∈ cj ;
(2) Cut case: both a and b belong to the same cycle, say ci.

An elementary computation shows that (ab)cicj is a single cycle of length µi + µj . For the
second case, the result depends on how far a and b are apart in cycle ci. If b appears α
slots after a with respect to the cyclic ordering, then

(2.4) (ab)ci = cαcβ,

where α + β = µi. The cycles cα and cβ are disjoint of length α and β, respectively, and
a ∈ cα, and b ∈ cβ. Note that everything is symmetric with respect to interchanging a and
b. With this preparation, we can now give the proof of (2.3).

The right-hand side of (2.3) represents the set of all monodromy representations obtained
by merging one of the branch points zk to∞. The factor r on the left-hand side represents
the choice of zk.

Since we are reducing r = 2g − 2 + d + ` by one without changing d, there are three
different ways of reduction:

(g, `) 7−→ (g, `− 1)(2.5)

(g, `) 7−→ (g − 1, `+ 1)(2.6)
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(g, `) 7−→ (g1, `1 + 1) + (g2, `2 + 1), where

{
g1 + g2 = g

`1 + `2 = `− 1.
(2.7)

The first reduction (2.5) is exactly the first line of the right-hand side of (2.3), which
corresponds to the join case. Two cycles of length µi and µj are joined to form a longer
cycle of length µi + µj . Note that the number a has to be recorded somewhere in this
long cycle. This explains the factor µi +µj . Then the number b is automatically recorded,
because it is the entry appearing exactly µi slots after a in this long cycle.

The second line of the right-hand side of (2.3) represents the cut cases. In (2.4), we have
α choices for a and β choices for b. The symmetry of interchanging a and b explains the
factor 1

2 . The first term of the second line of (2.3) corresponds to (2.6).
The second term of the second line corresponde to (2.7). Note that in this situation,

merging a branched point to ∞ breaks the connectivity of the Hurwitz covering. We
have two ramified coverings h1 : C1→P1 of degree d1 and genus g1 with `1 + 1 poles, and
h2 : C2→P1 of degree d2 and genus g2 with `2 + 1 poles. If we denote by ri the number of
simple ramifications points of hi for i = 1, 2, then we have

r1 = 2g1 − 2 + d1 + `1 + 1

+) r2 = 2g2 − 2 + d2 + `2 + 1
r − 1 = 2g − 2 + d+ `− 1.

This completes the proof of (2.3).

Remark 2.5. The reduction of the number r of simple ramification points by one is exactly
reflecting the reduction of the Euler characteristic of the punctured surface Xρ = C\h−1(B)
appearing in our consideration by one. Since we do not change the degree d of the covering,
the reduction of r is simply reducing 2g − 2 + ` by one.

3. The Laplace transform of the single Hurwitz numbers

In the second lecture, we compute the Laplace transform of the single Hurwitz number
Hg(µ), considered as a function in µ ∈ Z`+. According to Principle 1.3, the result should
give us the mirror dual of single Hurwitz numbers. We explain where the Lambert curve
x = ye1−y comes from, and its essential role in computing the Laplace transform. The
most surprising feature is that the result of the Laplace transform of Hg(µ) is a polynomial
if 2g − 2 + ` > 0. This polynomiality produces powerful consequences, which is the main
subject of the final lecture.

The most important reason why we are interested in Hurwitz numbers in a summer
school on moduli of curves and Gromov-Witten invariants is because of the theorem due
to Ekedahl, Lando, Shapiro and Vainshtein, that relates the single Hurwitz numbers with
the intersection numbers of tautological classes on the moduli space of curves. Let us recall
the necessary notations here. For more detailed explanation on these subjects, we refer to
other talks given in this school.

Our main object is the moduli stack Mg,` consisting of stable algebraic curves of genus
g ≥ 0 with ` ≥ 1 distinct smooth labeled points. Forgetting the last labeled point on a
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curve gives a canonical projection

π :Mg,`+1−→Mg,`.

Since the last labeled point moves on the curve, the projection π can be considered as a
universal family of `-pointed curves. This is because for each point [C, (x1, . . . , x`)] ∈Mg,`,
the fiber of π is indeed C itself.

If x`+1 ∈ C is a smooth point of C other than {x1, . . . , x`}, then this point represents
an element [C, (x1, . . . , x`+1)] ∈Mg,`+1. If x`+1 = xi for some i = 1, . . . , `, then this point
represents a stable curve obtained by attaching a rational curve P1 to C at the original
location of xi, while carrying three special points on it. One is the singular point at which
C and P1 intersects. The other two points are labeled as xi and x`+1. And if x`+1 ∈ C
coincides with one of the nodal points of C, say x ∈ C, then this point represents another
stable curve. This time, consider the local normalization C̃→C about the singular point
x ∈ C, and let x+ and x− be the two points in the fiber. The stable curve we have is
the curve C̃ ∪ P1, where the two curves intersect at x+ and x−. The labeled point x`+1 is
placed on the attached P1 different from these two singular points.

A universal family produces what we call the tautological bundles on the moduli space.
The cotangent sheaf T ∗C = ωC of each fiber of π is glued together to form a relative
dualizing sheaf ω on Mg,`+1. The push-forward

E = π∗ω

is such a tautological vector bundle on Mg,` of fiber dimension

dimH0(C,ωC) = g,

and is called the Hodge bundle onMg,`. By assigning x`+1 = xi to each [C, (x1, . . . , x`)] ∈
Mg,`, we construct a section

σi :Mg,`−→Mg,`+1.

It defines another tautological bundle

Li = σ∗(ω)

on Mg,`. The fiber of Li at [C, (x1, . . . , x`)] is identified with the cotangent line T ∗xiC.
The tautological classes of Mg,` are rational cohomology classes including

ψi = c1(Li) ∈ H2(Mg,`,Q) and λj = cj(E) ∈ H2j(Mg,`,Q).

In these lectures we do not consider the other classes, such as the κ-classes.
With these notational preparations, we can now state an amazing theorem.

Theorem 3.1 (The ELSV formula [20]). The single Hurwitz numbers are expressible as
the intersection numbers of tautological classes on the moduli space Mg,` as follows. Let



A MIRROR DUAL OF SINGLE HURWITZ NUMBERS 9

µ ∈ Z`+ be a positive integer vector. Then we have

(3.1)

Hg(µ) =
∏̀
i=1

µµii
µi!

∫
Mg,`

∑g
j=0(−1)jλj∏`
i=1(1− µiψi)

=
∑

n1,...,n`≥0

g∑
j=0

(−1)j〈τn1 · · · τn`λj〉g,`
∏̀
i=1

µµi+nii

µi!
.

Here we use Witten’s symbol

〈τn1 · · · τn`λj〉g,` =
∫
Mg,`

c1(L1)n1 · · · c1(L`)n` · cj(E).

It is 0 unless n1 + · · ·+ n` + j = 3g − 3 + `.

Remark 3.2. It is not our purpose to give a proof of the ELSV formula in these lectures.
There are excellent articles by now about this remarkable formula. We refer to [37, 52, 73].

To explore the mirror partner to single Hurwitz numbers, we wish to compute the Laplace
transform of the ELSV formula. Let us recall Stirling’s formula

(3.2)
kk+n

k!
e−k ∼ 1√

2π
kn−

1
2 , k >> 0

for a fixed n.

Definition 3.3. For a complex parameter w with Re(w) > 0, we define

(3.3) ξn(w) =
∞∑
k=1

kk+n

k!
e−ke−kw.

Because of Stirling’s formula (3.2), we expect that asymptotically near w ∼ 0,

ξn(w) ∼
∫ ∞

0

1√
2π
xn−

1
2 e−xwdx.

To illustrate our strategy of computing the Laplace transform, let us first compute

fn(w) =
∫ ∞

0
xne−xwdx.

We notice that

− d

dw
fn(w) = fn+1(w).

Therefore, if we know f0(w), then we can calculate all fn(w) for n > 0. Of course we have

f0(w) =
1
w
.

Therefore, we immediately conclude that

(3.4) fn(w) =
Γ(n+ 1)
wn+1

,
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which satisfies the initial condition and the differential recursion formula. The important
fact in complex analysis is that when we derive a formula like (3.4), then it holds for an
arbitrary n. In particular, we have

ξn(w) ∼
∫ ∞

0

1√
2π
xn−

1
2 e−xwdx =

Γ(n+ 1
2)

√
2π wn+ 1

2

.

From this asymptotic expression, we learn that ξn has an expansion in w−
1
2 . Thus to

identify the domain of holomorphy, we wish to find a natural coordinate that behaves like
w−

1
2 .

Note that for every n > 0, the defining summation of ξn(w) in (3.3) can be taken from
k = 0 to ∞. For n = 0, the k = 0 term contributes 1 in the summation. So let us define

(3.5) t− 1 = ξ0(w) =
∞∑
k=1

kk

k!
e−ke−kw.

Then the computation of the Laplace transform ξn(w) is reduced to finding the inverse
function w = w(t) of (3.5), because all we need after identifying the inverse is to differentiate
ξ0(w) n-times.

Here we utilize the Lagrange Inversion Formula.

Theorem 3.4 (The Lagrange Inversion Formula). Let f(y) be a holomorphic function
defined near y = 0 such that f(0) = 0 and f ′(0) 6= 0. Then the inverse of the function

x =
y

f(y)
is given by

y =
∞∑
k=1

[
dk−1

dyk−1
(f(y))k

]
y=0

xk

k!
.

We give a proof of this formula in Appendix. For our purpose, let us consider the case
f(y) = ey−1. The function

(3.6) x = ye1−y

is called the Lambert function. Then the Lagrange Inversion Formula immediately tells us
that its inverse function is given by

y =
∞∑
k=1

kk−1

k!
e−kxk.

So if we substitute

(3.7) x = e−w,

then we have

(3.8) y =
∞∑
k=1

kk−1

k!
e−ke−kw = ξ−1(w).
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The differential of the Lambert function gives

dx = (1− y)e1−ydy.

Therefore, we have

(3.9) − d

dw
= x

d

dx
=

y

1− y
d

dy
.

Since
t− 1 = ξ0(w) = − d

dw
ξ−1(w) =

y

1− y
,

we conclude that

(3.10) y =
t− 1
t

.

As a consequence, we complete

(3.11) − d

dw
= x

d

dx
=

y

1− y
d

dy
= t2(t− 1)

d

dt
.

We also obtain a formula for w in terms of t, since e−w = ye1−y.

(3.12) w = −1
t
− log

(
1− 1

t

)
=
∞∑
m=2

1
m

1
tm
.

Notice that near w = 0, we have t ∼
√

2w, as we wished. Now we can calculate ξn(w) in
terms of t for every n ≥ 0.

Definition 3.5. As a function in t, we denote

(3.13) ξ̂n(t) = ξn(w(t)).

Proposition 3.6. For every n ≥ 0, ξ̂n(t) is a polynomial in t of degree 2n+ 1. For n > 0
it has an expansion

(3.14) ξ̂n(t) = (2n− 1)!!t2n+1 − (2n+ 1)!!
3

t2n + · · ·+ ant
n+2 + (−1)nn! tn+1,

where an is defined by
an = −

[
(n+ 1)an−1 + (−1)nn!

]
and is identified as the sequence A001705 or A081047 of the On-Line Encyclopedia of
Integer Sequences.

Proof. It is a straightforward calculation of

ξ̂n(t) = t2(t− 1)
d

dt
ξ̂n−1(t) =

(
t2(t− 1)

d

dt

)n
(t− 1).

�

Remark 3.7. Other than those identified in (3.14), we do not know the general coefficients
of ξ̂n(t).
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Theorem 3.8 (Laplace transform of single Hurwitz numbers). The Laplace transform of
single Hurwitz numbers is given by

(3.15)

Fg,`(t) = Fg,`(t1, t2, . . . , t`) =
∑
µ∈Z`+

Hg(µ)e−|µ|e−(µ1w1+···+µ`w`)

=
∑

n1,...,n`≥0

g∑
j=0

(−1)j〈τn1 · · · τn`λj〉g,`
∏̀
i=1

ξ̂ni(ti).

This is a polynomial of degree 3(2g − 2 + `). Its highest degree terms form a homogeneous
polynomial

(3.16) F top
g,` (t) =

∑
n1+···+n`=3g−3+`

〈τn1 · · · τn`〉g,`
∏̀
i=1

(2ni − 1)!! t2ni+1
i ,

and the lowest degree terms also form a homogeneous polynomial

(3.17) F lowest
g,` (t) =

∑
n1+···+n`=2g−3+`

(−1)3g−3+`〈τn1 · · · τn`λg〉g,`
∏̀
i=1

ni! tni+1
i .

Remark 3.9. We note that there is no a priori reason for the Laplace transform of Hg(µ)
to be a polynomial. Because it is a polynomial, we obtain a polynomial generating function
of linear Hodge integrals 〈τn1 · · · τn`λj〉g,`. We utilize this polynomiality in the final lecture.

Remark 3.10. The existence of the polynomials ξ̂n(t) in (3.15) is significant, because
it reflects the ELSV formula (3.1). Indeed, Eynard [24] predicts that this is the general
structure of the Eynard-Orantin formalism.

4. The power of the remodeled B-model

In this third lecture, we will first compute the Laplace transform of the cut-and-join
equation. The result turns out to be a simple polynomial recursion formula. Here again
there is no a priori reason for the result to be a polynomial relation, because the cut-
and-join equation (2.3) contains unstable geometries, and they contribute non-polynomial
terms after the Laplace transform.

We then remark that the Laplace transform of the cut-and-join equation is equivalent to
the Eynard-Orantin topological recursion formula [27, 24] based on the Lambert curve (3.6)
as the spectral curve of the theory. This fact solves the Bouchard-Mariño conjecture [6] of
Hurwitz numbers [25, 65], and establishes the Lambert curve as the remodeled B-model
corresponding to single Hurwitz numbers through mirror symmetry.

The unexpected power [65] of the topological recursion formula appearing in our context
is the following.

(1) It restricts to the top degree terms, and recovers the Dijkgraaf-Verlinde-Verlinde
formula, or the Virasoro constraint condition, for the psi-class intersection numbers
on Mg,`.
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(2) It also restricts to the lowest degree terms, and recovers the λg-conjecture of Faber
that was proved in [29, 30].

In other words, we obtain a straightforward, simple proofs of the Witten conjecture and
Faber’s λg-conjecture from the Laplace transform of the cut-and-join equation. We note
that the Laplace transform contains the information of the large µ asymptotics. Therefore,
our proof [65] of the Witten conjecture uses the same idea of Okounkov and Pandharipande
[73], yet it is much simpler because we do not have to use any of the asymptotic analyses
of matrix integrals, Hurwitz numbers, and graph enumeration.

The proof of the λg-conjecture using the topological recursion is still somewhat myste-
rious. Here again the complicated combinatorics is wiped out and we have a transparent
proof.

Let us first state the Laplace transform of the cut-and-join equation.

Theorem 4.1. The polynomial generating functions of the linear Hodge integrals Fg,`(t)
satisfy the following topological recursion formula

(4.1)

(
2g − 2 + `+

∑̀
i=1

1
ti
Di

)
Fg,`(t1, t2, . . . , t`)

=
∑
i<j

t2i (tj − 1)DiFg,`−1

(
t[`;ĵ]

)
− t2j (ti − 1)DjFg,`−1

(
t[`;̂i]

)
ti − tj

+
∑̀
i=1

[
Du1Du2Fg−1,`+1

(
u1, u2, t[`;̂i]

)]
u1=u2=ti

+
1
2

∑̀
i=1

stable∑
g1+g2=g

JtK=[`;̂i]

DiFg1,|J |+1(ti, tJ) ·DiFg2,|K|+1(ti, tK),

where Di = t2i (ti − 1) ∂
∂ti

. As before, [`] = {1, . . . , `} is the index set, and [`; î] is the
index set obtained by deleting i from [`]. The last summation is taken over all partitions
g = g1 + g2 of the genus g and disjoint union decompositions J tK = [`; î] satisfying the
stability conditions 2g1 − 1 + |J | > 0 and 2g2 − 1 + |K| > 0. For a subset I ⊂ [`] we write
tI = (ti)i∈I .

The biggest difference between the cut-and-join equation (2.3) and the Laplace trans-
formed formula (4.1) is the restriction to stable geometries in the latter. In the case of
the cut-and-join equation, the cut case contains g1 = 0 and I = ∅. Then Hg2(J, β) has
the same complexity of Hg(µ). Thus the cut-and-join equation is simply a relation among
Hurwitz numbers.

The new feature of our (4.1) is that it is a genuine recursion formula about linear Hodge
integrals. Indeed, we can re-write the formula as follows.
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(4.2)
∑
n[`]

〈τn[`]
Λ∨g (1)〉g,`

(
(2g − 2 + `)ξ̂n[`]

(t[`]) +
∑̀
i=1

1
ti
ξ̂ni+1(ti)ξ̂[`;̂i](t[`;̂i])

)

=
∑
i<j

∑
m,n[`;̂iĵ]

〈τmτn[`;̂iĵ]
Λ∨g (1)〉g,`−1ξ̂n[`;̂iĵ]

(t[`;̂iĵ])
ξ̂m+1(ti)ξ̂0(tj)t2i − ξ̂m+1(tj)ξ̂0(ti)t2j

ti − tj

+
1
2

∑̀
i=1

∑
n[`;̂i]

∑
a,b

(
〈τaτbτn[`;̂i]

Λ∨g−1(1)〉g−1,`+1

+
stable∑

g1+g2=g

I
‘
J=[`;̂i]

〈τaτnIΛ
∨
g1(1)〉g1,|I|+1〈τbτnJΛ∨g2(1)〉g2,|J |+1

)
ξ̂a+1(ti)ξ̂b+1(ti)ξ̂n[`;̂i]

(t[`;̂i]),

where [`] = {1, 2 . . . , `} is the index set, and for a subset I ⊂ [`], we denote

tI = (ti)i∈I , nI = {ni | i ∈ I }, τnI =
∏
i∈I

τni , ξ̂nI (tI) =
∏
i∈I

ξ̂ni(ti).

We also use Zhou’s symbol

Λ∨g (1) = 1− λ1 + λ2 − · · ·+ (−1)gλg.

It is now obvious that in (4.2), the complexity 2g − 2 + ` is reduced exactly by 1 on
the right-hand side. Thus we can compute linear Hodge integrals one by one using this
formula.

The Deligne-Mumford stack Mg,` is defined as the moduli space of stable curves satis-
fying the stability condition 2 − 2g − ` < 0. However, Hurwitz numbers are well defined
for unstable geometries (g, `) = (0, 1) and (0, 2). It is an elementary exercise to show that

H0

(
(d)
)

=
dd−1

d!
.

The ELSV formula remains true for unstable cases by defining∫
M0,1

1
1− kψ

=
1
k2
,(4.3) ∫

M0,2

1
(1− µ1ψ1)(1− µ2ψ2)

=
1

µ1 + µ2
.(4.4)

In terms of single Hurwitz numbers, we have

H0

(
(µ1, µ2)

)
=
µµ1

1

µ1!
· µ

µ2
2

µ2!
· 1
µ1 + µ2

.

From these expressions we can actually compute F0,1(t) and F0,2(t1, t2). Since these
computations are quite involved, we refer to [25, 65]. What happens often in mathematics
is what we call a miraculous cancellation. In our situation, when we honestly compute
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all terms appearing in the Laplace transform in the cut-and-join equation (2.3), some-
what miraculously, all non-polynomial terms cancel out, and the rest becomes an effective
recursion formula (4.2).

Now let us move to proving the Witten conjecture and the λg-formula using our recursion
(4.2). Although these important formulas have been proved a long time ago, we present a
new proofs here just to illustrate the use of the topological recursion.

The DVV formula for the Virasoro constraint condition on the ψ-class intersections reads

(4.5) 〈τn[`]
〉g,` =

∑
j≥2

(2n1 + 2nj − 1)!!
(2n1 + 1)!!(2nj − 1)!!

〈τn1+nj−1τn[`;1̂ĵ]
〉g,`−1

+
1
2

∑
a+b=n1−2

〈τaτbτn[`;1̂]
〉g−1,`+1 +

stable∑
g1+g2=g
JtK=[`;1̂]

〈τaτnJ 〉g1,|J |+1 · 〈τbτnK 〉g2,|K|+1


× (2a+ 1)!!(2b+ 1)!!

(2n1 + 1)!!
.

Here [`; 1̂ĵ] = {2, 3, . . . , ĵ, . . . , `}, and for a subset I ⊂ [`] we write

nI = (ni)i∈I and τnI =
∏
i∈I

τni .

Proposition 4.2. The DVV formula (4.5) is exactly the relation among the top degree
coefficients of the recursion (4.1).

Proof. Choose n[`] so that |n[`]| = n1 +n2 + · · ·+n` = 3g−3+`. The degree of the left-hand
side of (4.1) is 3(2g − 2 + `) + 1. So we compare the coefficients of t2n1+2

1

∏
j≥2 t

2nj+1
j in

the recursion formula. The contribution from the left-hand side of (4.1) is

〈τn[`]
〉g,`(2n1 + 1)!!

∏
j≥2

(2nj − 1)!!.

The contribution from the first line of the right-hand side comes from

∑
j≥2

〈τmτn[`;1̂ĵ]
〉g,`−1(2m+ 1)!!

t21tjt
2m+3
1 − t2j t1t

2m+3
j

t1 − tj

=
∑
j≥2

〈τmτn[`;1̂ĵ]
〉g,`−1(2m+ 1)!!t1tj

t2m+4
1 − t2m+4

j

t1 − tj

=
∑
j≥2

〈τmτn[`;1̂ĵ]
〉g,`−1(2m+ 1)!!

∑
a+b=2m+3

ta+1
1 tb+1

j ,
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where m = n1 + nj − 1. The matching term in this formula is a = 2n1 + 1 and b = 2nj .
Thus we extract as the coefficient of t2n1+2

1

∏
j≥2 t

2nj+1
j∑

j≥2

〈τn1+nj−1τn[`;1̂ĵ]
〉g,`−1(2n1 + 2nj − 1)!!

∏
k 6=1,j

(2nk − 1)!!.

The contributions of the second and the third lines of the right-hand side of (4.1) are

1
2

∑
a+b=n1−2

〈τaτbτL\{1}〉g−1,`+1 +
1
2

stable∑
g1+g2=g
JtK=[`;1̂]

〈τaτnJ 〉g1,|J |+1 · 〈τbτnK 〉g2,|K|+1


× (2a+ 1)!!(2b+ 1)!!

∏
j≥2

(2nj − 1)!!.

We have thus recovered the Witten-Kontsevich theorem [16, 48, 86]. �

The λg formula [29, 30, ?, 53] is

(4.6) 〈τn[`]
λg〉g,` =

(
2g − 3 + `

n[`]

)
bg,

where

(4.7)
(

2g − 3 + `

n[`]

)
=
(

2g − 3 + `

n1, . . . , n`

)
is the multinomial coefficient, and

bg =
22g−1 − 1

22g−1

|B2g|
(2g)!

is a coefficient of the series
∞∑
j=0

bjs
2j =

s/2
sin(s/2)

.

Proposition 4.3. The lowest degree terms of the topological recursion (4.1) proves the
combinatorial factor of the λg formula

(4.8) 〈τn[`]
λg〉g,` =

(
2g − 3 + `

n[`]

)
〈τ2g−1λg〉g,1.

Proof. Choose n[`] subject to |n[`]| = 2g− 3 + `. We compare the coefficient of the terms of∏
i≥1 t

ni+1
i in (4.1), which has degree |n[`]|+ ` = 2g−3+2`. The left-hand side contributes

(−1)2g−3+`(−1)g〈τn[`]
λg〉g,`

∏
i≥1

ni!

(
2g − 2 + `−

∑̀
i=1

(ni + 1)

)
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= (−1)`(−1)g〈τn[`]
λg〉g,`(`− 1)

∏
i≥1

ni!.

The lowest degree terms of the first line of the right-hand side are

(−1)g
∑
i<j

∑
m

〈τmτn[`;̂iĵ]
λg〉g,`−1(−1)m(m+ 1)!

tm+4
i − tm+4

j

ti − tj
(−1)2g−3+`−ni−nj

∏
k 6=i,j

nk!t
nk+1
k .

Since m = ni + nj − 1, the coefficient of
∏
i≥1 t

ni+1
i is

−(−1)g(−1)2g−3+`
∑
i<j

〈τni+nj−1τn[`;̂iĵ]
λg〉g,`−1

(
ni + nj
ni

)∏
i≥1

ni!.

Note that the lowest degree coming from the second and the third lines of the right-hand
side of (4.1) is |n[`]| + ` + 2, which is higher than the lowest degree of the left-hand side.
Therefore, we have obtained a recursion equation with respect to `

(4.9) (`− 1)〈τn[`]
λg〉g,` =

∑
i<j

〈τni+nj−1τn[`;̂iĵ]
λg〉g,`−1

(
ni + nj
ni

)
.

The solution of the recursion equation (4.9) is the multinomial coefficient (4.7). �

Remark 4.4. Although the topological recursion (4.1) determines all linear Hodge inte-
grals, the closed formula

bg = 〈τ2g−2λg〉g,1 g ≥ 1

does not directly follow from it.

Appendix A. The Eynard-Orantin topological recursion on a genus 0 curve

We are not in the place to formally present the Eynard-Orantin formalism in an ax-
iomatic way. Instead of giving the full account, we are satisfied in Appendix A to give
an explanation of a limited case when the spectral curve of the theory is P1. The word
“spectral curve” was used in [27] because of the analogy of the spectral curves appearing
in the Lax formalism of integrable systems.

We start with the spectral curve C = P1 \ S, where S ⊂ P1 is a finite set. We also need
two generic elements x and y of H0(C,OC), where OC denotes the sheaf of holomorphic
functions on C. The condition we impose on x and y is that the holomorphic maps

(A.1) x : C −→ C and y : C −→ C

have only simple ramification points, i.e., their derivatives dx and dy have simple zeros,
and that

(A.2) (x, y) : C 3 t 7−→
(
x(t), y(t)

)
∈ C2

is an immersion. Let Λ1(C) denote the sheaf of meromorphic 1-forms on C, and

(A.3) Hn = H0
(
Cn,Symn(Λ1(C))

)
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the space of meromorphic symmetric differentials of degree n. The Cauchy differentiation
kernel is an example of such differentials:

(A.4) W0,2(t1, t2) =
dt1 ⊗ dt2
(t1 − t2)2

∈ H2.

In the literatures starting from [27], the Cauchy differentiation kernel has been called the
Bergman kernel, even thought it has nothing to do with the Bergman kernel in complex
analysis. A bilinear operator

(A.5) K : H ⊗H −→ H

naturally extends to

K : Hn1+1 ⊗Hn2+1 3 (f0, f1, . . . , fn1)⊗ (h0, h1, . . . , hn2)

7−→ (K(f0, h0), f1, . . . , fn1 , h1, . . . , hn2) ∈ Hn1+n2+1

K : Hn+1 3 (f0, f1, . . . , fn1) 7−→ (K(f0, f1), f2, . . . , fn1) ∈ Hn.

Suppose we are given an infinite sequence {Wg,n} of differentials Wg,n ∈ Hn for all (g, n)
subject to the stability condition 2g−2+n > 0. We say this sequence satisfies a topological
recursion with respect to the kernel K if

(A.6) Wg,n = K(Wg,n−1,W0,2) +K(Wg−1,n+1) +
1
2

stable∑
g1+g2=g
ItJ=[n;1̂]

K
(
Wg1,|I|+1,Wg2,|J |+1

)
.

The characteristic of the Eynard-Orantin theory lies in the particular choice of the Eynard
kernel that reflects the parametrization (A.2) and the ramified coverings (A.1). Let A =
{a1, . . . , ar} ⊂ C be the set of simple ramification points of the x-projection map. Since
locally at each aλ the x-projection is a double-sheeted covering, we can choose the deck
transformation map

(A.7) sλ : Uλ
∼−→ Uλ,

where Uλ ⊂ C is an appropriately chosen simply connected neighborhood of aλ.

Definition A.1. The Eynard kernel is the linear map H ⊗H → H defined by

(A.8) K
(
f1(t1)dt1, f2(t2)dt2

)
=

1
2πi

r∑
λ=1

∮
|t−aλ|<ε

Kλ(t, t1)
(
f1(t)dt⊗ f2

(
sλ(t)

)
dsλ(t) + f2(t)dt⊗ f1

(
sλ(t)

)
dsλ(t)

)
,

where

(A.9) Kλ(t, t1) =
1
2

(∫ sλ(t)

t
W0,2(t, t1) dt

)
⊗ dt1 ·

1(
y(t)− y

(
sλ(t)

))
dx(t)

,
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and 1
dx(t) is the contraction operator with respect to the vector field(

dx

dt

)−1 ∂

∂t
.

The integration is taken with respect to the t-variable along a small loop around aλ that
contains no singularities other than t = aλ. A topological recursion with respect to the
Eynard kernel is what we call the Eynard-Orantin recursion in these lectures.

Appendix B. The Lagrange Inversion Formula

In Appendix B we give a brief proof of the Lagrange Inversion Formula. For more detail,
we refer to [85].

Theorem B.1. Let x = f(y) be a holomorphic function in y defined on a neighborhood of
y = b. Let f(b) = a, and suppose f ′(b) 6= 0. Then the inverse function y = y(x) is given
by the following expansion near x = a:

(B.1) y − b =
∞∑
k=1

dk−1

dyk−1

(
y − b

f(y)− a

)k∣∣∣∣∣
y=b

(x− a)k

k!
.

Proof. Let us recall the Cauchy integration formula

φ(s) =
1

2πi

∮
φ(t)dt
t− s

,

where φ(t) is a holomorphic function defined on a neighborhood of t = s, and the integration
contour is a small simple loop inside this neighborhood counterclockwisely rotating around
the point s. Since x = f(y) is one-to-one near y = b, for a point s close to b, we have

1
f ′(s)

=
1

f ′
(
f−1(f(s)

)
=

1
2πi

∮
df(t)

f ′
(
f−1(f(t)

)(
f(t)− f(s)

)
=

1
2πi

∮
f ′(t)dt

f ′(t)
(
f(t)− f(s)

)
=

1
2πi

∮
dt

f(t)− f(s)
.

Therefore, assuming that s is close enough to b, we compute

y − b =
∫ y

b
1 · ds =

∫ y

b

(
1

2πi

∮
f ′(s)dt

f(t)− f(s)

)
ds

=
∫ y

b

(
1

2πi

∮
f ′(s)dt(

f(t)− a
)
−
(
f(s)− a

)) ds
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=
1

2πi

∫ y

b

∮ f ′(s)
f(t)−a

1− f(s)−a
f(t)−a

dtds

=
1

2πi

∫ y

b

∞∑
n=0

∮
f ′(s)

f(t)− a

(
f(s)− a
f(t)− a

)n
dsdt

=
1

2πi

∫ f(y)

f(b)

∞∑
n=0

∮
1

f(t)− a

(
f(s)− a
f(t)− a

)n
df(s)dt

=
1

2πi

∞∑
n=0

∮
1(

f(t)− a
)n+1 ·

(
f(y)− a

)n+1

n+ 1
dt

=
1

2πi

∞∑
k=1

∮
dt(

f(t)− a
)k · (x− a)k

k

=
1

2πi

∞∑
k=1

∮
1

(y − b)k

(
y − b

f(y)− a

)k
dy · (x− a)k

k

=
∞∑
k=1

dk−1

dyk−1

(
y − b

f(y)− a

)k∣∣∣∣∣
y=b

· (x− a)k

k(k − 1)!
.

�

The following formula is a straightforward application of the above Lagrange Inversion
Theorem.

Corollary B.2. If
x =

y

f(y)
, f(0) = 0, and f ′(0) 6= 0,

then the inverse function is given by

(B.2) y =
∞∑
k=1

dk−1

dyk−1

(
f(y)

)k∣∣∣∣
y=0

xk

k!
.
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[44] A. Hurwitz, Über Riemann’sche Flächen mit gegebene Verzweigungspunkten, Mathematische Annalen 39, 1–66

(1891).

[45] M. Kazarian, KP hierarchy for Hodge integrals, arXiv:0809.3263 (2008).
[46] M. Kazarian, S. Lando, An algebro-geometric proof of Witten’s conjecture, J. Amer. Math. Soc. 20, 1079–1089

(2007).

[47] Y.S. Kim and K. Liu, A simple proof of Witten conjecture through localization, preprint arXiv:math/0508384
[math.AG] (2005).

[48] M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Communications

in Mathematical Physics 147, 1–23 (1992).
[49] M. Kontsevich, Homological algebra of mirror symmetry, arXiv:alg-geom/9411018 (1994).

[50] J. Li, C.-C. M. Liu, K. Liu, and J. Zhou, A mathematical theory of the topological vertex, Geom. Topol. 13,

527–621 (2009).
[51] C.-C. M. Liu, Formulae of one-partition and two-partition Hodge Integrals, Geom. & Top. Monographs 8,

105–128 (2006).
[52] C.-C. M. Liu, Lectures on the ELSV formula, arXiv:1004.0853. In “Transformation Groups and Moduli Spaces of

Curves,” Adv. Lect. Math. (ALM) 16, 195–216, Higher Education Press and International Press, Beijing-Boston,

2010.
[53] C.-C. M. Liu, K. Liu, J. Zhou, A proof of a conjecture of Mariño-Vafa on Hodge Integrals, J. Differential Geom.

65, no. 2, 289–340 (2003).

[54] K. Liu and H. Xu, A simple proof of Mirzakhani’s recursion formula of Weil–Petersson volumes, arXiv:0705.2086
[math.AG].

[55] K. Liu and H. Xu, Recursion formulae of Higher Weil–Petersson volumes, Intern. Math. Res. Notices, Vol.

2009, No. 5, 835–859 (2009).
[56] M. Mariño, Chern-Simons theory, matrix models, and topological strings, Oxford University Press, 2005.

[57] M. Mariño, Open string amplitudes and large order behavior in topological string theory, JHEP 0803, 060

(2008).
[58] A. Mironov and A. Morozov, Virasoro constraints for Kontsevich-Hurwitz partition function, arXiv:0807.2843

[hep-th] (2008).

[59] M. Mirzakhani, Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces,
Invent. Math. 167, 179–222 (2007).

[60] M. Mirzakhani, Weil-Petersson volumes and intersection theory on the moduli space of curves, J. Amer. Math.
Soc. 20, 1–23 (2007).

[61] M. Mulase, Asymptotic analysis of a Hermitian matrix integral, International Journal of Mathematics 6, 881–892

(1995).
[62] M. Mulase and M. Penkava, Ribbon graphs, quadratic differentials on Riemann surfaces, and algebraic curves

defined over Q, The Asian Journal of Mathematics 2 (4), 875–920 (1998).
[63] M. Mulase and M. Penkava, Topological recursion for the Poincaré polynomial of the combinatorial moduli space
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