
LECTURES ON DONALDSON-THOMAS THEORY

DAVESH MAULIK

These are a very rough and skeletal set of notes for my lectures on
Donaldson-Thomas theory for the Grenoble Summer School on moduli
of curves and Gromov-Witten theory. The goal of these lectures is to
give a basic introduction to the correspondence between GW theory
and DT theory and discuss some techniques to study DT invariants.
In the last lecture, I want to give an overview of the proof in the
case of toric threefolds. For this, the main reference is the paper [8],
arxiv:0809.3976. The current list of references is woefully incomplete,
and I will try to fix them later.

1. Lecture 1

In these lectures, the focus will be on different approaches to count-
ing algebraic curves satisfying various constraints on a smooth com-
plex projective threefold X. Very roughly, the approaches correspond
to thinking of curves either as parametrized objects or embedded ob-
jects; depending on which we choose, we have different limit points of
smoothly embedded curves, leading to very different compactifications.

1.1. Stable maps and Gromov-Witten theory. Fix a class 0 6=
β ∈ H2(X, Z), and a genus g.

Definition 1.1. An n-pointed stable map to X of genus g and class β
consists of data

(C, p1, . . . , pn, f)

where C is a proper, connected curve of arithmetic genus g with at
worst nodal singularities, p1, . . . , pn are smooth marked points of C
and f : C → X is a map of degree

β = f∗([C]) ∈ H2(X, Z).

We further impose the condition that the data (C, p1, . . . , pn, f) has
finite automorphism group.

Two such objects are identified if they differ by a reparametrization
of the domain. Finiteness of the automorphism group concretely means
that any irreducible component C0 of C that is contracted by f must
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have at least three marked points or nodes if g(C0) = 0 and at least
one marked point or node if g(C0) = 1.

It is easy to see how to define a family of stable maps over a base S;
one can show that the corresponding moduli problem is representable
by a proper separated Deligne-Mumford stack of finite type (since we
have fixed β), which we denote M g,n(X, β). In these lectures, it is more
convenient to work with the variant of the above moduli space where
we allow disconnected curves such that each connected component is
not contracted, denoted M

•

g,n(X, β).
It is useful to keep in mind how limits behave under certain kinds of

degeneration.

Example 1.2. Consider the family of twisted cubics

ft : P1 → P3; [x, y] 7→ [t · x3, x2y, xy2, y3],

viewed as stable maps of genus 0 with β = 3[line], where the family as
t → 0 is obtained by projecting away from the point [1, 0, 0, 0]. The
limit as a cycle is a nodal curve contained in the plane; the limit as a
stable map will be the normalization of the nodal curve.

Example 1.3. Consider the degeneration of a smooth conic C ⊂ P3 to
a nonreduced line:

Ct = (x2 − tyz = 0, w = 0) ⊂ P3, t 6= 0

The domain of the limiting stable map as t → 0 will be a rational
curve branched over the line with degree 2. Note that there is now
a two-dimensional space of possible limits (depending on the specific
degeneration); all these limits have a nontrivial automorphism group
from the branched cover.

While the moduli space of stable maps is typically highly singular,
its deformation theory is well-behaved in the following sense. We can
model the deformation theory at a point of the moduli space in terms
of cohomological data. For example, if we fix a stable map (C, f), the
space of first-order deformations is given by

Def(f) = H0(C, f ∗TX);

there is a well-defined space of obstructions to extending infinitesimal
deformations of maps, given by

Obs(f) = H1(C, f ∗TX).

If we consider the space of maps with fixed domain C, then locally
this data gives a presentation of the mapping space Mor(C, X) as the
subscheme of Def(f) determined by dim Obs equations, so we get a
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natural lower bound for the dimension of the moduli space at this
point.

If we include deformations of the pointed curve (C, p1, . . . , pn), we

obtain a formula for the expected dimension of M
•

g,n(X, β):

vdim = 3g − 3 + n + χ(C, f ∗TX) = −KX · β + (dim X − 3)(1− g) + n.

The fact that this expected dimension is independent of the stable
map (C, f) is the first indication that the deformation theory is acting
nicely; the more detailed concept here is that of a perfect two-term
obstruction theory (corresponding to the fact that there aren’t higher
cohomology groups). See Jun Li’s notes from this school for more
information here.

While in general, the actual dimension of M
•

g,n(X, β) is larger than
the expected dimension, the main technical foundation of the subject
is a construction of the virtual fundamental class

[M
•

g,n(X, β)]vir ∈ H2vdim(M
•

g,n(X, β)).

Here the degree is doubled because we are working with homology
instead of Chow groups. We use the virtual class as a substitute for
the role of the usual fundamental class in intersection theory.

Notice that when dim X = 3, the expected dimension is

vdim = −KX · β + n,

which is independent of the genus g.

1.2. Ideal sheaves and Donaldson-Thomas theory. From now on,
it will be important to only consider dimX = 3. Fix a class β ∈
H2(X, Z) and an integer χ ∈ Z.

Definition 1.4. The Hilbert scheme Hilbχ(X, β) of 1-dimensional sub-
schemes of X with numerical invariants β, χ parametrizes subschemes
Z ⊂ X, whose irreducible components are at most 1-dimensional such
that

(1) χ(OZ) = χ, and
(2) [Z] = β ∈ H2(X, Z).

Here, we use [Z] to denote the cycle class of the 1-dimensional compo-
nents of Z.

Example 1.5. Consider the limit of two skew lines in P3 (which is also
a local model for the degeneration of the twisted cubic studied earlier).

Ct = (y = 0, z = t) ∪ (x = 0, z = 0)

. The flat limit of ideals as t → 0 is

(x, z) ·(y, z−t) = (xy, yz, x(z−t), z(z−t)) → (xy, yz, xz, z2) ( (xy, z),
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so we have an embedded point.

This embedded point can be deformed off the curve, so there is no
natural way to consider pure 1-dimensional objects. On the other hand,
our subschemes are always embedded, so there are no automorphisms
and we always work with proper schemes.

1.3. Deformation theory. The standard deformation theory of sub-
schemes is not as well-behaved as stable maps. The deformation and
obstruction space are given by

HomX(IZ , OZ), Ext1
X(IZ , OZ)

respectively. Due to the existence of higher Ext groups, which do not
typically vanish, there is not a well-defined expected dimension and the
virtual class technology breaks down.

Instead, consider the moduli space Iχ(X, β) parametrizing pairs (E, φ)
such that

(1) E is a torsion-free sheaf X of rank 1,
(2) equipped with a trivialization φ : detE ∼= OX , and
(3) its numerical invariants are given by

c2(E) = −β, χ(E) = χ(OX) − χ.

The natural map

Hilbχ(X, β) → Iχ(X, β); Z 7→ IZ

is an isomorphism. On the level of closed points, we can see this as
follows. The double-dual E∨∨ is a reflexive sheaf of rank 1 with trivial
determinant, so must be OX ; the natural inclusion

0 → E → E
∨∨

realizes E as the ideal sheaf of a subscheme.
While the underlying schemes are identical, the natural deformation

and obstruction spaces for torsion free sheaves with trivialized deter-
minant are given by

Ext1
0(E, E), Ext20(E, E).

Here, Extk
0 denotes the traceless Ext groups, given by the kernel of the

trace map
Extk(E, E) → Hk(OX).

By Serre duality, the traceless Ext-groups vanish in dimension 0 and
3, so this approach gives a perfect obstruction theory, with expected
dimension

vdim = χ(E, E) − χ(OX) = −KX · β.



LECTURES ON DONALDSON-THOMAS THEORY 5

The observation that moduli of ideal sheaves is better behaved than
the Hilbert scheme goes back to Richard Thomas’s thesis [12]. As in
Gromov-Witten theory, we again have a virtual class with this dimen-
sion. Notice that the virtual dimension is independent of n and equal
to the virtual dimension of M g, 0(X, β).

1.4. Primary invariants. Let γ1, . . . , γn ∈ H∗(X) be cohomology
classes (dual to a collection of topological cycles on X); by the ex-
pected dimension formula, if

∑

(
1

2
degγi − 1) = −KX · β,

we expect a finite number of curves intersecting these cycles.
In Gromov-Witten theory, we can model this enumerative problem

using the evaluation maps

evk : M g,n(X, β) → X

and consider the primary invariant

〈γ1, . . . , γn〉
GW
β,g =

∫

[Mg,n(X,β)]vir

∏

ev∗
k γk ∈ Q.

In Donaldson-Thomas theory, we have no evaluation maps; however,
we can use Chern classes of the tautological sheaf

I → Hilb(X) × X.

Given γ ∈ H∗(X), we can define an operator

σ0(γ) : πHilb,∗ (−ch2(I) ∪ π∗
X(γ) ∩ π∗

Hilb(−)) : H∗(Hilb) → H∗(Hilb).

Primary Donaldson-Thomas invariants are defined by

〈γ1, . . . , γn〉
DT
β,m = deg

∏

σ0(γk)[Iχ(X, β)]vir ∈ Z,

where by the dimension count, the expression on the right is a de-
gree 0 class so has a well-defined degree. The motivation here is that
−ch2(IZ) = β is represented by the cycle [Z].

1.5. Correspondence. Despite the heuristic similarity, there is no
natural geometric mechanism for these two sets of invariants to agree;
in fact they clearly don’t agree (e.g. GW invariants are typically ratio-
nal while DT invariants are always integral). Nevertheless, for primary
invariants we expect a simple correspondence relating the two (see [5]).

Set

Z
′
GW (γ1, . . . , γn; u)β =

∑

g

u2g−2〈γ1, . . . , γn〉
GW
β,g
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and

ZDT (γ1, . . . , γn; q)β =
∑

χ

〈γ1, . . . , γn〉
DT
β,χqχ.

It is convenient to normalize the DT series by the contribution of β = 0:

Z
′
DT (γ; q)β =

ZDT (γ; q)β

ZDT (∅; q)0

.

Conjecture. The reduced Donaldson-Thomas partition function Z′
DT (γ; q)β

is a rational function of q. The change of variables

q = −eiu

relates it to the Gromov-Witten partition function

(−iu)− vdim
Z
′
GW (γ; u)β = (−q)−vdim /2

Z
′
DT (γ; q)β.

One nice feature of this conjecture is that, since the DT series is
a rational function in q, the change of variables does not require any
analytic continuation. Regarding the degree 0 normalization, we have
a precise evaluation for the degree 0 partition function:

ZDT (∅; q)0 = M(−q)
R

X
(c3−c1c2)

where

M(q) =
1

∏

(1 − qn)n

is the Macmahon function. Note that this is very far from a rational
function in q; it is only the normalization that is well-behaved.

Remark 1.6. The conjecture is known in very few cases: toric threefolds
and rank 2 bundles over curves. Recently, there has been great progress
in proving the rationality statement for Calabi-Yau threefolds.

Example 1.7. Let C be a smooth rigid rational curve with normal bun-
dle O(−1) ⊕ O(−1) inside a compact Calabi-Yau threefold. Take the
class β = [C]. Let us assume for convenience that C is the only effec-
tive curve in this class (or just take connected components of all the
moduli spaces associated to C). So a genus g stable map to this curve
class consists of a rational curve mapping isomorphically to C and con-
tracted higher genus tails on this spine, that can move around. While
I won’t explain how, there is a nice formula for the Gromov-Witten
series here:

∑

〈〉GW
g,[C]u

2g−2 =

(

1

2 sin(u/2)

)2

= u−2 + 1/12 + . . .
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If we run this through the conjecture, we get the prediction of

Z
′
DT (q)[C] =

q

(1 − q)2
= q + 2q2 + . . . .

For the normalized DT series, we will see how to do this kind of calcu-
lation later on, via localization.

1.6. Additional comments.

(1) Although I won’t say too much about this, there is (conjec-
turally) a natural geometric interpretation of the normalized
DT series, known as Pandharipande-Thomas theory [11], using
the moduli space of stable pairs:

{(E, σ)|E pure torsion sheaf with one-dim. support;

σ : OX → E with zero-dim. cokernel}.

It is a fun exercise to see how this moduli space handles the
limits we discussed before. See [11] for more details.

(2) As discussed in Y.P. Lee’s lectures, it is useful to consider not
just primary invariants in Gromov-Witten theory but also de-
scendent invariants essentially arising from the structure map
to M g,n. While there is no direct analog in DT theory, we
can take higher degree Chern classes of the tautological sheaf.
Rather remarkably, due to recent work of Oblomkov, Okounkov,
and Pandharipande, it appears the conjecture can be extended
precisely to this setting, although it is much more complicated
than the simple change of variables in the primary case. One
simple statement, however, is that if we take deg γi > 0, then
we expect the rationality statement to hold with descendents.

(3) One feature of the change of variables is that there is no natural
way of isolating the contribution of a single genus g on the
Donaldson-Thomas side. However, when X is Calabi-Yau, there
is a nice statement (due to Sheldon Katz [2]) using a different
moduli space of sheaves. Fix a polarization L on X, and let
T (X, β, L) be the moduli space of 1-dimensional torsion sheaves
on X, with c1 = 0, c2 = β, c3 = 1, stable with respect to L. One
can show that T (X, β) has a perfect obstruction theoey with
expected dimension 0. If we set

n0,β(L) = deg[T (X, β)]vir,

then conjecturally we have the relation

deg[M 0,0(X, β)]vir =
∑

d|β

1

d3
n0,β/d(L).
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It has recently been proven by Toda [13] that this conjecture
follows from the general GW/DT correspondence.

2. Lecture 2

In this lecture, I want to explain some of the basic tools in the sub-
ject; unfortunately, for a general threefold, there aren’t many, since we
don’t have access to relations from M g like we do in Gromov-Witten
theory. Still, localization and degeneration techniques in Gromov-
Witten theory still apply in the DT setting.

2.1. Virtual localization in DT theory. For basics on equivariant
cohomology and localization, see Y.P. Lee’s notes.

Let X be a smooth projective toric threefold (it is okay just to think
about P3); by definition, X is an equivariant partial compactification
of a rank three torus T ∼= (C∗)3. Since the T -action on X induces
an action on Hilb(X), all constructions (virtual class, DT invariants,
etc.) make sense in equivariant cohomology/homology, and allow us to
define equivariant DT invariants taking values in H∗

T (pt) = Q[t1, t2, t3].
Because equivariant cohomology of a point does not lie only in degree
zero, there is no longer a dimension constraint on equivariant insertions;
in the compact case, however, we do need the inequality

∑

(
1

2
degγi − 1) ≥ −KX · β,

in order to have nonzero invariants in the projective case.
The key advantage of thinking equivariantly is that the virtual fun-

damental class behaves nicely with respect to localization [1]:

Key Formula:.

[M ]vir =
∑

k

[MT
k ]vir

e(Nvir)
∈ HT

∗ (M) ⊗ Frac(H∗
T (pt)).

In this equation, the sum is over connected components of the fixed
locus, which inherits a virtual fundamental class from the T -fixed part
of the obstruction theory of M ; Nvir denotes the T -varying part of the
obstruction theory.

Remark 2.1. One nice feature of the localization formula is that it al-
lows us to define virtual invariants even when X is not compact (so
proper pushforward is typically ill-defined). As long as MT is proper,
it makes sense to pushforward the right-hand side of the localization
formula to a point. This leads to a definition of equivariant residue
invariants for noncompact moduli spaces (e.g. Hilb(C3)), which are
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forced to take values in Frac(H∗
T (pt)). The primary GW/DT corre-

spondence makes sense and is expected to hold in the equivariant con-
text. In this setting, since rational functions can have negative degree,
we no longer require a degree inequality on insertions. For instance,
the integral of 1 will typically be nonzero as a residue invariant.

On the space of stable maps, this localization relates Gromov-Witten
invariants to Hodge integrals on the moduli space of curves; in Donaldson-
Thomas theory, this localization instead has a very combinatorial fla-
vor. Let us first see what happens for the Hilbert scheme of points on
C3.

Lemma 2.2. Torus-invariant subschemes of C3 correspond to mono-
mial ideals of C[x, y, z] with finite colength.

Given a monomial ideal I ⊂ C[x, y, z] corresponding to a zero-
dimensional subscheme, we can consider the associated set of lattice
points

πI = {(a, b, c) ∈ Z3
≥0|x

aybzc /∈ I}.

This defines a (finite) three-dimensional partition.
It follows from a slightly more refined analysis that the T -fixed ob-

struction theory at these points is trivial, so all the data in the virtual
class of Hilb(X) comes from the virtual normal bundle, obtained by
analysing the traceless Ext-groups as T -representations.

Nvir = Ext1
0(I, I) − Ext2

0(I, I)

The inverse of the Euler class of this virtual representation is the ra-
tional function wπ of t1, t2, and t3 obtained from multiplying the linear
characters that occur, weighted with the appropriate multiplicity.

Example 2.3. The simplest case is I = (x, y, z); in this case, the virtual
representation of traceless Ext groups is

et1 + et2 + et3 − et2+t3 − et1+t3 − et2+t3 ,

so the localization weight is

wπ =
(t1 + t2)(t1 + t3)(t2 + t3)

t1t2t3
.

Unfortunately, while it seems like we have reduced the question to a
combinatorial problem, this alone is not enough to calculate the equi-
variant DT series for C3. It turns out that the answer is extremely
nice:
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Proposition 2.4.
∑

χ

〈1〉DT
χ qχ =

∑

π

wπq|π| = M(−q)
−

(t1+t2)(t1+t3)(t2+t3)
t1t2t3 .

The appearance of M(q) is natural; it is the generating function for
3 − d partitions of size m.

Remark 2.5. While the proof of the above proposition requires some
geometric analysis, things are simpler in the Calabi-Yau specialization
t1 + t2 + t3 = 0. The tangent and obstruction spaces are equivariantly
dual to each other, so

wπ = (−1)dim Ext10(I,I) = (−1)m.

A similar simplification happens in the global setting, making it some-
what easier to understand toric Calabi-Yau threefolds.

In the global setting, the above analysis extends, although becomes
more combinatorially unwieldy. Invariant one-dimensional subschemes
of C3 now correspond to 3-d partitions with possibly infinite legs along
the axes.

Figure 1. A monomial ideal in Hilb(C3) (picture stolen
from A. Okounkov)

For a quasiprojective toric threefold X, let ∆ denote the polytope
associated to X. The vertices of ∆ are in bijection with T -fixed points
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XT . The edges e correspond to T -invariant curves

Ce ⊂ X.

The fixed loci of Hilb(X) correspond to 3-d partitions at each vertex
such that for two neighboring vertcies, the limiting profiles along their
common edge agree.

In both GW and DT theory, the overall structure of T -equivariant
localization formulas can be described as follows. The outermost sum
in the localization formula runs over all assignments of partitions λ(e)
to the compact edges e of ∆ satisfying

β =
∑

e

|λ(e)| · [Ce] ∈ H2(X, Z) .

The weight of each marking in the localization sum for the invariants
equals the product of three factors:

(i) localization of the integrand,
(ii) vertex contributions associated to the 3-d partition, analogous

to wπ

(iii) compact edge contributions associated to the limiting profile.

See [5, 8] for more details on the localization calculations.

2.2. Relative DT theory. This technology has been developed by
Jun Li and Baosen Wu[3, 14], parallel to analogous constructions in
Gromov-Witten theory (also due to Jun Li). In the Gromov-Witten
setting, I refer again to Y.P.’s notes (which in turn refer to some older
notes of Jun Li).

Given a smooth projective threefold X and a smooth divisor D ⊂
X, we are interested in studying subschemes of X which intersect D
cleanly, by which we mean the natural map

I ⊗ OD → OD

is injective. Ideal sheaves with this property are called relative ideal
sheaves. Geometrically this means that no one-dimensional compo-
nents or embedded points of the subscheme Z lie in S. This defines an
open locus of Hilb(X) which is certainly not proper.

The solution to this is to allow the threefold X to degenerate along
D. More precisely, the moduli space Iχ(X/D, β) parametrizes stable
relative ideal sheaves on degenerations X[k] of X obtained by repeat-
edly deforming to the normal cone of D. That is, X[k] is the union of
X with a chain of k P1-bundles over D. The transversality condition
above is imposed along the transform Dk of the original divisor D as
well as along the singular locus of X[k]. Two relative ideal sheaves are
isomorphic if they agree after applying an automorphism of X[k] over
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X. Stability means that we only consider relative ideal sheaves with
finite automorphism group. One of the main theorems of [3] is

Proposition 2.6. The moduli space Iχ(X/D, β) is a proper Deligne-
Mumford stack equipped with a perfect obstruction theory.

One nice feature about the space of relative ideal sheaves that we
don’t have in the usual setting is that there are now structural maps to
other familiar moduli spaces. For instance, by construction the relative
moduli space admits a natural morphism

ǫ : [I] 7→ [I ⊗ OD]

to the Hilbert scheme of d points in D, a smooth quasiprojective variety
of dimension 2d, where d = β · [D]. Cohomology classes on Hilb(D, d)
may thus be pulled back to the relative moduli space.

We also have a more exotic structural map that involves forgetting
all data of the subscheme. That is, we can send a relative ideal sheaf
(I, X[k]) to the Artin stack T parametrizing target degenerations. This
is a smooth zero-dimensional stack, locally of finite type, consisting of
a point for each degeneration X[k], with automorphism group (C∗)k.
One can think of this stack as the open substack of M0,3 of three-
pointed semistable curves of genus 0 consisting of chains of rational
curves with two marked points on one extremal component and the
thrid point on the other extremal component. As before, we can pull
back divisor classes and divisor relations from this stack (just as we do
in Gromov-Witten theory) to obtain relations between DT invariants.
We will see an example of this later.

If D is disconnected, we allow bubbling along each connected com-
ponent separately, leading to a slightly different stack of target degen-
erations.

2.3. Relative correspondence. We refer the reader to [5] for more
details here. In Gromov-Witten theory, relative conditions are repre-
sented by a partition µ of the number

d = β · [D],

each part µi of which is marked by a cohomology class γi ∈ H∗(D, Z).
The numbers µi record the multiplicities of intersection with D while
the cohomology labels γi record where the tangency occurs. More pre-
cisely, we integrate the pull-backs of γi via the evaluation maps

M
•

g,r(X/D, β) → D

at the points of tangency.
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In Donaldson-Thomas theory, the analog of these relative condi-
tions comes from the evaluation map to Hilb(D, d) just discussed.
A natural geometric basis to work in here is the Nakajima basis of
H∗(Hilb(D, d), Q) indexed by a partition µ of d labeled by cohomology
classes of D. For example, the class

∣

∣µ
〉

∈ H∗(Hilb(D, d), Q) ,

with all cohomology labels equal to the identity, is
∏

µ−1
i times the

Poincaré dual of the closure of the subvariety formed by unions of
schemes of length

µ1, . . . , µℓ(µ)

supported at ℓ(µ) distinct points of D. It turns out these cohomol-
ogy classes correspond precisely to the relative tangency conditions for
curves.

We can fix insertions and relative constraints, and define analogous
normalized generating functions. The conjectural relative GW/DT cor-
respondence [5] equates these series

(1) (−iu)vdim +ℓ(µ)−|µ|
Z
′
GW

(

X/D, u | γ1, . . . , γr

∣

∣µ
)

β

?
=

(−q)−vdim /2
Z
′
DT

(

X/D, q | γ1, . . . , γr

∣

∣µ
)

β
,

after the change of variables eiu = −q. Here, vdim = −KX · β is the
virtual dimension, and µ is a cohomology weighted partition with ℓ(µ)
parts. As before, (1) is conjectured to be a rational function of q.

2.4. Degeneration. Relative theories satisfy degeneration formulas.
Let

X→ B

be a nonsingular 4-fold fibered over an irreducible and nonsingular base
curve B. Let X be a nonsingular fiber and

X1 ∪D X2

be a reducible special fiber consisting of two nonsingular 3-folds inter-
secting transversally along a nonsingular surface D.

If all insertions γ1, . . . , γr lie in the image of

H∗(X1 ∪D X2, Z) → H∗(X, Z) ,

the degeneration formula in Gromov-Witten theory takes the form

(2) ZGW (X| γ1, . . . , γr )β =
∑

Z
′
GW

(

X1| . . .
∣

∣µ
)

β1
z(µ) u2ℓ(µ)

Z
′
GW

(

X2| . . .
∣

∣µ∨
)

β2
,
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where the summation is over all curve splittings β = β1+β2, all splitting
of the insertions γi, and all relative conditions µ.

In (2), the cohomological labels of µ∨ are Poincaré duals of the labels
of µ. The gluing factor z(µ) is the order of the centralizer of in the
symmetric group S(|µ|) of an element with cycle type µ.

The degeneration formula in Donaldson-Thomas theory takes a very
similar form,

Z
′
DT (X| γ1, . . . , γr )β =
∑

Z
′
DT

(

X1| . . .
∣

∣µ
)

β1
(−1)|µ|−ℓ(µ) z(µ) q−|µ|

Z
′
DT

(

X2| . . .
∣

∣µ∨
)

β2
,

. The sum over the relative conditions µ is interpreted as the coproduct
of 1,

∆1 =
∑

µ

(−1)|µ|−ℓ(µ) z(µ)
∣

∣µ
〉

⊗
∣

∣µ∨
〉

,

in the tensor square of H∗(Hilb(D, β · [D]), Z). Conjecture (1) is easily
seen to be compatible with degeneration.

2.5. Rubber space. Consider the threefold X = D × P1 (or more
generally, P(L⊕OD), relative to the fibers over 0 and ∞. Rather than
consider the usual space of relative ideals, there is a rubber moduli
space

Iχ(X/D0 ∪ D∞, β)∼

parametrizing stable relative ideal sheaves on chains of D × P1, up to
the C∗ action on all components.

This space arises naturally in the boundary of the original relative
space and, in particular, is a constant presence when studying fixed
loci of Iχ(X/D, β). It again carries a virtual class (of dimension one
less than the usual case), and should be viewed as analogous to two-
pointed stable maps. We can relate it to the usual virtual class of
Iχ(X/D0 ∪ D∞; β) by a rigidification process.

2.6. Quantum cohomology of Hilbert schemes. Let D be a smooth
projective surface and let X = D × P1; we can use the degeneration
formula to define a ring closely related to the cohomology of Hilb(D)
as follows. Consider relative ideal sheaves on X with respect to the
divisor

S = D × {0, 1,∞}.

If we fix a curve class (β, m) ∈ H2(X, Z), and take three cohomology-
weighted partitions µ, ν, ρ, the relative DT partition function of X is
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defined to be

ZDT (X; µ, ν, ρ)(β,m) =
∑

χ∈Z

qχ

∫

[Iχ(X/S,(β,m)]vir

k
∏

i=1

ǫ∗(µ × ν × ρ)

We can further sum over possible values of β to yield the function

ZDT (X; µ, ν, ρ) =
∑

β

sβ
ZDT (X; µ, ν, ρ)(β,m) ∈ Q(t1, t2)((q))[[s1, . . . , sr]],

where
sβ = s

(β,ω1)
1 · · · · · s(β,ωn)

n

is the monomial expansion of sβ with respect to some basis of H2(D)
that is non-negative on effective curves.

Finally, we will largely be interested in the partition function ob-
tained by normalizing these invariants with respect to the relative
β = 0, m = 0 partition function:

Z
′
DT (X; µ, ν, ρ)(β,m) =

1

ZDT (X; ∅, ∅, ∅)(0,0)

ZDT (X; µ, ν, ρ)(β,m).

Proposition 2.7. The above partition functions define the structure
constants of a ring deformation of the classical cohomology H∗(Hilbm(S), Q)
over Q((q))[s1, . . . , sr].

The point is that, in this geometry, the stack of target degenerations
is an open substack of three-pointed semistable curves, so the same
arguments we use to show, for instance, associativity of the quantum
product apply here.

An extremely natural question is how this ring deformation compares
to the small quantum cohomology of H∗(Hilbm(S)), which is also a
deformation over the same number of parameters. At least in the case of
holomorphic symplectic surfaces such as C2 and resolutions of Kleinian
singularities [10, 7], one can show these deformations agree identically.
This is too much to expect for a general surface (already for m = 1
and S = P2), but it seems reasonable to hope for an identification
after some kind of change of variables. With a little more work, one
can also define an analog of the big quantum product (allowing more
insertions); again, there has not been any work along these lines beyond
holomorphic symplectic surfaces.

3. Lecture 3

In this lecture, I want to explain a few of the steps that go into prov-
ing the GW/DT correspondence for toric threefolds in [8]; it is slightly
simpler to focus on the rationality of the DT generating series. The
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basic idea is to start with a few explicit calculations as inputs and show
that the degeneration and localization package allow us to determine
algorithmically everything else. While the degeneration formalism is
compatible with all conjectures, localization behaves quite poorly, since
localization terms are no longer rational functions.

3.1. Black boxes. Let ζ be a primitive (n + 1)th root of unity, for
n ≥ 0. Let the generator of the cyclic group Zn+1 act on C2 by

(z1, z2) 7→ (ζ z1, ζ
−1z2) .

Let An be the minimal resolution of the quotient

An → C2/Zn+1.

The diagonal (C∗)2-action on C2 commutes with the action of Zn. As
a result, the surfaces An are toric.

The major inputs - obtained by direct analysis - in the algorithm,
are the T -equivariant relative DT invariants for the threefolds

C2 × P1, A1 × P1, A2 × P1

relative to the fibers over 0, 1,∞, with relative insertion over 1 given
by divisor classes

γ ∈ H2(Hilb(An), Q).

These have been calculated in [9] and [6]. In fact, these geometries
are very similar;once one understands how to do the first threefold,
analogous calculations work for all n. In what follows, we will single out
one of these partition functions for An: take a divisor Γ ∈ H2(An, Q)
and the associated divisor (1, Γ) ∈ H2(Hilb An, Q) As we vary the other
relative insertions µ, ν, this partition function defines an operator

ODT (ΓF ) : H∗(Hilb(An)) → H∗(Hilb(An)),

or rather an operator-valued function in q and the curve-class variables.
It is shown in these papers that it is given by a rational function in all
variables (not just q).

As mentioned in the last lecture, these invariants are precisely equal
to three-pointed genus 0 Gromov-Witten invariants for Hilb(An), first
computed [10, 7]. Statements like rationality, for instance, can be read
from explicit formulas.

The second major input is a calculation of the relative DT theory of

O(0) ⊕ O(−1) → P1,

relative to the fiber over ∞ [9, 8].
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3.2. Capped localization. Let X be a smooth toric threefold. As
discussed earlier, the localization weights are combinations of edge and
vertex contributions coming from compatible systems of 3-d partitions
at each vertex. Unfortunately, in DT theory, these edge and vertex
contributions are no longer rational functions of q, so the comparison
with GW theory is difficult (and requires nontrivial analytic continua-
tion). The solution is to replace these terms by a modified localization
procedure where these constituents also satisfy the conjecture. These
so-called capped edge and vertex terms will be residue relative DT
invariants.

The definition of a capped edge in Donaldson-Thomas theory is as
follows. Given an edge e of the toric polytope ∆, with normal bundle
of type (a, b), we consider the toric variety Xe is isomorphic to the total
space of the bundle

(3) OP1(a) ⊕ OP1(b) → P1.

Given relative conditions λ, µ, the capped edge is the partition function

(4) EDT (λ, µ, t1, t2, t3, t
′
1, t

′
2, u) = Z

′
DT (Xe/F0 ∪ F∞, q | λ, µ),

defined by T -equivariant residues.
For vertices, we proceed as follows:
Let U be the T -invariant 3-fold obtained by removing the three T -

invariant lines
L1, L2, L3 ⊂ P1 × P1 × P1

passing through the point (∞,∞,∞),

U = P1 ×P1 × P1 \ ∪3
i=1Li.

Let Di ⊂ U be the divisor with ith coordinate ∞. For i 6= j, the
divisors Di and Dj are disjoint.

In both Gromov-Witten and Donaldson-Thomas theories, the capped
vertex is the normalized partition function of U with free relative condi-
tions imposed at the divisors Di. While the relative geometry U/∪i Di

is noncompact, the moduli spaces of maps M
′

g(U/ ∪i Di, β) and ideal
sheaves In(U/ ∪i Di, β) have compact T -fixed loci. The invariants of
U/∪i Di in both theories are well-defined by T -equivariant residues. In
the localization formula for the reduced theories of U/ ∪i Di, nonzero
degrees can occur only on the edges meeting the origin (0, 0, 0) ∈ Y .

That is, the definition of the capped DT vertex is given by

CDT (λ, µ, ν, t1, t2, t3, q) = Z
′
DT (U/ ∪i Di, q | λ, µ, ν).

The partitions λ, µ, ν here represent the Nakajima basis elements of

H∗(Hilb(Di, [β] · Di), Q) , i = 1, . . . , 3 .
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Any primary DT invariant on a toric threefold can still be expressed
in terms of these capped edge and vertex terms. Capped localization
expresses the primary Gromov-Witten and Donaldson-Thomas invari-
ants of X as a sum of capped vertex and capped edge data.

A half-edge h = (e, v) is a compact edge e together with the choice
of an incident vertex v. A partition assignment

h 7→ λ(h)

to half-edges is balanced if the equality

|λ(e, v)| = |λ(e, v′)|

always holds for the two halfs of e. For a balanced assignment, let

|e| = |λ(e, v)| = |λ(e, v′)|

denote the edge degree.
The outermost sum in the capped localization formula runs over

all balanced assignments of partitions λ(h) to the half-edges h of ∆
satisfying

(5) β =
∑

e

|e| · [Ce] ∈ H2(X, Z) .

Such a partition assignment will be called a capped marking of ∆. The
weight of each capped marking in the localization sum for the invariants
(??) and (??) equals the product of four factors:

(i) localization of the integrand,
(ii) capped vertex contributions,
(iii) capped edge contributions,
(iv) gluing terms.

The Donaldson-Thomas capped localization formula has the struc-
ture

Z
′
DT

(

X, q | γ1, . . . , γr

)

β
=

∑

Γ∈Γβ

∏

v∈V

∏

e∈E

∏

h∈H

IΓ CDT (v, Γ) EDT (e, Γ) GDT (h, Γ)

where the evaluations CDT (v, Γ) and EDT (e, Γ) are defined as before.
Here, IΓ is the contribution arising from localizing primary insertions;
these are pure monomials in the tangent weights supported at vertices,
so are not serious. The Donaldson-Thomas gluing factors are

GDT (hv
i , Γ) = (−1)|h

v
i |−ℓ(λ(hv

i ))z(λ(hv
i ))

(

∏3
j=1 tvj

tvi

)ℓ(λ(hv
i ))

q−|hv
i |,
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which are the same factors that occur in the usual degeneration for-
mula. There is an analogous formula for GW invariants with slightly
different gluing terms.

It follows from this that, in order to understand primary invariants
on all toric threefolds, it suffices to prove the following proposition, a
special case of the correspondence for equivariant relative residues.

Proposition 3.1. Capped vertex and edge DT terms are rational func-
tions in q and satisfy the GW/DT correspondence.

For the edge terms, this follows from the calculations for C2×P1 and
the half-edge with normal bundle (0,−1). Indeed, any normal bundle
of type (a, b) can be obtained from these pieces by degeneration and the
fact that the (0, 1) edge is the inverse as a matrix of the (0,−1) edge.
It remains to understand the vertex terms. These are classified into
three categories (one-leg, two-leg, three-leg) based on how many of the
limiting partitions are empty. The one-leg vertex again follows from
the existing calculations. The idea is that A1 × P1 allows us to study
the two-leg vertex (since only one and two-leg vertices can occur in this
geometry), and then A2 × P1 allow us to capture three-leg geometries.

In order to execute this, we take the relative DT theory of An × P1,
relative to the fiber over ∞ - these invariants are essentially trivial -
and apply capped localization. This requires a new capped localization
contribution, due to the relative divisor.

3.3. Capped rubber. We start with the tube,

π : An × P1 → P1

relative to the fibers over 0,∞ ∈ P1. In the space of relative ideal
sheaves, we define a T -equivariant open subset

V CR
χ,β ⊂ Iχ(An ×P1/F0 ∪ F∞, β)

is defined to be the locus consisting of subschemes with no positive An-
degree components in the destabilization of the fiber over 0 ∈ P1. The
T -equivariant residue theory of V CR is well-defined since the T -fixed
loci are compact.

We define partition functions with relative conditions over the divi-
sors F0, F∞ lying over 0,∞ ∈ P1:

(−q)d
∑

σ∈H2(An,Z)

sσ
Z
′
DT

(

V CR, q
∣

∣

∣

∣λ, µ
)

d[P1]+σ
.

We can think of these partition functions as matrix elements of an
operator

ODT (CR) : H∗(Hilb(An)) → H∗(Hilb(An)).
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Lemma 3.2. The capped An-rubber invariants are rational functions
of q and satisfy the GW/DT correspondence.

3.4. Differential equations. We will prove this statement from the
An geometry by using divisor relations on the space of relative ideal
sheaves.

Let t3 be the weight of the T -action on the trivial normal bundle of

F0 ⊂ An × P1.

By localization, every class γ ∈ H∗
T (An × P1, Z) satisfies

(6) t3 γ = γ0 − γ∞ ∈ H∗
T (An × P1, Z)

where γ0, γ∞ are the restrictions of γ to F0 and F∞ respectively.
We can analyze what a primary insertion γ0 does to relative DT

theory as follows. Let R → T be the universal target over the stack T

of target degenerations. We can think of this as the moduli space of
target degenerations, along with a point on the (possibly degenerate)
target that does not lie on relative divisors or the singular locus. There
is a T -equivariant contraction map

π : R → An × P1.

There are two divisors on R related to 0 ∈ P1. The first is π∗([F0]).
The second is the boundary divisor R0 ⊂ R where extra point lies on
a destabilization over 0 ∈ P1. The following result can be easily seen
by comparing the divisors on smooth charts for R.

Lemma 3.3. π∗([F0]) = R0 in Pic(R).

If we pull this relation back to the space of relative ideal sheaves,
and factor the virtual class over the R0, we get an identity

(7)
〈

λ
∣

∣γ0

∣

∣µ
〉′

β
=

∑

ν, σ1+σ2=σ

〈

λ
∣

∣γ0

∣

∣ν
〉∼

β1

′ (−1)|ν|−ℓ(ν) z(ν) q−|ν|
〈

ν∨
∣

∣

∣

∣µ
〉′

β2

where ∼ denotes rubber relative invariants coming from the degenerate
part of the target. We apply this identity when γ is a divisor Γ ∈
H2(An, Q). Inserting γ multiplies an invariant in class d[P1] + σ by
Γ · σ. In particular this insertion may be interpreted as the action
of a linear differential operator ∂Γ on the partition function, over the
variables indexing the An curve classes.

If we will pull this relation back to the open subset V CR in the
case where γ is a divisor Γ on An and use the operator formalism O

everywhere, we get a differential equation:

(8) t3 ∂ΓODT (CR) = ODT (ΓF )0 · ODT (CR) − ODT (CR) · ODT (ΓF ) ,
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where ODT (ΓF )0 denotes the contribution of curves with degree 0 in
the An-direction.

While it is not obvious, this differential equation is exactly parallel
to the quantum differential equation in genus 0 Gromov-Witten theory,
related to the J-function in YP’s notes.

This differential equation uniquely reconstructs the capped rubber
operators from their horizontal parts (which we assume calculated). If
one works inductively on the vertical curve class σ, the differential equa-
tion can be written as an invertible linear equation for the contribution
OCR

DT,σ in terms of lower degree terms (known to be rational functions
by induction). Therefore it is also given by an operator-valued rational
function.

If one makes analogous arguments for Gromov-Witten theory, we
have a parallel capped GW rubber determined by the same differ-
ential equation. Therefore, knowing the GW/DT correspondence for
OGW/DT (ΓF ) determines it for capped rubbers as well.

3.5. Invertibility. How does the capped An rubber help us? It shows
up as part of the capped localization for the relative DT theory of
An × P1. If we apply capped localization to relative invariants that
we already know, we get useful identities for the capped vertex, since
every other capped localization term is determined.

If we consider the cap geometry of A1 × P1 relative to the fiber
F∞, then it globally satisfies rationality (in fact, it nearly vanishes
identically for dimension reasons). On the other hand, if we apply
capped localization, we have the diagram shown in Figure ??

λ
λ′

µ′
µ

ν ′

ν

Figure 2. Capped localization for the A1-cap
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The lines in Figure 2 represent the edges of the toric polyhedron; the
squiggly lines belong to the relative divisor. Over 0, the usual capped
vertices and edges occur; over ∞, a single capped A1 rubber occurs.

Since OCR is an invertible operator given by rational functions, this
diagram quickly leads to a quadratic constraint for the two-leg capped
vertex. It is not hard to show it is invertible (by an induction on the
size of the partitions at each leg). See [8] for details. Again, the point is
that the same diagram and analysis applies for Gromov-Witten theory;
since these constraints have a unique solution.

For the three-leg vertex, we use the A2 vertex, with the localization
diagram shown in Figure 3: Here, since there is a unique vertex with

λ′

η′

µ′

Figure 3. Capped localization for the A2-cap

three legs, so this is in fact a linear constraint on the unknown vertex,
so the analysis is easier.

3.6. Refined conjectures. This argument while complicated does
lead to some refined questions that we do not know how to answer
using this procedure. The most interesting for me is the following.

Let X be a nonsingular projective 3-fold with very ample line bun-
dle L. The Chow variety of curves parameterizes cycles of class β ∈
H2(X, Z) in X.

For both the moduli space of stable maps M
′

g(X, β) and the Hilbert
scheme of curves Iχ(X, β), the associated (seminormalized) varieties
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admit maps to Chow(X, β) for all g and n,

M g(X, β)sn

ρGW

''
OOOOOOOOOOOO

Iχ(X, β)sn

ρDT

wwooooooooooo

Chow(X, β)

.

Conjecture. Let X be a nonsingular projective toric 3-fold. We have

(9)
∑

g

u2g−2 ρGW ∗

(

[

M
′

g(X, β)
]vir
)

=

1

ZDT (X, q)0

∑

χ

qχ ρDT ∗

(

[Iχ(X, β)]vir
)

in H∗(Chow(X, β), Q) ⊗ Q(q), after the variable change eiu = −q.

In the toric case, this is an immediate corollary of capped localization
formalism. In general, it seems even more inaccessible than the original
conjecture.
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