
ar
X

iv
:0

81
0.

07
02

v2
  [

m
at

h.
A

G
] 

 1
0 

A
ug

 2
00

9

BIRATIONAL ASPECTS OF THE GEOMETRY OF Mg

GAVRIL FARKAS

1. INTRODUCTION

The study of the moduli space Mg begins of course with Riemann, who in 1857
was the first to consider a space whose points correspond to isomorphism classes of
smooth curves of genus g. By viewing curves as branched covers of P1, Riemann cor-
rectly computed the number of moduli, that is he showed that

dim(Mg) = 3g − 3

for all g ≥ 2. Riemann is also responsible for the term moduli, meaning essential
parameters for varieties of certain kind: ”... es hängt also eine Klasse von Systemen gle-
ichverzweigter 2p + 1 fach zusammenhangender Funktionen und die zu ihr gehörende Klassen
algebraischer Gleichungen von 3p − 3 stetig veränderlichen Grössen ab, welche die Moduln
dieser Klasse werden sollen”. The best modern way of reproving Riemann’s result is via
Kodaira-Spencer deformation theory. The first rigorous construction of Mg was carried
out by Mumford in 1965, in the book [GIT]. By adapting Grothendieck’s ”functorial ide-
ology”, Mumford, used Geometric Invariant Theory and developed a purely algebraic
approach to studyMg. He indicated that one has to study the coarse moduli scheme that is
as close as any scheme can be to the moduli stack of smooth curves: Although the coarse
moduli scheme exists over Spec(Z), one has to pass to an algebraically closed field k to
get a bijection between Hom(Spec(k),Mg) and isomorphism classes of smooth curves
of genus g defined over k.

Despite the fact that the rigorous construction of Mg was achieved so late, various
geometric properties of the space Mg, whose existence was somehow taken for granted,
have been established. Hurwitz [Hu] following earlier work of Clebsch, proved in
1891 that Mg is irreducible by using Riemann’s existence theorem and showing that
the space parameterizing branched covers of P1 having fixed degree and genus is con-
nected. In 1915, Severi [S] used plane models of curves to prove that when g ≤ 10
the space Mg is unirational. For g ≤ 10 (and only in this range), it is possible to real-
ize a general curve [C] ∈ Mg as a nodal plane curve Γ ⊂ P2 having minimal degree
d = [(2g + 8)/3], such that the nodes of Γ are general points in P2. In the same paper
Severi conjectures that Mg is unirational (or even rational!) for all g. This would cor-
respond to being able to write down the general curve of genus g explicitly, in a family
depending on 3g − 3 free parameters. Severi himself and later B. Segre made several
attempts to prove the conjecture for g ≥ 11 using curves of minimal degree in Pr with
r ≥ 3, cf. [Seg], [God].

Research partially supported by an Alfred P. Sloan Fellowship and the NSF Grant DMS-0500747. Work
on this paper was started during a stay at the Mittag-Leffler Institute in Djursholm in 2007.

1

http://arxiv.org/abs/0810.0702v2
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Severi’s Conjecture seemed plausible and was widely believed until the 1980s:
In [M3] Mumford declares ”How rational is the moduli space of curves” to be one of
the main problems of present day mathematics. In ”Curves and their Jacobians” [M2]
Mumford elaborates: ”Whether more Mg’s g ≥ 11 are unirational or not is a very interesting
problem, but one which looks very hard too, especially if g is quite large”. Probably thinking
by analogy with the well-understood case of moduli of elliptic curves (with level struc-
ture), Oort formulates in his 1981 survey [O] a principle that naturally defined moduli
spaces should be unirational: ”... generally speaking it seems that coarse moduli spaces tend
to be close to rational varieties while high up in the tower of fine moduli spaces, these varieties
possibly are of general type”.

It came as a major surprise when in 1982 Harris and Mumford [HM] showed that
Severi’s Conjecture is maximally wrong in the sense that Mg itself rather than a higher
level cover is almost always a variety of general type!

Theorem 1.1. For g ≥ 24, the moduli space of stable curves Mg is a variety of general type.

An easy consequence of Theorem 1.1 is the following negative result:

Corollary 1.2. For g ≥ 24, if [C] ∈ Mg is a general curve and S is a surface containing C on
which C moves in a non-trivial linear system, then S is birational to C × P

1. A general curve
of genus g ≥ 24 does not occur in any non-trivial linear system on any non-ruled surface.

The proof of Theorem 1.1 uses in an essential way the Deligne-Mumford com-
pactification Mg by means of stable curves. The key idea is to reduce the problem of

producing pluricanonical forms on Mg to a divisor class calculation on Mg . For in-
stance, in the case g = 2k − 1, Harris and Mumford consider the Hurwitz divisor

M1
g,k := {[C] ∈ Mg : ∃ C

k:1
→ P1}.

By computing the class of the closure M
1
g,k of M1

g,k inside Mg, it follows that for g =

2k − 1 ≥ 25, the canonical class KMg
lies in the cone spanned inside Pic(Mg)Q by

[M
1
g,k], the Hodge class λ ∈ Pic(Mg) and the irreducible components of the boundary

Mg −Mg. Since the class λ is big, that is, high multiples of λ have the maximal number
of sections, it follows that high multiples of KMg

will also have the maximum number

of sections, that is, Mg is of general type. The main technical achievement of [HM]

is the calculation of the class [M
1
g,k] via the theory of admissible coverings. The case of

even genus was initially settled in [H1] for g = 2k − 2 ≥ 40 and later greatly simplified
and improved by Eisenbud and Harris [EH3] via the theory of limit linear series. In this
survey, apart from reviewing the work of Harris, Mumford and Eisenbud, we present a
different proof of Theorem 1.1 by replacing the divisor M1

g,k by a Koszul divisor on Mg

in the spirit of [F3]. It turns out that modulo Voisin’s proof [V2] of the generic Green
Conjecture on syzygies of canonical curves, one obtains a very short proof of the Harris-
Mumford Theorem 1.1, which does not resort to enumerative calculation on Hurwitz
stacks of admissible coverings or to limit linear series.

After [HM] there has been a great deal of work trying to describe the geometry of
Mg in the intermediate cases 11 ≤ g ≤ 23. Extending Severi’s result to genera g ≥ 11



BIRATIONAL ASPECTS OF THE GEOMETRY OF Mg 3

requires subtle ideas and the use of powerful modern techniques, even though the idea
of the proof is simple enough. Sernesi [Se1] was the first to go past the classical analysis
of Severi by proving that M12 is unirational. A few years later, M. C. Chang and Z.
Ran proved that M11 and M13 are also unirational (cf. [CR1]). In the process, they
gave another proof for Sernesi’s theorem for M12. The case g = 14 remained open for
a long time, until Verra, using liaison techniques as well as Mukai’s work on models of
canonical curves of genus at most 9, proved that M14 is unirational. Verra’s approach
gives a much simpler proof of the unirationality of Mg in the cases g = 11, 12, 13 as
well. We shall explain his main ideas following [Ve].

Chang and Ran showed that κ(Mg) = −∞ for g = 15, 16, cf. [CR2], [CR3]. This
was recently improved by Bruno and Verra [BV] who proved that M15 is rationally
connected. Precisely, they proved that a general curve [C] ∈ M15 embedded via a linear

series C
|L|
−→ P6, where L ∈ W 6

19(C), lies on a smooth complete intersection surface
S ⊂ P6 of type (2, 2, 2, 2), in such a way that dim |OS(C)| = 1. This last statement
follows via a standard exact sequence argument because such a surface S is canonical.

Turning to genus 16, it is proved in [CR3] that KM16
is not a pseudo-effective

class. It follows from [BDPP], that this actually implies that M16 is uniruled.1 The
question whether M15 or M16 are actually unirational remains open and seems diffi-
cult. Note that the above mentioned argument from [BV] actually implies that through
a general point of M15 there passes a rational surface.

Question 1.3. What is the Kodaira dimension of Mg for 17 ≤ g ≤ 21?

A partial result for M23 was obtained in [F1] where the inequality κ(M23) ≥ 2 is
proved. Section 7 of this paper is devoted to the proof of the following result:

Theorem 1.4. The moduli space M22 is of general type.

Similar questions about the birational type of other moduli spaces have been
studied. Logan [Log] has proved that for all 4 ≤ g ≤ 22 there exists an explicitly
known integer f(g) such that Mg,n is of general type for n ≥ f(g). The bounds on the
function f(g) have been significantly improved in [F3]. The moduli space Ag of princi-
pally polarized abelian varieties of dimension g is known to be of general type for g ≥ 7
due to results of Freitag [Fr], Mumford [M5] and Tai [T] (For a comprehensive recent
review of developments on the global geometry of Ag, see [Gru]). Freitag was the first
to go beyond the classical picture and show that for g ≥ 17, g ≡ 1 mod 8, the space
Ag rather than one of its covers corresponding to ”moduli with level structure” is of
general type. Freitag’s work seems to have been essential in making Mumford realize
that Severi’s Conjecture might be fundamentally false, see the discussion in [HM] pg.
24. We mention that using e.g. the moduli space of Prym varieties, one can show that
Ag is known to be unirational for g ≤ 5, cf. [Don], [Ve2]. The remaining question is
certainly difficult and probably requires new ideas:

Question 1.5. What is the Kodaira dimension of A6?

1More generally, it follows that Mg is uniruled whenever one can show that K
Mg

is not a pseudo-

effective class. I am grateful to J. McKernan for pointing this out to me.
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Tai also discovered an important criterion (now called the Reid-Shepherd-Barron-
Tai criterion) for canonical forms on the smooth locus of spaces with finite quotient sin-
gularities to extend to any resolution of singularities. He then showed that Ag satisfies
the Reid-Shepherd-Barron-Tai criterion. A similar analysis of singularities (which is
needed whenever one shows that a coarse moduli space is of general type), in the case
of Mg, has been carried out in [HM] Theorem 1.

A very interesting moduli space (also in light of Section 6 of this paper and the
connection with the Slope Conjecture), is the moduli space Fg of polarized K3 surfaces
[S, h] of degree h2 = 2g − 2. On Fg one considers the Pg-bundle

Pg := {
(
[S, h], C

)
: [S, h] ∈ Fg, C ∈ |h|}

together with the projections p1 : Pg → Fg and p2 : Pg − − > Mg. The image Kg :=
p2(Pg) is the locus of curves that can be abstractly embedded in a K3 surface. For
g ≥ 13 the map p2 is generically finite (in fact, generically injective cf. [CLM]), hence

dim(Kg) = 19 + g. This locus appears as an obstruction for an effective divisor on Mg

to have small slope, cf. Proposition 4.7. The geometry of Fg has been studied in low
genus by Mukai and in general, using automorphic form techniques, initially by Kondo
[K] and more recently, to great effect, by Gritsenko, Hulek and Sankaran [GHS]. Using
Borcherds’s construction of automorphic forms on locally symmetric domains of type
IV, they proved that (any suitable compactification of) Fg is of general type for g > 62 as
well as for g = 47, 51, 55, 58, 59, 61. The largest g for which Fg is known to be unirational
is equal to 20, cf. [M4].

Problem 1.6. Prove purely algebro-geometrically that Fg is of general type for g suffi-
ciently large. Achieve this by computing the class of a geometric (Noether-Lefschetz,
Koszul) divisor on Fg and comparing this calculation against the canonical class.

More generally, it is natural to ask whether the time is ripe for a systematic study
of the birational invariants of the Alexeev-Kollár-Shepherd-Barron moduli spaces of
higher dimensional varieties (see [AP], [H] for a few beautiful, yet isolated examples
when the geometry of such spaces has been completely worked out).

We end this discussion by describing the birational geometry of the moduli space
Rg classifying pairs [C, η] where [C] ∈ Mg and η ∈ Pic0(C)[2] is a point of order 2 in its
Jacobian. This moduli space provides an interesting correspondence between Mg and
Ag−1 via the natural projection π : Rg → Mg and the Prym map

Prg : Rg → Ag−1.

For g ≤ 6 the Prym map is dominant, thus a study of the birational invariants of Rg

gives detailed information about Ag−1 as well. For g ≥ 7 the Prym map Prg is gener-
ically injective (though never injective) and we view Rg as a desingularization of the

moduli space of Prym varieties Prg(Rg) ⊂ Ag−1. There is a good compactification Rg

of Rg, by taking Rg to be the coarse moduli space associated to the moduli stack of sta-

ble maps Mg(BZ2). Note that the Galois covering π extends to a finite ramified covering

π : Rg → Mg. We have the following result [FL]:

Theorem 1.7. The compact moduli space of Pryms Rg is of general type for g > 13 and g 6= 15.

The Kodaira dimension of R15 is at least 1.
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Thus there are genera (e.g. g = 14) for which Mg is unirational but Rg is of gen-

eral type. Note that Rg is unirational for g ≤ 7 and it appears to be difficult to extend the

range of g for which Rg is unirational much further. An essential ingredient in the proof

of Theorem 1.7 is the analysis of the singularities of Rg. Kodaira-Spencer theory shows

that singularities of Rg correspond to automorphisms of Prym curves. A delicate local
analysis shows that, even though the Reid-Shepherd-Barron-Tai criterion does not hold
everywhere on Rg (precisely, there is a codimension 2 locus of non-canonical singular-

ities), for g ≥ 4 every pluricanonical form defined on the smooth part of Rg extends to

any desingularization. Equivalently, for any resolution of singularities ǫ : R̂g → Rg and
l ≥ 0, there is an isomorphism of groups

ǫ∗ : H0(Rg,reg,K
⊗l
Rg

)
∼=

−→ H0(R̂g,K
⊗l
bRg

).

Since Rg = Mg(BZ2), it makes sense to raise the following more general question:

Problem 1.8. For a finite group G, study the birational invariants (Kodaira dimension
and singularities, Picard groups, cones of ample and effective divisors) of the moduli
spaces of twisted stable maps Mg(BG).

We close by outlining the structure of the paper. In Section 2 we describe various
attempts to prove that Mg is unirational, starting with Severi’s classical proof when
g ≤ 10 and concluding with Verra’s recent work on Mg for g ≤ 14. While our presen-
tation follows [Ve], several arguments have been streamlined, sometimes with the help
of Macaulay 2. In Section 3 we present the structure of the Picard group of Mg while in
Section 4 we recall Harris and Mumford’s spectacular application of the Grothendieck-
Riemann-Roch theorem [HM] in order to compute the canonical class KMg

and then

discuss Pandharipande’s recent lower bound on the slope of Mg. In Section 5 we
present a much shorter proof of the Harris-Mumford Theorem 1.1 using syzygies of
canonical curves. Relying somewhat on Mukai’s earlier work, we highlight the im-
portance of the locus Kg ⊂ Mg of curves lying on K3 surfaces in order to construct

effective divisors on Mg having small slope and produce a criterion which each divisor
of small slope must satisfy (Section 6). We then explain how to construct and compute

the class of certain effective divisors on Mg defined in terms of Koszul cohomology of

line bundles on curves (cf. [F2], [F3]). In Section 7 we prove that M22 is of general type.

2. HOW RATIONAL IS Mg?

As a matter of terminology, if M is a Deligne-Mumford stack, we denote by M
its coarse moduli space. This is contrary to the convention set in [ACV] but for moduli
spaces of curves it makes sense from a traditionalist point of view. Throughout the

paper we denote by Mg : Sch → Sets the contravariant functor (stack) of stable curves

of genus g, which associates to every scheme S the set Mg(S) of isomorphism classes of
relative stable curves f : X → S of genus g.

The functor Mg is not representable, for this would imply that each iso-trivial
family of stable curves is actually trivial. This, of course, is not the case. To remedy
this problem one looks for a compromise solution by retaining the requirement that the
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moduli space of curves be a scheme, but relaxing the condition that it represent Mg. The

result is the coarse moduli space of curves Mg which is an irreducible projective variety of
dimension 3g − 3 with finite quotient singularities, cf. [DM], [GIT], [M2]. For a family

of stable curves [f : X → S] ∈ Mg(S) we shall denote by mf : S → Mg the associated
moduli map.

2.1. Brill-Noether theory.

We recall a few basic facts from Brill-Noether theory, cf. [ACGH]. For a smooth
curve C of genus g and for integers d, r ≥ 0, one considers the cycle inside the Jacobian

W r
d (C) := {L ∈ Picd(C) : h0(C,L) ≥ r + 1}.

The variety of linear series of type gr
d is defined as

Gr
d(C) := {(L, V ) : L ∈W r

d (C), V ∈ G(r + 1,H0(L))}.

There is an obvious forgetful map c : Gr
d(C) →W r

d (C) given by c(L, V ) := L.

We fix a point l = (L, V ) ∈ Gr
d(C), and describe the tangent space Tl(G

r
d(C)). One

has the standard identification TL(Picd(C)) = H1(C,OC ) = H0(C,KC)∨ and we denote
by

µ0(L, V ) : V ⊗H0(C,KC ⊗ L∨) → H0(C,KC )

the Petri map given by multiplication of sections. The deformations of [L] ∈ Picd(C) pre-
serving the space of sections V correspond precisely to those elements φ ∈ H0(C,KC)∨

for which φ|Im µ0(L,V ) = 0. One obtains an exact sequence

0 −→ Hom(V,H0(C,L)/V ) −→ Tl(G
r
d(C)) −→ Ker µ∨0 −→ 0.

It follows that Gr
d(C) is smooth and of dimension

ρ(g, r, d) := g − (r + 1)(g − d+ r)

at the point l if and only if µ0(L, V ) is injective.

The Gieseker-Petri Theorem states that if [C] ∈ Mg is general, then the Petri map

µ0(L) : H0(C,L) ⊗H0(C,KC ⊗ L∨) → H0(C,KC)

is injective for every L ∈ Picd(C). In particular it implies that both W r
d (C) and Gr

d(C)
are irreducible varieties of dimension ρ(g, r, d). The variety Gr

d(C) is smooth while

Sing W r
d (C) = W r+1

d (C). Furthermore,W r
d (C) = ∅ if ρ(g, r, d) < 0.

The first rigorous proof of Petri’s theorem is due to Gieseker. The original proof
has been greatly simplified by Eisenbud and Harris, cf. [EH2], using degeneration to
curves of compact type and the theory of limit linear series. A very different proof, in
which the degeneration argument is replaced by Hodge theory and the geometry of
curves on K3 surfaces, has been found by Lazarsfeld [La1].

If [C, p] ∈ Mg,1 and l = (L, V ) ∈ Gr
d(C), we define the vanishing sequence of l at p

al(p) : 0 ≤ al
0(p) < . . . < al

r(p) ≤ d

by ordering the set {ordp(σ)}σ∈V . The ramification sequence of l and p

αl(p) : 0 ≤ αl
0(p) ≤ . . . ≤ αr(p) ≤ d− r
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is obtained from the vanishing sequence by setting αl
i(p) := al

i(p) − i for i = 0 . . . r.

The theory of degenerations of linear series (in the case of curves of compact type)
has been beautifully developed by Eisenbud and Harris [EH1]. The major successes
of the theory include a simple proof of the Brill-Noether-Petri theorem cf. [EH2] and
especially its essential use in the work on the Kodaira dimension of Mg cf. [EH3].

Definition 2.1. If X is a stable curve whose dual graph is a tree, a limit linear series gr
d

on X, consists of a collection of linear series

l =
{
lY =

(
LY , VY ⊂ H0(LY )

)
∈ Gr

d(Y ) : Y component of X
}

satisfying the following compatibility condition: If p ∈ Y ∩ Z is a node lying on two
irreducible components Y and Z of X, then

alY
i (p) + alZ

r−i(p) ≥ d, for i = 0 . . . r.

Limit linear series behave well in families: If M∗
g ⊂ Mg denotes the open substack

of tree-like curves, then there exists an algebraic stack σ : G̃r
d → M∗

g classifying limit

linear series. Each irreducible component of G̃r
d has dimension at least 3g−3+ρ(g, r, d).

In particular if l ∈ G
r
d(C) = σ−1(C) is a limit gr

d on a curve [C] ∈ M∗
g belonging to

a component of G
r
d(C) of the expected dimension ρ(g, r, d), then l can be smoothed to

curves in an open set of Mg (cf. [EH1]).

2.2. Severi’s proof of the unirationality of Mg when g ≤ 10.

We outline Severi’s classical argument [S] showing that Mg is unirational for
small genus (for a beautiful modern presentation see [AC1]). The idea is very sim-
ple: One tries to represent the general curve [C] ∈ Mg as a nodal plane curve Γ ⊂ P2 of
minimal degree d such that ρ(g, 2, d) ≥ 0 and then show that the nodes are in general
position. Since the varieties of plane curves with fixed nodes are linear spaces, hence
rational varieties, this implies that Mg is unirational.

We fix d ≥ (2g + 8)/3 and set δ :=
(
d−1
2

)
− g. We consider the Severi variety

Ud,g := {[Γ →֒ P2] : deg(Γ) = d, Γ is a nodal irreducible plane curve, pg(Γ) = g}.

It is well-known that Ud,g is an irreducible variety of dimension

dim Ud,g = dim Mg + ρ(g, 2, d) + dim PGL(3) = 3d+ g − 1.

Furthermore, there exists a global desingularization map νd,g : Ud,g − − > Mg which
associates to each plane curve the class of its normalization. The Brill-Noether theorem
guarantees that νd,g is surjective. (Indeed, since ρ(g, 2, d) ≥ 0 one has that G2

d(C) 6= ∅
and it is straightforward to prove that a general g2

d corresponds to a nodal model of a
general curve [C] ∈ Mg, see for instance [EH1]).

One defines the incidence correspondence between curves and their nodes

Σ := {
(
[Γ →֒ P2], p1 + · · · + pδ

)
∈ Ud,g × Symδ(P2) : {p1, . . . , pδ} = Sing(Γ)},

together with the projection π2 : Σ → Symδ(P2). The fibres of π2 being linear spaces, in
order to conclude that Σ is rational (and hence Mg unirational), it suffices to prove that
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π2 is dominant. A necessary condition for π2 to be dominant is that

dim Σ = 3d+ g − 1 ≥ 2δ.

This, together with the condition ρ(g, 2, d) ≥ 0, implies that g ≤ 10. We have the follow-
ing result [S], [AC1] Theorem 3.2:

Theorem 2.2. We fix non-negative integers g, d, δ satisfying the inequalities

δ =

(
d− 1

2

)
− g, ρ(g, 2, d) ≥ 0 and 3d+ g − 1 ≥ 2δ.

If p1, . . . , pδ ∈ P
2 are general points and (n, δ) 6= (6, 9), then there exists an irreducible plane

curve Γ ⊂ P
2 of degree d having nodes at p1, . . . , pδ and no other singularity. It follows that

Mg is unirational for g ≤ 10.

Remark 2.3. As explained Severi’s argument cannot be extended to any Mg for g ≥ 11.
In a similar direction, a classical result of B. Segre [Seg] shows that if S is any algebraic
surface and Ξ ⊂ S × V is any algebraic system of smooth genus g curves contained in
S, then whenever g > 6, the moduli map mΞ : V − − > Mg cannot be dominant, that
is, no algebraic system of smooth curves of genus g > 6 with general moduli can lie on
any given surface.

2.3. Verra’s proof of the unirationality of Mg for 11 ≤ g ≤ 14.

We fix an integer g ≥ 11 and aim to prove the unirationality of Mg by showing
that a suitable component of a Hilbert scheme of curves

HilbC := {C ⊂ Pr : pa(C) = g,deg(C) = d},

where ρ(g, r, d) ≥ 0 is unirational. The component HilbC must have the property that
the forgetful rational map

mC : HilbC −− >Mg

is dominant (in particular, the general point of HilbC corresponds to a smooth curve
C ⊂ Pr). To prove that HilbC is unirational we shall use an incidence correspondence
which relates HilbC to another Hilbert scheme of curves HilbD parameterizing curves
D ⊂ Pr such that

deg(D) = d′, g(D) = g′ and H1(D,OD(1)) = 0

(thus r = d′ − g′). If [D →֒ Pr] ∈ HilbD is a smooth curve with H1(D,OD(1)) = 0, then
trivially H1(D,ND/Pr) = 0, which implies that HilbD is smooth at the point [D →֒ Pr]
and of dimension

h0(D,ND/Pr) = χ(D,ND/Pr) = (r + 1)d′ − (r − 3)(g′ − 1)

(see e.g. [Se2]). Moreover, there exists an open subvariety UD ⊂ HilbD parameterizing
smooth non-special curves D ⊂ Pr such that (i) the moduli map mD : UD → Mg′ is

dominant, and (ii) the restriction maps µf : SymfH0(D,OD(1)) → H0(D,OD(f)) are of
maximal rank for all integers f .

The correspondence between HilbC and UD is given by liaison with respect to
hypersurfaces of a fixed degree f , that is, via the variety

Σ := {(D,V ) : [D →֒ Pr] ∈ UD, V ∈ G
(
r − 1,H0(Pr,ID/Pr(f))

)
}.
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One has a projection map u : Σ → UD given by u(D,V ) := [D], and a residuation map

res : Σ → HilbC , res(D,V ) := [C →֒ Pr],

where C ⊂ Pr is the scheme residual to D in the base locus of the linear system |V |.
The morphism u : Σ → UD has the structure of a Grassmann bundle corresponding
to the vector bundle F over UD with fibres F(D) = H0(Pr,ID/Pr(f)), thus clearly Σ
is unirational provided that HilbD is unirational. Since UD parameterizes non-special
curves, proving its unirationality is equivalent to showing that the universal Picard

variety Picd′

g′ → Mg′ is unirational.

In order to show that mC : HilbC − − > Mg is dominant (and thus, that the
general curve [C] ∈ Mg is linked to a curve [D →֒ Pr] ∈ UD), it suffices to exhibit a
single nodal complete intersection

C ∪D = X1 ∩ . . . ∩Xr−1

with Xi ∈ |OPr(f)|, such that both C and D are smooth and the Petri map

µ0(C) : H0(C,OC (1)) ⊗H0(C,KC ⊗OC(−1)) → H0(C,KC )

is injective. Indeed, it is well-known (see e.g. [Se2]) that via Kodaira-Spencer the-
ory, the differential dm[C] : T[C](HilbC) → T[C](Mg) is given by the coboundary map

H0(C,NC/Pr) → H1(C, TC ) obtained by taking cohomology in the exact sequence which
defines the normal bundle of C :

(1) 0 −→ TC −→ TPr ⊗OC −→ NC/Pr −→ 0.

On the other hand, one has the pull-back of the Euler sequence from Pr

(2) 0 −→ OC −→ H0(C,OC (1))∨ ⊗OC(1) −→ TPr ⊗OC −→ 0,

and after taking cohomology we identify H1(TPr ⊗OC) with the dual of the Petri map
µ0(C). Thus if µ0(C) is injective, then mC is a dominant map around [C →֒ Pr].

The numerical invariants of C and D are related by well-known formulas for
linked subschemes of Pr, see [Fu] Example 9.1.12: Suppose C ∪D = X1 ∩ . . . ∩Xr−1 is
a nodal complete intersection with Xi ∈ |OPr(f)| for 1 ≤ i ≤ r − 1. Then one has that

(3) deg(C) + deg(D) = f r−1,

(4) 2(g(C) − g(D)) =
(
(r − 1)f − r − 1

)
(deg(C) − deg(D)), and

(5) #(C ∩D) = deg(C) ·
(
(r − 1)f − r − 1

)
+ 2 − 2g(C).

We shall prove that if we choose

(6) f =
r + 2

r − 2
∈ Z,

the condition that OD(1) be non-special is equivalent to h0(Pr,IC/Pr(f)) = r − 1. Fur-
thermore, under the same assumption, µ0(C) is injective if and only if ID/Pr(f) is glob-
ally generated.

To summarize, we have reduced the problem of showing that Mg is unirational

to showing (1) that the universal Picard variety Picd′

g′ is unirational and (2) that one can
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find a non-special curveD ⊂ Pd′−g′ whose ideal is cut out by hypersurfaces of degree f .
This program can be carried out provided one can solve the equations (3), (4), (5) and (6)
while keeping ρ(g, r, d) ≥ 0. To prove (1) Verra relies on Mukai’s work on the geometry
of Fano 3-folds and on the existence of models of canonical curves of genus g ≤ 9 as
linear sections of certain rational homogeneous varieties. We first explain Mukai’s work
on existence of models of canonical curves of genus g ≤ 9. The standard references for
this part are [Mu1], [Mu2], [Mu3]:

Theorem 2.4. We fix integers g ≤ 9, r ≥ 3 and d ≥ g + 3. Then the universal Picard variety
Picdg is unirational. Moreover, if Hd,g,r denotes the unique component of the Hilbert scheme of
curves whose generic point corresponds to a smooth curveD ⊂ P

r with deg(D) = d, g(D) = d
and H1(D,OD(1)) = 0, then Hd,g,r is unirational as well.

The theorem is easily proved for g ≤ 6 because, in this case, the general canonical
curve of genus g is a complete intersection in some projective space: For instance, the
canonical model of the general curve [C] ∈ M4 is a (2, 3) complete intersection in P4

while the canonical model of the general curve [C] ∈ M5 is a (2, 2, 2) complete inter-
section in P4. In the cases g = 7, 8, 9, Mukai has found a rational homogeneous space

Gg ⊂ Pdim(Gg)+g−2 such that KGg
= OGg

(−dim(Gg) + 2), with the property that the
general canonical curve of genus g appears as a curve section of Gg.

For g = 8, we consider a vector space V ∼= C6 and we introduce the Grassmannian
of lines G8 := G(2, V ) together with the Plücker embedding G(2, V ) →֒ P(∧2V ). Then
KG8

= OG8
(−6). If H ∈ G(8,∧2V ) is a general 7-dimensional projective subspace

and CH := G8 ∩ P(H) →֒ P(H), then by adjunction KC = OC(1). In other words, a
transversal codimension 7 linear section of G8 is a canonical curve of genus 8. Mukai
showed that any curve [C] ∈ M8 such that W 1

4 (C) = ∅, can be recovered in this way
(cf. [Mu1]).

The case g = 9 is described in [Mu3]: One takes G9 := SpG(3, 6) ⊂ P13 to be
the symplectic Grassmannian, that is, the Grassmannian of Lagrangian subspaces of a
6-dimensional symplectic vector space V . Then dim(G9) = 6 and KG9

= OG9
(−4).

Codimension 5 linear sections G9 ∩ H1 ∩ . . . ∩ H5 ⊂ P8 are canonical curves of genus
9. A genus 9 curve is a transversal section of G9 if and only if W 1

5 (C) = ∅. In par-
ticular a general [C] ∈ M9 is obtained through this construction. Finally, we mention
Mukai’s construction for g = 7, cf. [Mu2]: For a vector space V ∼= C10, the subset of the
Grassmannian G(5, V ) consisting of totally isotropic quotient spaces has two connected
components, one of which is the 10-dimensional spinor variety G7 ⊂ P15.

Proof of Theorem 2.4. It is enough to deal with the cases g = 7, 8, 9. For each integer
d ≥ g + 3, we fix non-zero integers n1, . . . , ng such that

2g − 2 + n1 + · · · + ng = d

and note that for every [C] ∈ Mg, the map Cg → Picd(C) sending

(x1, . . . , xg) 7→ KC ⊗OC(n1x1 + · · · + ng xg)

is surjective. Then the rational map φ : Gg
g −− > Picd

g defined by

φ(x1, . . . , xg) :=
(
Cx = Gg ∩ P(〈x1, . . . , xg〉), KCx ⊗OCx(n1 x1 + · · · + ng xg)

)
,
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is dominant. Thus Picd
g is unirational.

To establish the unirationality of Hd,g,r when 3 ≤ r ≤ d − g, we consider the

dominant map f : Hd,g,r → Picd
g given by f([C ⊂ Pr]) := [C,OC (1)]. The fibres of f are

obviously rational varieties. It follows that Hd,g,r is unirational too. �

Now we explain Verra’s work cf. [Ve], focusing on the cases g = 11, 14. Several
(admittedly beautiful) arguments of classical geometric nature have been straightened
or replaced by Macaulay 2 calculations in the spirit of [F2], Theorems 2.7, 2.10 or [ST].

Theorem 2.5. The moduli space of curves Mg is unirational for 11 ≤ g ≤ 14.

Proof for g = 11, 14. We place ourselves in the situation when f = (r + 2)/(r − 2) ∈ Z.
The relevance of this condition is that a surface complete intersection of type (f, . . . , f)
in Pr is a canonical surface in Pr. We consider a nodal complete intersection

C ∪D = X1 ∩ . . . ∩Xr−1

with Xi ∈ |OPr(f)|, with C and D being smooth curves and with g(C) = g. Assum-
ing that IC∪D/Pr(f) is globally generated (this will be the case in all the situations we
consider), then C ∪D lies on a smooth complete intersection of r − 2 hypersurfaces of
degree f , say S := X1 ∩ . . . ∩Xr−2. Thus S is a surface with KS = OS(1) and moreover
h0(Pr,IS/Pr(f)) = r − 2 (use the Koszul resolution of IS/Pr ). From the exact sequence

0 −→ IC/Pr −→ IS/Pr −→ OS(−C) −→ 0,

we find that h0(Pr,IC/Pr(f)) = h0(S,OS(C)) + h0(Pr,IS/Pr(f)) = h0(OS(D)) + r − 2
(Note that C +D ∈ |OS(f)|). Moreover, from the exact sequence

0 −→ OS(1) ⊗OS(−D) −→ OS(1) −→ OD(1) −→ 0,

using also Serre duality, we obtain that

h0(S,OS(D)) = h2(S,OS(H −D)) − h2(S,OS(H)) = 1 + h1(D,OD(1)).

Therefore OD(1) is non-special if and only if

(7) h0(Pr,IC/Pr(f)) = r − 1.

Assume now that r = d′− g′ and that g(D) = g′, deg(D) = d′ g(C) = g and deg(C) = d,
where these invariants are related by the formulas (3)-(5). Using a simple argument
involving diagram chasing, we claim that the Petri map

µ0(C) : H0(C,OC(1)) ⊗H0(C,KC (−1)) → H0(C,KC )

is of maximal rank if and only if the multiplication map

(8) νD(f) : H0(Pr,ID/Pr(f)) ⊗H0(D,OD(1)) → H0(Pr,ID/Pr(f + 1))

is of maximal rank (see [Ve], Lemma 4.4). Indeed, since KC(−1) = OC(C), we find that

Ker
(
µ0(C)

)
= Ker{µS : H0(S,OS(C)) ⊗H0(S,OS(C +D)) → H0(S,OS(D + 2C))}.

Next we note that ID/S(f) = OS(C) and then the claim follows by applying the
Snake Lemma to the diagram obtained by taking cohomology in the sequence

0 −→ H0(OPr(1))⊗IS/Pr(f) −→ H0(OPr(1))⊗ID/Pr(f) −→ H0(OPr(1))⊗OS(C) −→ 0.
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Thus to prove that the moduli map mC : HilbC −− >Mg is dominant, it suffices
to exhibit a smooth curve [D] ∈ HilbD such that the map νD(f) is injective.

Having explained this general strategy, we start with the case g = 14 and suppose
that [C] ∈ M14 is a curve satisfying Petri’s theorem, hence dim W 1

8 (C) = ρ(14, 1, 8) = 0.
For each pencil A ∈ W 1

8 we have that L := KC ⊗ A∨ ∈ W 6
18(C) and when [C] ∈ M14

is sufficiently general, each such linear series gives rise to an embedding C
|L|
→֒ P6. By

Riemann-Roch we obtain that

dim Ker{Sym2H0(C,L) → H0(C,L⊗2)} =

(
8

2

)
−

(
2 deg(C) + 1 − g(C)

)
= 5,

that is C lies on precisely 5 independent quadrics Q1, . . . , Q5 ∈ |OP6(2)|. Writing

Q1 ∩ . . . ∩Q5 = C ∪D,

we find that g(D) = 8 and deg(D) = 14. In particular, we also have thatH1(D,OD(1)) =
0. Thus we have reduced the problem of showing that M14 is unirational to two ques-
tions:

(1) Pic148 is unirational. This has already been achieved (cf. Theorem 2.4).

(2) If D ⊂ P6 is a general smooth curve with deg(D) = 14 and g(D) = 8, then the map

νD(2) : H0(P6,ID/P6(2)) ⊗H0(D,OD(1)) → H0(P6,ID/P6(3))

is an isomorphism. This is proved using liaison and a few classical arguments (cf. [Ve],
Propositions 5.5-5.16). We shall present a slightly more direct proof using Macaulay2.

When g = 11, we choose d = 14 and r = 4, hence f = 3. We find that if [C] ∈ M11

is general then dim W 4
14(C) = ρ(11, 4, 14) = 6 and h1(C,L) = 1 for every L ∈ W 4

14(C).
Moreover, for a general linear series L ∈W 4

11(C),

dim Ker{Sym3H0(C,L) → H0(C,L⊗3)} = 3,

(in particular condition (7) is satisfied). Hence there are hypersurfaces X1,X2,X3 ∈
|OP4(3)| such that X1 ∩X2 ∩X3 = C ∪D. Moreover, g(D) = 9 and deg(D) = 13, and

the unirationality of M11 has been reduced to showing that:

(1) Pic139 is unirational. This again follows from Theorem 2.4.

(2) If D ⊂ P4 is a general smooth curve with deg(D) = 13 and g(D) = 9, then the map

νD(3) : H0(P4,ID/P4(3)) ⊗H0(OD(1)) → H0(P4,ID/P4(4))

is injective. �

We complete the proof of Theorem 2.5, and we focus on the case g = 14. A similar
argument deals with the case g = 11:

Theorem 2.6. If D
|L|
→֒ P

6 is the embedding corresponding to a general curve [D,L] ∈ Pic148 ,
then the multiplication map

H0(P6,ID/P
6(2)) ⊗H0(P6,O

P
6(1)) → H0(P6,ID/P

6(3))

is an isomorphism.
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Proof. We consider 11 general points in P2 denoted by p1, . . . , p5 and q1, . . . , q6 respec-
tively, and define the linear system

H ≡ 6h− 2(Ep1
+ · · · + Ep5

) − (Eq1
+ · · · + Eq6

)

on the blow-up S = Bl11(P
2). Here h denotes the pullback of the line class from P2.

Using the program Macaulay2 it is easy to check that S
|H|
→֒ P6 is an embedding and the

graded Betti diagram of S is the following:

1 − − − −
− 5 − − −
− − 15 16 15

Thus S satisfies property (N1). To carry out this calculation we chose the 11 points in P2

randomly using the Hilbert-Burch theorem so that they satisfy the Minimal Resolution
Conjecture (see [ST] for details on how to pick random points in P2 using Macaulay).
Next we consider a curve D ⊂ S in the linear system

(9) D ≡ 10h− 3(Ep1
+Ep2

) − 4

5∑

i=3

Epi
− Eq1

− Eq2
− 2

6∑

j=3

Eqj
.

By using Macaulay2, we pick D randomly in its linear system and then check that D is
smooth, g(D) = 8 and deg(D) = 14. We can compute directly the Betti diagram of D:

1 − − − −
− 7 − − −
− − 35 56 35

Hence K1,1(D,OD(1)) = 0, which shows that ν2(D) is an isomorphism. This last part
also follows directly: Since S is cut out by quadrics, to conclude that D is also cut out
by quadrics, it suffices to show that the map

νS : H0(S,OS(H)) ⊗H0(S,OS(2H −D)) → H0(S,OS(3H −D))

is surjective (or equivalently injective). Since h0(S,OS(2H − D)) = 2, from the base
point free pencil trick we get that Ker(ν(S)) = H0(S,OS(D −H)) = 0, because D −H
is clearly not effective for a general choice of the 11 points in P2. �

We end this section, by pointing out that already existing results in [CR3], coupled
with recent advances in higher dimensional birational geometry, imply the following:

Theorem 2.7. (Chang-Ran) The moduli space M16 is a uniruled variety.

Proof. Chang and Ran proved in [CR3] that κ(M16) = −∞, by exhibiting an explicit
collection of curves {Fi}

n
i=1 ⊂ M16, with the property that each Fi lies on a divisor

Di ⊂ M16 such that Fi is nef as a curve on Di with respect to Q-Cartier divisors, and
moreover

Fi ·
n∑

j=1

Dj > 0 for i = 1, . . . , n.

By explicit calculation they noted that Fi · KM16
< 0 for i = 1, . . . , n. This clearly

implies that KM16
is not pseudo-effective. Since pseudo-effectiveness of the canonical
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bundle is a birational property, the canonical bundle of any smooth model of M16 will
lie outside the pseudo-effective cone as well. One can apply the the main result of
[BDPP] to conclude that M16 is uniruled. �

3. THE PICARD GROUP OF THE MODULI STACK Mg

For a stable curve [C] ∈ Mg one can consider its dual graph with vertices corre-
sponding to the irreducible components of C and edges corresponding to nodes joining
two components. By specifying the dual graph, one obtains the topological stratifica-
tion of Mg, where the codimension a strata correspond to the irreducible components
of the closure of the locus of curves [C] having precisely a nodes. The closure of the
codimension 1 strata are precisely the boundary divisors of Mg: For 1 ≤ i ≤ [g/2] we

denote by ∆i ⊂ Mg the closure of the locus of stable curves [C1 ∪C2], where C1 and C2

are smooth curves of genera i and g − i respectively. Similarly, ∆0 ⊂ Mg is the closure
of the locus of irreducible 1-nodal stable curves. We have the decomposition

Mg = Mg ∪ ∆0 ∪ . . . ∪ ∆[g/2].

Next we describe the Picard group of the moduli stack Mg. The difference be-

tween the Picard group of the stack Mg and that of the coarse moduli space Mg, while

subtle, is not tremendously important in describing the birational geometry of Mg. Re-

markably, one can define Pic(Mg) without knowing exactly what a stack itself is! This
approach at least respects the historical truth: In 1965 Mumford [M1] introduced the

notion of a sheaf on the functor (stack) Mg. One had to wait until 1969 for the definition
of a Deligne-Mumford stack, cf. [DM].

Definition 3.1. A sheaf L on the stack Mg is an assignment of a sheaf L(f) on S for

every family [f : X → S] ∈ Mg(S), such that for any morphism of schemes φ : T → S,
if p2 : XT := X ×S T → T denotes the family obtained by pulling-back f , then there is
an isomorphism of sheaves over T denoted by

L(φ, f) : L(p2) → φ∗(L(f)).

These isomorphisms should commute with composition of morphisms between the
bases of the families. Precisely, if χ : W → T is another morphism and

σ2 : XW := XT ×T W →W ∈ Mg(W ),

then L(φχ, f) = χ∗L(φ, f) ◦ L(χ, p2). If L and E are sheaves on Mg, we define their
tensor product by setting

(L ⊗ E)(f) := L(f) ⊗ E(f)

for each [f : X → S] ∈ Mg(S).

A sheaf L on Mg is a line bundle if L(f) ∈ Pic(S) for every [f : X → S] ∈ Mg(S).

We denote by Pic(Mg) the group of isomorphism classes of line bundles on Mg.

Similarly, for i ≥ 0, one defines a codimension i cycle class γ ∈ Ai(Mg), to be

a collection of assignments γ(f) ∈ Ai(S) for all [f : X → S] ∈ Mg(S), satisfying an
obvious compatibility condition like in Defintion 3.1
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Example 3.2. For each n ≥ 1 the Hodge classes λ
(n)
1 ∈ Pic(Mg) are defined by taking

λ
(n)
1 (f) := c1(En(f)), where the assignment

Mg(S) ∋ [f : X → S] 7→ En(f) := f∗(ω
⊗n
f ),

gives rise to a vector bundle En on Mg for each n ≥ 1. Clearly rank(E1) = g and
rank(En) = (2n − 1)(g − 1) for n ≥ 2. One usually writes E := E1. Similarly, one can

define the higher Hodge classes λ
(n)
i ∈ Ai(Mg), by taking

λ
(n)
i (f) := ci(En(f)) ∈ Ai(S).

It is customary to write that λi := λ
(1)
i and sometimes, λ := λ1.

There is an obvious group homomorphism ρ : Pic(Mg) → Pic(Mg) defined by

ρ(L)(f) := m∗
f (L) for every L ∈ Pic(Mg) and [f : X → S] ∈ Mg(S).

To get to grips with the group Pic(Mg) one can also use the GIT realization of the
moduli space and consider for each ν ≥ 3 the Hilbert scheme Hilbg,ν of ν-canonical

stable embedded curves C ⊂ P(2ν−1)(g−1)−1. One has an isomorphism of varieties cf.
[GIT], [M2]

Mg
∼= Hilbg,ν//PGL

(
(2ν − 1)(g − 1)

)
.

Using this we can define an isomorphism of groups

β : Pic(Mg) → Pic(Hilbg,ν)
PGL

(
(2ν−1)(g−1)

)
.

If σ : Cg,ν → Hilbg,ν denotes the universal ν-canonically embedded curve, where we

have that Cg,ν ⊂ Hilbg,ν × P(2ν−1)(g−1)−1, we set β(L) := L(σ) ∈ Pic(Hilbg,ν).

To define β−1 we start with a line bundle L ∈ Pic(Hilbg,ν) together with a fixed
lifting of the PGL((2ν − 1)(g − 1))-action on Hilbg,ν to L. For a family of stable curves
f : X → S, we choose a local trivialization of the projective bundle P

(
f∗(ω

⊗ν
f )

)
, that is,

we fix isomorphisms over Sα

P
(
(fα)∗

(
ω⊗ν

fα

))
∼= P(2ν−1)(g−1)−1 × Sα,

where {Sα}α is a cover of S and fα = f|f−1(Sα) : Xα → Sα. Since the Hilbert scheme is a
fine moduli space, these trivializations induce morphisms gα : Sα → Hilbg,ν such that
on Sα ∩ Sβ the morphisms gα and gβ differ by an element from PGL

(
(2ν − 1)(g − 1)

)
.

The choice of theL-linearization ensures that the sheaves {g∗α(L)}α can be glued to form
a sheaf which we call β−1(L)(f) ∈ Pic(S).

Example 3.3. If OHilbg,ν
(δ) = ⊗

[g/2]
i=0 OHilbg,ν

(δi) is the divisor of all singular nodal
curves on the universal curve σ : Cg,ν → Hilbg,ν , then

ρ([∆0]) = β−1(δ0), ρ([∆1]) = 2β−1(δ1), ρ([∆i]) = β−1(δi) for 2 ≤ i ≤ [g/2].

To put it briefly, we write that δi := [∆i] for i 6= 1 and δ1 := 1
2 [∆1] in Pic(Mg)Q.

Theorem 3.4. 1) The group homomorphism ρ : Pic(Mg) → Pic(Mg) is injective with torsion
cokernel. Thus

ρQ : Pic(Mg)Q
∼= Pic(Mg)Q.

2) For g ≥ 3, the group Pic(Mg) is freely generated by the classes λ, δ0, . . . , δ[g/2].
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From now on we shall identify Pic(Mg)Q = Pic(Mg)Q. The first part of Theorem
3.4 was established by Mumford in [M2] Lemma 5.8. The second part is due to Arbarello
and Cornalba [AC2] and uses in an essential way Harer’s theorem thatH2(Mg,Q) ∼= Q.
Unfortunately there is no purely algebraic proof of Harer’s result yet.

4. THE CANONICAL CLASS OF Mg

In this section we explain the calculation of the canonical class of Mg in terms

of the generators of Pic(Mg), cf. [HM]. This calculation has been one of the spectacu-
lar successes of the Grothendieck-Riemann-Roch theorem. In order to apply GRR one
needs however a good modular interpretation of the cotangent bundle Ω1

Mg
. This is pro-

vided by Kodaira-Spencer theory. We first compute the canonical class of the stack Mg,

then we use the branched cover Mg → Mg to obtain the canonical class of the coarse

moduli scheme Mg.

For every stable curve [C] ∈ Mg we denote by Ω1
C the sheaf of Kähler differentials

and by ωC the locally free dualizing sheaf (see [Ba] for a down-to-earth introduction to
the deformation theory of stable curves). These sheaves sit in an exact sequence:

0 −→ Torsion(Ω1
C) −→ Ω1

C −→ ωC
res
−→

⊕

p∈Sing(C)

Cp −→ 0.

Kodaira-Spencer theory coupled with Serre duality provides an identification

T[C](Mg) = Ext1(Ω1
C ,OC) = H0(C,ωC ⊗ Ω1

C)∨.

One can globalize this observation and describe the cotangent bundle of Mg as follows.

We denote by π : Mg,1 → Mg the universal curve and we denote by ωπ the relative
dualizing sheaf and by Ω1

π the sheaf of relative Kähler differentials, respectively. Then
by Kodaira-Spencer theory we have the identification Ω1

Mg
= π∗(Ω

1
π ⊗ ωπ) and call the

classKMg
= c1(Ω

1
Mg

) ∈ Pic(Mg) the canonical class of the moduli stack Mg. To compute

the first Chern class of this push-forward bundle we use the Grothendieck-Riemann-
Roch theorem.

Suppose that we are given a proper map f : X → Y with smooth base Y and a
sheaf F on X. Then the Grothendieck-Riemann-Roch (GRR) theorem reads

ch
(
f!(F)

)
= f∗

(
ch(F) · td(Ω1

f )
)
∈ A∗(Y ), where

td(Ω1
f ) := 1 −

c1(Ω
1
f )

2
+
c1(Ω

1
f )2 + c2(Ω

1
f )

2
+ (higher order terms)

denotes the Todd class.

Remark 4.1. One uses the GRR theorem to prove Mumford’s relation

κ1 := π∗(c1(ω
2
π)) = 12λ− δ ∈ Pic(Mg),

where δ := δ0 + · · · + δ[g/2] is the total boundary (cf. [M1] pg. 101-103). Similarly, for
n ≥ 2 we have the relation (to be used in Section 5), cf. [M2] Theorem 5.10:

λ
(n)
1 = λ+

(
n

2

)
κ1 ∈ Pic(Mg).
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To compute KMg
we set f = π : Mg,1 → Mg, F = Ω1

π ⊗ ωπ, hence π∗F = Ω1
Mg

and

Riπ∗F = 0 for i ≥ 1. Using Grothendieck-Riemann-Roch we can write:
(10)

KMg
= π∗

[(
1+c1(F)+

c21(F) − 2c2(F )

2
+ · · ·

)
·
(
1−

c1(Ω
1
π)

2
+
c1(Ω

1
π)2 + c2(Ω

1
π)

12
+ · · ·

)]
1
.

Next we determine the Chern classes of F . Suppose [f : X → S] ∈ Mg(S) is a fam-
ily of stable curves such that both X and S are smooth projective varieties. Then
codim(Sing(f),X) = 2 and the sheaf homomorphism Ω1

f → ωf induces an isomor-

phism Ω1
f = ωf ⊗ ISing(f) (in particular, Ω1

f is not locally free). This claim follows from

a local analysis around each point p ∈ Sing(f). Since the versal deformation space of a
node is 1-dimensional, there exist affine coordinates x, y on the fibres of f and an affine
coordinate t on S, such that locally around p, the variety X is given by the equation
xy = tn for some integer n ≥ 1. By direct calculation in a neighbourhood of p,

Ω1
f =

(
f∗OC · dx+ f∗OC · dy

)
/
(
xdy + ydx) · OC .

Similarly, the dualizing sheaf ωf is the free OX module generated by the meromorphic
differential η given by dx/x on the locus x 6= 0 and by −dy/y on the locus y 6= 0, hence
we find that locally Ω1

f = Ix=y=t=0 · ωf , which proves our claim.

The sheaves ωf and Ω1
f agree in codimension 1, thus c1(Ω

1
f ) = c1(ωf ). An ap-

plication of Grothendieck-Riemann-Roch for the inclusion Sing(f) →֒ X, shows that
c2(Ω

1
f ) = [Sing(f)]. Then by the Whitney formula we obtain that c1(F) = 2c1(ωf ) and

c2(F) = [Sing(f)]. Since this analysis holds for an arbitrary family of stable curves, the
same relation must hold for the universal curve over Mg. Returning to (10), we find the
following formula:

KMg
=

13

12
π∗

(
c1(ωπ)2) −

11

12
π∗

[
Sing(π)

]
=

13

12
κ1 −

11

12
δ = 13λ− 2δ ∈ Pic(Mg).

Theorem 4.2. For g ≥ 4, the canonical class of the coarse moduli space Mg is given by the
formula

KMg
≡ 13λ− 2δ0 − 3δ1 − 2δ2 − · · · − 2δ[g/2] ∈ Pic(Mg).

Proof. We consider the morphism ǫ : Mg → Mg which is simply branched along the

divisor is the divisor ∆1 ⊂ Mg, hence ǫ∗([∆1]) = 2δ1 ∈ Pic(Mg). The Riemann-Hurwitz
formula gives that KMg

= ǫ∗(KMg
) + δ1 which finishes the proof. �

Remark 4.3. A slight difference occurs in the case g = 3. The morphism ǫ : M3 → M3 is
simply branched along both the boundary ∆1 and the closure of the hyperelliptic locus

M1
3,2 := {[C] ∈ M3 : W 1

2 (C) 6= ∅}.

It follows that KM3
= ǫ∗KM3

+ δ1 + ρ([M
1
3,2]), hence KM3

= 4λ− δ0.

Using Theorem 4.2, we reformulate the problem of determining the Kodaira di-
mension of Mg in terms of effective divisors: A sufficient condition for Mg to be of
general type is the existence of an effective divisor

D ≡ aλ− b0δ0 − · · · − b[g/2]δ[g/2] ∈ Pic(Mg),
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with coefficients satisfying the following inequalities

(11)
a

b0
<

13

2
,

a

b1
≤

13

3
and

a

bi
≤

13

2
for 2 ≤ i ≤ [g/2].

This formulation using (11) clearly suggests the definition of the following nu-
merical invariant of the moduli space cf. [HMo]: If δ := δ0 + · · ·+ δ[g/2] is the class of the

total boundary and Eff(Mg) ⊂ Pic(Mg)R denotes the cone of effective divisors, then

we can define the slope function s : Eff(Mg) → R ∪ {∞} by the formula

s(D) := inf {
a

b
: a, b > 0 such that aλ− bδ −D ≡

[g/2]∑

j=0

cjδj , where cj ≥ 0}.

From the definition it follows that s(D) = ∞ unless D ≡ aλ−
∑[g/2]

j=0 bjδj with a, bj ≥ 0

for all j. It is also well-known that s(D) < ∞ for any D which is the closure of an
effective divisor on Mg. In this case, one has that

s(D) =
a

min
[g/2]
j=0 bj

.

We denote by s(Mg) the slope of the moduli space Mg, defined as

s(Mg) := inf {s(D) : D ∈ Eff(Mg)}.

Proposition 4.4. We fix a moduli space Mg with g ≥ 4. If s(Mg) < 13/2 then Mg is of

general type. If s(Mg) > 13/2 then the Kodaira dimension of Mg is negative.

Proof. If there exists D ∈ Eff(Mg) with s(D) < s(KMg
), it follows that one can write

KMg
≡ α · λ+ β ·D+

∑[g/2]
j=1 cjδj , where α, β > 0 and cj ≥ 0 for 1 ≤ j ≤ [g/2]. Since the

class λ ∈ Eff(Mg) is big, we obtain that KMg
∈ int Eff(Mg), hence by definition Mg is

a variety of general type. �

Any explicit calculation of a divisor class on Mg provides an upper bound for

s(Mg). Estimating how small slopes of effective divisors on Mg can be, is the subject
of the Harris-Morrison Slope ”Conjecture” [HMo]:

Conjecture 4.5.

s(Mg) ≥ 6 +
12

g + 1
.

The conjecture would obviously imply that κ(Mg) = −∞ for g ≤ 22. However
Conjecture 4.5 is false and counterexamples have been found in [FP], [F2], [F3], [Kh]-see
also Section 6.1 of this paper.

There is a somewhat surprising connection between the Slope Conjecture and
curves sitting on K3 surfaces. This has been first observed in [FP]: Given g ≥ 1 we
consider a Lefschetz pencil of curves of genus g lying on a generalK3 surface of degree
2g − 2 in Pg. This gives rise to a curve B in the moduli space Mg. These pencils B fill

up the entire moduli space Mg for g ≤ 9 or g = 11 (see [Mu1]), and the divisor K10 of
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curves lying on a K3 surface for g = 10. When g ≥ 13, the pencils B fill up the locus
Kg ⊂ Mg of K3 sections of genus g and dim(Kg) = 19 + g.

Lemma 4.6. We have the formulas B · λ = g + 1, B · δ0 = 6g + 18 and B · δj = 0 for j 6= 0.

It will turn out that the locus Kg becomes an obstruction for an effective divisor on

Mg to have small slope. The next result shows that in order to construct geometric di-

visors on Mg having small slope, one must search for geometric conditions which have
codimension 1 in moduli, and which are a relaxation of the condition that a curve be
a section of a K3 surface. This philosophy governs the construction of Koszul divisors
on Mg carried out in [F2], [F3].

Proposition 4.7. Let D be the closure in Mg of an effective divisor on Mg. If the inequality

s(D) < 6 + 12/(g + 1) holds, then D contains the locus Kg of curves lying on K3 surfaces.

Proof. We consider as above the curve B ⊂ Mg corresponding to a Lefschetz pencil of
curves of genus g on a general K3 surface S. From Lemma 4.6 we obtain that

B · δ

B · λ
= 6 +

12

g + 1
> s(D),

which implies that B ·D < 0 hence B ⊂ D. By varying both B and S inside the moduli
space of polarized K3 surfaces, we obtain the inclusion Kg ⊂ D. �

Bounding s(Mg) from below, remains one of the main open problems in the field.
There is a straightforward (probably far from optimal) way of obtaining a bound on
s(Mg) by writing down any moving curve R ⊂ Mg , that is, a curve which moves in an

algebraic family {Rt}t∈T of curves on Mg such that the set
⋃

t∈T Rt is dense in Mg. One
instance of a moving curve is a complete intersection curve R = H1 ∩ · · · ∩H3g−4, where

Hi are numerically effective divisors on Mg.

If R ⊂ Mg is a moving curve, then R ·D ≥ 0, for any D ∈ Eff(Mg), hence

s(Mg) ≥
R · δ

R · λ
.

Obviously writing down and then computing the invariants of a moving curve in Mg

can be difficult. An experimental bound s(Mg) ≥ O(1/g) was initially obtained in
[HMo] using Hurwitz schemes of covers of P1. A similar (but nevertheless different)
bound is obtained by D. Chen [C] using covers of elliptic curves.

4.1. Pandharipande’s lower bound on s(Mg).

Recently, Pandharipande [P] has found a short way of proving the inequality

s(Mg) ≥ O
(1

g

)
,

in a way that uses only descendent integrals over Mg,n as well as some calculations on
Hodge integrals that appeared in [FaP]. We explain the main idea of his proof.
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One constructs a covering curve for Mg by pushing forward products of nef

tautological classes on moduli spaces Mg,n via the morphisms forgetting the marked
points. In the simplest incarnation of this method, one considers the universal curve

π : Mg,1 → Mg curve and the nef tautological class ψ1 = c1(ωπ) ∈ A1(Mg). Then

π∗(ψ
3g−4
1 ) ∈ A1(Mg) is a covering curve class, in particular for every divisor

D ≡ aλ−

[g/2]∑

i=0

biδi ∈ Pic(Mg)

which does not contain boundary components, we have that π∗(ψ
3g−4
1 ) ·D ≥ 0, hence,

s(D) ≥
a

b0
≥
π∗(ψ

3g−3
1 ) · δ0

π∗(ψ
3g−3
1 ) · λ

=

∫
Mg,1

δ0 · ψ
3g−3
1∫

Mg,1
λ · ψ3g−3

1

.

We outline the calculation of the numerator appearing in this fraction. For the degree 2
natural map

ǫ : Mg−1,3 → Mg,1, ǫ([C, p, x, y]) :=
[ C

x ∼ y
, p

]
,

one has that ǫ∗([Mg−1,3] = 2δ0 ∈ A1(Mg,1), hence via the push-pull formula we find,
∫

Mg,1

δ0 · ψ
3g−3
1 =

1

2

∫

Mg−1,3

ψ3g−3
1 =

1

2

∫

Mg−1,1

ψ3g−5
1 .

The last equality here is an easy consequence of the string equation [W]

∫

Mg,n+1

ψa1

1 · · ·ψan
n =

n∑

i=1

∫

Mg,n

ψa1

1 · · ·ψai−1
i · · ·ψan

n ,

where a1, . . . , an ≥ 0 such that
∑n

i=1 ai = 3g − 2 + n.

The following evaluation follows by putting together [M6] Section 6 and [FaP]
Section 3. For the sake of completeness we outline a proof:

Lemma 4.8. ∫

Mg,1

ψ3g−2
1 =

1

24g · g!
.

Proof. The cokernel of the sheaf morphism π∗(E) → ωπ on Mg,1 given by multiplication

of global sections, is supported on the locus X2 ∪ . . . ∪ Xg , where Xj ⊂ Mg,1 is the
closure of the subvariety of pointed curves [R ∪ C1 ∪ . . . ∪ Cj , p], where R is a smooth
rational curve, p ∈ R and Ci are smooth curves with #

(
R ∩ Ci

)
= 1, for 1 ≤ i ≤ j and∑j

i=1 g(Ci) = g. Clearly dim(Xj) = 3g − 2 − j, and there is a natural map

fj : Xj → M0,j+1

forgetting the tailsC1, . . . , Cj , while retaining the intersection pointsR∩Ci for 1 ≤ i ≤ j.

One has that ψ1| Xj
= f∗j (ψp), where ψp ∈ A1(M0,j+1) denotes the cotangent line class

on M0,j+1 corresponding to the marked point labeled by p ∈ R. For dimension reasons
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it follows that ψg−1
1| X2∪...∪Xg

= 0, whereas ψg−2
1| X2∪...∪Xg

must be entirely supported on the

locus Xg. Putting these observations together, one finds that

(12)
(π∗c(E)

1 + ψ1

)
2g−2

= ψg−2
1 [Xg]Q.

To estimate
∫
Mg,1

ψ3g−2
1 , one uses Mumford’s relation c(E) · c(E∨) = 1, cf. [M6]. This

comes from the exact sequence which globalizes Serre duality

0 −→ E → R1π∗Ω
1
π → E∨ → 0,

where the rank 2g vector bundle in the middle possesses a Gauss-Manin connection.
Accordingly, we can write that

∫

Mg,1

ψ3g−2
1 =

( π∗(E)

1 + ψ1

)
2g−2

· (λg + λg−1ψ1 + · · · + ψg
1) = λgψ

g−2
1 · [Xg]Q.

This last intersection number can be evaluated via the map of degree g!,

φ : (M1,1)
g ×M0,g+1 → Xg,

which attaches g elliptic tails at the first g marked points of a rational (g + 1)-pointed
stable curve. Clearly φ∗(E|Xg

) = E1 ⊠ · · · ⊠ E1, where E1 is the Hodge bundle on M1,1.

Since
∫
M1,1

λ1 = 1/24, one finds that,

λgψ
g−2
1 · [Xg]Q =

1

g!

(∫

M1,1

λ1

)g
·

∫

M0,g+1

ψg−2
1 =

1

24g · g!
.

�

To evaluate the integral
∫
Mg,1

λ ·ψ3g−3
1 , first one uses the GRR calculation of ch(E)

applied to the universal curve π : Mg,1 → Mg. One finds that
∫

Mg,1

λ · ψ3g−3
1 =

1

12

∫

Mg,2

ψ3g−3
1 ψ2

2 −
1

12

∫

Mg,1

ψ3g−2
1 +

1

24

∫

Mg−1,3

ψ3g−3
1 .

The last integral is evaluated using again the string equation, for the middle one we use
Lemma 4.8. The first integral is evaluated using [W] and one finally proves:

Theorem 4.9.

s(Mg) ≥

∫
Mg,1

δ0 · ψ
3g−3
1∫

Mg,1
λ · ψ3g−3

1

=
60

g + 4
.

Note that the boundO(1/g) obtained in this theorem is quite similar to the exper-
imental bound 576

5g obtained in [HMo] using Hurwitz covers.

Remark 4.10. Another very natural covering curve for Mg, which potentially could

produce a much better lower bound for s(Mg) than the one in [P], has been recently
proposed by Coskun, Harris and Starr [CHS]: If Hilbg,1 denotes the Hilbert scheme of
canonically embedded curves C ⊂ Pg−1, then dim Hilbg,1 = g2 + 3g − 4. We denote
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by r(g) the largest number r, such that through r general points in Pg−1 there passes a
canonical curve [C →֒ Pg−1] ∈ Hilbg,1. It has been determined in [St] that

r(g) = g + 5 +
[ 6

g − 2

]

(this is, the smallest solution of the necessary inequality dim Hilbg,1 + r ≥ (g − 1)r). In
particular r(3) = 14 (as it should be!) and r(5) = 12. For g ≥ 9, one fixes general points
p1, . . . , pg+5 ∈ Pg−1 as well as a general linear space Pg−7 ⊂ Pg−1. The family Xg ⊂ Mg

consisting of canonical curves [C →֒ Pg−1] ∈ Hilbg,1 passing through p1, . . . , pg+5, and

such that C ∩ Pg−7 6= ∅ is a covering curve for Mg. It is an interesting problem to
determine the slope Xg · δ/Xg · λ.

5. THE HARRIS-MUMFORD THEOREM REVISITED: AN ALTERNATIVE PROOF VIA

SYZYGIES

In this section we present a different proof of the main result from [HM] by re-

placing the calculation of the class of the Hurwitz divisor M
1
g,k of k-gonal curves of

genus g = 2k − 1 by the calculation of the class of a certain Koszul divisor Zg,k−2, con-
sisting of canonical curves [C] ∈ Mg with extra syzygies at the (k − 2)-nd step in its

minimal graded resolution. The advantage of this approach is that the proof that Mg is
of general type becomes shorter since one can completely avoid having to develop the
theory of admissible covers and do without the enumerative calculations that occupy a
large part of [HM], precisely pg. 53-86, or alternatively, develop the theory of limit lin-
ear series [EH1]. The proof becomes also more direct and logical, since it uses solely the
geometry of canonical curves of genus g and that of the corresponding Hodge bundles
on Mg , rather than the geometry of an auxiliary Hurwitz stack. The disadvantage of

this approach, is that the statement that the locus Zg,k−2 is a divisor on Mg is highly
non-trivial and it is equivalent to Green’s Conjecture for generic curves of odd genus
(Voisin’s theorem [V1], [V2]). This situation is somewhat similar to that encountered in
the streamlined proof of Theorem 1.1 presented by Eisenbud and Harris in [EH3] (and
which is comparable in length to our proof): Showing that the a priori virtual Brill-

Noether locus is an actual divisor in Mg, requires the full force of the Brill-Noether
theory and is arguably more difficult than computing the class of the Brill-Noether di-
visor on Mg.

We start by recalling a few basic facts on syzygies. For a smooth curve C and a

globally generated line bundle L ∈ Picd(C), we denote by Ki,j(C,L) the Koszul coho-
mology group obtained from the complex

∧i+1H0(L) ⊗H0(L⊗(j−1))
di+1,j−1

−→ ∧iH0(L) ⊗H0(L⊗j)
di,j
−→ ∧i−1H0(L) ⊗H0(L⊗(j+1)),

where the maps di,j are the Koszul differentials defined by (cf. [La2], [PR])

di,j

(
f1 ∧ . . . ∧ fi ⊗ u

)
:=

i∑

l=0

(−1)l
(
f1 ∧ . . . ∧ f̌l . . . ∧ fi

)
⊗ (ufl),
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with fl ∈ H0(C,L) and u ∈ H0(C,L⊗j). If R(C,L) := ⊕n≥0H
0(C,L⊗n) denotes the

graded module over the polynomial ring S := SymH0(C,L), then

Ki,j(C,L) = TorS
i

(
C, R(C,L)

)
i+j
.

There is a standard geometric way of computing Koszul cohomology groups using
Lazarsfeld bundles. Since L is assumed to be globally generated, we can define the vector
bundle ML on C through the following exact sequence on C :

0 →ML → H0(L) ⊗OC → L→ 0.

A diagram chasing argument using the exact sequences

0 −→ ∧aML ⊗ L⊗b → ∧aH0(L) ⊗ L⊗b −→ ∧a−1ML ⊗ L⊗(b+1) −→ 0

for various a and b, shows that there is an identification cf. [La2]

(13) Ka,b(C,L) =
H0(C,∧aML ⊗ L⊗b)

Image{∧a+1H0(C,L) ⊗H0(C,L⊗(b−1))}
.

Example 5.1. From (13) we find that K0,2(C,L) = 0 if and only if the multiplication

map Sym2H0(C,L) → H0(C,L⊗2) is surjective. Assuming L is normally generated,

we have that K1,2(C,L) = 0 if and only if C
|L|
→ P

(
H0(C,L)∨

)
is cut out by quadrics.

More generally, one says that L satisfies the Green-Lazarsfeld property (Np) for p ≥ 0, if
the vanishing Ki,2(C,L) = 0 holds for all 0 ≤ i ≤ p. This corresponds intuitively to the

situation that the first p syzygies of the image curve C
|L|
→ P

(
H0(C,L)∨

)
are as simple

as possible, that is, linear.

From now on we specialize to the case L = KC ∈ W g−1
2g−2(C) and we consider the

canonical map C
|KC |
−→ Pg−1. If C is non-hyperreliptic, we set IC/Pg−1 to be the ideal of

the canonically embedded curve.

Proposition 5.2. For any non-hyperrelliptic curve [C] ∈ Mg and any integer 0 ≤ i ≤ (g −
1)/2 we have the following equivalence:

Ki,2(C,KC ) 6= 0 ⇐⇒ h0
(
P

g−1,Ωi
P

g−1(i+2)⊗IC/P
g−1

)
≥

(
g − 1

i+ 2

)
(g − 2i− 3)(i + 1)

g − i− 1
+1.

Proof. We start with a canonically embedded curve C
|KC |
→֒ Pg−1. Throughout the proof

we use the identification MPg−1 = ΩPg−1(1) coming from the Euler sequence on Pg−1.
Since the vector bundle MKC

is stable (cf. [PR] Corollary 3.5), we have the vanishing

H1(C,∧i ⊗K⊗2
C ) = 0

because µ
(
∧iMKC

⊗ K⊗2
C ) > 2g − 1. It follows from (13) that Ki,2(C,KC ) 6= 0 if and

only if the map

H1(C,∧i+1MKC
⊗KC) → ∧i+1H0(C,KC) ⊗H1(C,KC )

is an isomorphism, or equivalently h1(C,∧i+1MKC
⊗KC) =

( g
i+1

)
. We write down the

following commutative diagram, where by abusing notation, we shall denote by the
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same letter a sheaf morphism and the group morphism it induces at the level of global
sections:

0 0 0y
y

y
∧i+1MPg−1 ⊗ IC/Pg−1(1) −→ ∧i+1H0(OPg−1(1)) ⊗ IC/Pg−1(1) −→ ∧iMPg−1 ⊗ IC/Pg−1(2)y

y
y

∧i+1MPg−1(1) −→ ∧i+1H0(OPg−1(1)) ⊗OPg−1(1) −→ ∧iMPg−1(2)yα

yβ

yγ

∧i+1MKC
⊗KC −→ ∧i+1H0(KC) ⊗KC −→ ∧iMKC

⊗K⊗2
Cy

y
y

0 0 0

Applying the Snake Lemma, we find that H0(Pg−1,∧iMPg−1 ⊗ IC/Pg−1(2)) = Coker(α).

We also note that h0
(
Pg−1,∧i+1MPg−1(1)

)
=

(
g

i+2

)
(use for instance Bott’s vanishing

theorem). Thus the condition Ki,2(C,KC ) = 0 is satisfied if and only if

dim Coker(α) = h0(C,∧i+1MKC
⊗KC) − h0

(
Pg−1,∧i+1MPg−1(1)

)
=

=

(
g − 1

i+ 1

)
(g − 2i− 3) + h1(C,∧i+1MKC

⊗KC) −

(
g

i+ 2

)
≤

≤

(
g − 1

i+ 2

)
(g − 2i− 3)(i+ 1)

g − i− 1
.

�

For g = 2i+ 3, we find that Ki,2(C,KC ) 6= 0 if and only if the map

(14) H0(Pg−1,∧iMPg−1(2))
γ

−→ H0(C,∧iMKC
⊗K⊗2

C )

is not an isomorphism. We note that γ is a map between vector spaces of the same
dimensions:

h0
(
Pg−2,∧iMPg−1(2)

)
= (i+ 1)

(
g + 1

i+ 2

)
= χ(C,∧iMKC

⊗K⊗2
C ) = h0(C,∧iMKC

⊗K⊗2
C )

(for the left hand side use Bott vanishing, for the right hand-side the Riemann-Roch
theorem.) This shows that the locus

Zg,i := {[C] ∈ Mg : Ki,2(C,KC ) 6= 0},

being the degeneracy locus of a morphism between two vector bundles of the same
rank over Mg, is a virtual divisor on the moduli space of curves.

Example 5.3. By specializing to the case g = 3, we find the following interpretation

Z3,0 := {[C] ∈ M3 : Sym2H0(C,KC) → H0(C,K⊗2
C ) is not an isomrphism}.

Using M. Noether’s theorem [ACGH], it follows that Z3,0 consists precisely of hyperel-
liptic curves, that is, supp(Z3,0) = supp(M1

3,2). In the next case g = 5, we use Petri’s
theorem stating that a non-hyperelliptic canonical curve [C] ∈ M5 is cut out by quadrics
unless it has a g1

3. We obtain that supp(Z5,1) = supp(M1
5,3).
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In order to describe the closure Zg,i of Zg,i inside Mg, we shall extend the deter-
minantal description of Zg,i over a partial compactification of Mg. Our methods seem
well-suited for divisor class calculations but harder to implement in the case of Koszul
cycles on Mg of higher codimension.

We denote by M∗
g := Mg ∪

(
∪i+1

j=0∆
0
j

)
the locally closed substack of Mg defined

as the union Mg and the open substacks ∆0
j ⊂ ∆j for 1 ≤ j ≤ i + 1 consisting of 1-

nodal genus g curves [C ∪y D], with [C, y] ∈ Mg−j,1 and [D, y] ∈ Mj,1, that is, ∆0
j is

the intersection of ∆j with the codimension 1 stratum in the topological stratification of

Mg. The substack ∆0
0 ⊂ ∆0 classifies 1-nodal irreducible genus g curves

[
Cyq :=

C

q ∼ y

]
∈ Mg,

where [C, q, y] ∈ Mg−1,2 together with their degenerations consisting of unions of a

smooth genus g−1 curve and a nodal rational curve. We set M̃g := Mg∪∆0
0∪∆0

1 ⊂ M∗
g.

For integers 0 ≤ a ≤ i and b ≥ 2 we define vector bundles Ga,b over M̃g with fibre

Ga,b[C] = H0(C,∧aMKC
⊗K⊗b

C )

over every point [C] ∈ Mg. The question is of course how the extend this description of
Ga,b over the locus of stable curves. In this paper we shall only describe how to construct

the bundles Ga,b over M̃g, which will suffice in order to compute the slope of Zg,i and
prove Theorem 1.1 for g = 2i + 3. For full details on how to extend the vector bundles

Ga,b over M̃g (that is, outside codimension 2 over all the boundary divisors on Mg), we
refer to [F2] p. 75-86. We start by constructing the bundles G0,b:

Proposition 5.4. For each b ≥ 2 there exists a vector bundle G0,b over M̃g of rank (2b−1)(g−1)
with fibres admitting the following description:

• For [C] ∈ Mg we have that G0,b[C] = H0(C,K⊗b
C ).

• For [C ∪y E]) ∈ ∆0
1, where E is an elliptic curve, if u ∈ H0(C,KC ⊗ OC(2y)) −

H0(C,KC ) denotes any meromorphic 1-form with non-zero residue at y, then

G0,b[C ∪y E] = H0(C,K⊗b
C ⊗OC((2b− 2) · y)) + C · ub ⊂ H0

(
C,K⊗b

C ⊗OC(2b · y)
)
.

• For [Cyq = C/y ∼ q] ∈ ∆0
0, where q, y ∈ C and u ∈ H0(C,KC ⊗ OC(y + q)) −

H0(C,KC ) is a meromorphic 1-form with non-zero residues at y and q, we have that

G0,b[Cyq] = H0
(
C,K⊗b

C ⊗OC((b− 1)y+ (b− 1)q)
)
⊕C · ub ⊂ H0

(
C,K⊗b

C ⊗OC(by+ bq)
)
.

The idea to define the vector bundles G0,b as suitable twists by boundary divisors
of powers of the relative dualizing sheaf over the universal curve, that is,

G0,b = π∗
(
ω⊗b

π ⊗

[g/2]∑

j=1

π∗(OMg
(cbj δj))

)

for precisely determined constants cbj ≥ 0, comes of course from the theory of limit

linear series. Recalling that σ : G
g−1
2g−2 → M̃g denotes the stack of limit g

g−1
2g−2’s, then for
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a curve [C ∪y E] ∈ ∆0
1, the fibre σ−1[C ∪y E] consists of a single limit linear series

(
lC =

(
ωC(2y),H0(ωC(2y)

)
∈ Gg−1

2g−2(C), lE =
(
OE(2gy), (g−1)y+|(g−1)y|

)
∈ Gg−1

2g−2(E)
))
.

The bundle G0,1 retains the aspect of this limit g
g−1
2g−2 corresponding to the component

of genus g − 1, while dropping the information coming from the elliptic tail. Similarly,
for b ≥ 2, it is an easy exercise in limit linear series to show the fibre G0,b[C ∪y E]

is precisely the C-aspect of the limit g
2b(g−1)
(2b−1)(g−1)−1 induced from ω⊗b

C∪E . The situation

becomes more complicated when extending G0,b over the entire stack M∗
g. As explained

in [F2] Theorem 3.13 in the case of the Hurwitz stack (and the same holds true for M∗
g

itself), the twisting coefficients cbj are chosen in a unique way such that the resulting
bundles Ga,b fit in exact sequences of type (15).

Having defined G0,b we now define inductively all vector bundles Ga,b. First we
define G1,b as the kernel of the multiplication map G0,1 ⊗ G0,b → G0,b+1, that is, by the
exact sequence

0 −→ G1,b −→ G0,1 ⊗ G0,b −→ G0,b+1 −→ 0.

Having defined Gl,b for all l ≤ a − 1, the vector bundle Ga,b is defined through the

following exact sequence over M̃g:

(15) 0 −→ Ga,b −→ ∧aG0,1 ⊗ G0,b
φa,b
−→ Ga−1,b+1 −→ 0.

Proposition 5.5. The Koszul maps φa,b : ∧aG0,1 ⊗ G0,b → Ga−1,b+1 are well-defined and
surjective for all integers b ≥ 2 and 0 ≤ a ≤ b. In particular the exact sequences (15) make
sense and the vector bundles Ga,b are well-defined.

Proof. This proof is similar to [F2] Proposition 3.10. We use that the vector bundle
MKC⊗OC(y+q) is semi-stable for [C, y, q] ∈ Mg−1,2, in particular

H1
(
C,∧aMKC⊗OC(y+q) ⊗K⊗b

C ((b− 1) · (y + q))
)

= 0,

that is the map

∧aH0
(
KC(y+q)

)
⊗H0

(
K⊗b

C ((b−1)(y+q))
)
→ H0

(
∧a−1MKC⊗OC(y+q)⊗K

⊗(b+1)
C (b(y+q))

)

is surjective. The rest now follows from the description of the fibres of the bundles Ga,b

provided in Proposition 5.4. �

For 0 ≤ a ≤ i and b ≥ 1 we define vector bundles Ha,b over M̃g having fibre

Ha,b[C] = H0
(
Pg−1,∧aMPg−1 ⊗OPg−1(b)

)

over each point corresponding to a smooth curve [C] ∈ Mg with the canonical map

C
|KC |
−→ Pg−1. First we set H0,b := Symb(E ⊗O eMg

(δ1)) for b ≥ 1. Having already defined

Ha−1,b for all b ≥ 1, we define Ha,b via the exact sequence

(16) 0 −→ Ha,b −→ ∧aH0,1 ⊗ SymbH0,1 −→ Ha−1,b+1 −→ 0.

Note that the bundles Ha,b are defined entirely in terms of the Hodge bundle E. There

is a natural vector bundle morphism over M̃g

γa,b : Ha,b → Ga,b.
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When g = 2i + 3 then rank(Hi,2) = rank(Gi,2) and the degeneracy locus Z(γi,2) of the

morphism γi,2 is a codimension 1 compactification in M̃g of the locus Zg,i.

We shall determine the class c1(Gi,2 −Hi,2) ∈ Pic(M̃g) by computing its intersec-

tion it with the following test curves lying in the boundary of Mg: We fix a pointed
curve [C, q] ∈ Mg−1,1 and a general elliptic curve [E, y] ∈ M1,1. We define two 1-
parameter families

(17) C0 := {
C

y ∼ q
: y ∈ C} ⊂ ∆0 ⊂ Mg and C1 := {C ∪y E : y ∈ C} ⊂ ∆1 ⊂ Mg.

These families intersect the generators of Pic(Mg) as follows (cf. [HM] pg. 83-85):

C0 · λ = 0, C0 · δ0 = −2g + 2, C0 · δ1 = 1 and C0 · δa = 0 for a ≥ 2, and

C1 · λ = 0, C1 · δ0 = 0, C1 · δ1 = −2g + 4, C1 · δa = 0 for a ≥ 2.

Lemma 5.6. We fix [C, q] ∈ Mg−1 and we consider the test curves C0, C1 ⊂ Mg. Then for
all integers j ≥ 1 the following formulas:

(1) C1 · c1(G0,j) = −2g + 4.
(2) C0 · c1(G0,j) = (j − 1)

(
j(g − 1) + j − 1

)
+ j.

Proof. We denote by p1, p2 : C × C → C the two projections and ∆ ⊂ C × C is the
diagonal. We give details only for the first calculation the remaining one being similar.
We have the identification G0,1|C1 = (π1)∗

(
π∗2(KC)⊗O(2∆)

)
, from which we obtain that

c1(G0,1|C1) = −2g + 4. For j ≥ 2 we use the following exact sequences of bundles on C :

0 −→ (π1)∗

(
π∗2(K

⊗j
C )⊗O((2j−2)∆)

)
−→ G0,j|C1 −→ (π1)∗

(
π∗2(K

⊗j
C )⊗O∆(2j∆)

)
−→ 0.

An immediate application of Grothendieck-Riemann-Roch for the projection morphism
p1 : C × C → C gives that

c1(π1)∗

(
π∗2(K

⊗j
C ) ⊗OC×C((2j − 2)∆)

)
= 2(g − 1)(j − 1),

which finishes the proof. �

Theorem 5.7. The class of the virtual divisor Z2i+3,i in Pic(M̃2i+3) equals

[Z2i+3,i]
virt = c1(Gi,2 −Hi,2) =

1

i+ 2

(
2i

i

)(
6(i + 3)λ− (i+ 2)δ0 − 6(i+ 1)δ1

)
.

Proof. We have constructed the vector bundle morphism γi,2 : Hi,2 → Gi,2 over the stack

M̃g. For g = 2i + 3 we know that rank(Hi,2) = rank(Gi,2) and the virtual Koszul class

[Zg,i]
virt equals c1(Gi,2 − Hi,2). We recall that for a rank e vector bundle E over a stack

X and for i ≥ 1, we have formulas

c1(∧
iE) =

(
e− 1

i− 1

)
c1(E) and c1(SymiE) =

(
e+ i− 1

e

)
c1(E).

We write c1(Gi,2 −Hi,2) = aλ− b0δ0 − b1δ1. Using the exact sequences (15) we find that

c1(Gi,2) =

i∑

l=0

(−1)lc1(∧
i−lG0,1 ⊗ G0,l+2) =

i∑

l=0

(−1)l
(

g

i− l

)
c1(G0,l+2)+
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+

i∑

l=0

(−1)l
(
(g − 1)(2l + 3)

)( g − 1

i− l − 1

)
c1(G0,1).

Using repeatedly the exact sequence (16) we find that

c1(Hi,2) =
i∑

l=0

(−1)lc1(∧
i−lH0,1 ⊗ Syml+2H0,1) =

=

i∑

l=0

(−1)l
(

g

i− l

)
c1(Syml+2(H0,1)) +

i∑

l=0

(−1)l
(
g + l + 1

l + 2

)
c1(∧

i−lH0,1)

=
i∑

l=0

(−1)l
((

g

i− l

)(
g + l + 1

g

)
+

(
g + l + 1

l + 2

)(
g − 1

i− l − 1

))
c1(H0,1) =

= 4(2i + 1)

(
2i

i

)
c1(H0,1),

with G0,1 = H0,1 = E ⊗ O eMg
(δ1). We intersect both these formulas with the test curves

C0 and C1 and write that

(2g − 2)b0 − b1 = C0 · [Zg,i]
virt = (i+ 1)

(
2i+ 2

i

)
and

(2g − 4)b1 = C1 · [Zg,i]
virt = 6(i+ 1)

(
2i+ 2

i

)
.

These relations determine b0 and b1. Finally we claim that we also have the relation
a − 12b0 + b1 = 0 which finishes the proof. Indeed, we consider q the curve R ⊂ Mg

obtained by attaching to a fixed point q ∈ C of a curve of genus g− 1 a Lefschetz pencil
of plane cubics. Then R · λ = 1, R · δ0 = 12, R · δ1 = −1 and R · δj = 0 for j ≥ 2. Then

a − 12b0 + b1 = 0 = R · c1(Gi,2 −Hi,2) = 0,

and this follows because Ga,b|R are numerically trivial (It is clear that G0,b|R are trivial
for b ≥ 1 and then one uses (15) and (16)). �

Example 5.8. For i = 0 hence g = 3, Theorem 5.7 reads like

[Z3,0]
virt = c1(G0,2 − Sym2G0,1) = 9λ− δ0 − 3δ1 ≡ M

1
3,2 ∈ Pic(M3).

Thus our calculation yields a computation of the compactified divisor M
1
3,2 on M3 of

hyperelliptic curves. Thus we have the relation Z(γ0,2) = Z3,0 and the vector bun-
dle morphism γ0,2 : H0,2 → G0,2 provides the ”correct” determinantal structure of the
compactification of the hyperelliptic divisor. A different compactification of M1

3,2 is
provided by the vector bundle morphism between Hodge bundles

χ3 : Sym2(E1) → E2, χ3[X] : Sym2H0(X,ωX ) → H0(X,ω⊗2
X )

for [X] ∈ M3. The class of its degeneration locus is c1(E2 − Sym2E1) = 9λ− δ0 − δ1 (use
Remark 4.1). It follows that there is an equality of cycles

Z(χ3) = Z(γ0,2) + 2δ1 ∈ A1(M3),
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that is, χ3 is an everywhere degenerate morphism along the divisor ∆1. This discus-
sion in low genus, already indicates that the determinantal structure induced by the

morphism γi,2 : Hi,2 → Gi,2 provides the right compactification of Zg,i over M̃g.

In a way analogous to [F2], one can extend the vector bundles Ga,b and Ha,b as
well as the vector bundle morphism γa,b : Ha,b → Ga,b over the larger codimension 1
compactification M∗

g, in a way that the exact sequence (15) and (16) extend to M∗
g. Using

these sequences, we can compute the class c1(Gi,2 − Hi,2) ∈ Pic(M∗
g) = Pic(Mg). One

finds a formula

c1(Gi,2 −Hi,2) = aλ− b0δ0 − · · · − b[g/2]δ[g/2],

where bj ≥ b0 for j ≥ 1. It follows that

s([Zg,i]
virt) =

a

b0
= 6 +

12

g + 1
.

This finishes the proof of Theorem 1.1 provided we can show that Zg,i is an ”hon-
est” divisor on M2i+3, that is, γi,2 is generically nondegenerate. This is the subject
of Voisin’s theorem [V2] which gives an affirmative answer to Green’s Conjecture for
generic curves of odd genus (see e.g. [GL] for more background):

Theorem 5.9. For a general curve [C] ∈ M2i+3 we have the vanishing Ki,2(C,KC) = 0. It
follows that Z2i+3,i is a divisor on M2i+3.

Remark 5.10. For g = 23 Theorem 5.7 shows that s(Z23,10) = s(KM23
) = 13/2. This

implies that κ(M23) ≥ 0, in particular M23 is not uniruled. A finer analysis using
Brill-Noether divisors on M23 proves the stronger inequality κ(M23) ≥ 2, cf. [F1].

We finish this section by briefly discussing the proof of Theorem 1.1 in even genus.
This is achieved in [EH3] and it relies on the calculation of class of the Gieseker-Petri
divisor on Mg. We fix integers r, s ≥ 1 and set g := s(r + 1) and d := r(s + 1). Note
that ρ(g, r, d) = 0 and every even genus appears in this way. A general curve [C] ∈ Mg

has a finite number of linear series L ∈ W r
d (C) and for each of them, the multiplication

map

µ0(L) : H0(C,L) ⊗H0(C,KC ⊗ L∨) → H0(C,KC)

is an isomorphism. We define the Gieseker-Petri locus

GPr
g,d := {[C] ∈ Mg : ∃L ∈W r

d (C) such that µ0(L) is not injective }.

The following result is proved in [F3] Theorem 1.6. The case s = 2, g = 2r + 2, which
is the most important and the one used in the proof of Theorem 1.1, has been originally
settled in [EH3]. The proof given in [F3] which uses the techniques of Koszul cohomol-
ogy, is however substantially shorter.

Theorem 5.11. For d = rs + r and g = rs + s, the locus GPr
g,d has at least one divisorial

component. The slope of the divisorial part of its compactification GP
r
g,d in Mg is given by the

formula:

s(GP
r
g,d) = 6 +

12

g + 1
+

6(s + r + 1)(rs + s− 2)(rs + s− 1)

s(s+ 1)(r + 1)(r + 2)(rs + s+ 4)(rs + s+ 1)
.
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6. THE LOCUS OF K3 SECTIONS IN THE MODULI SPACE

To extend Theorem 1.1 and show that Mg is of general for a genus g ≤ 23, one

needs to construct effective divisors D ∈ Eff(Mg) of slope

s(D) <
13

2
≤ 6 +

12

g + 1
.

One is lead to consider geometric conditions for curves [C] ∈ Mg, which are divisorial
in moduli but are satisfied by all curves lying on K3 surfaces. Thus it makes sense to
study more systematically the geometry of curves of arbitrary genus on K3 surfaces.

Let S be a K3 surface and C ⊂ S a smooth curve of genus g. We choose a linear
series A ∈W r

d (C) with d ≤ g − 1, satisfying the following properties:

• Both linear series A ∈W r
d (C) and KC ⊗A∨ ∈W g−d+r−1

2g−2−d (C) are base point free.

• Both multiplication maps

H0(C,A) ⊗H0(C,KC ) → H0(C,A ⊗KC)

and

H0(C,A) ⊗H0(C,K⊗2
C ⊗A∨) → H0(C,K⊗2

C )

are surjective.

We recall that the Lazarsfeld bundle MA on C comes from the exact sequence

0 →MA → H0(A) ⊗OC
evC→ A→ 0

and we set QA := M∨
A , hence rank(QA) = r and det(QA) = KC . Following an idea

due to Mukai [Mu3], we show that C possesses many higher rank vector bundles with
unexpectedly many global sections. These bundles are restrictions of vector bundles on
S and their existence will ultimately single out the K3 locus Kg in Mg:

Theorem 6.1. Given a smooth curve C ⊂ S and A ∈ W r
d (C) as above, there exists a vector

bundle EA ∈ SUC(r + 1,KC ) sitting in an exact sequence

0 −→ QA → EA −→ A −→ 0,

and satisfying the condition h0(C,EA) = h0(C,A) + h0(C,KC ⊗A∨) = g − d+ 2r + 1.

Proof. Viewing A as a sheaf on S, we define the sheaf F̃A through the exact sequence

0 −→ F̃A −→ H0(A) ⊗OS
evS−→ A −→ 0.

Since A is a base point free line bundle, F̃A is a vector bundle on S. We consider the

vector bundle ẼA := F̃∨
A on S, which sits in an exact sequence

(18) 0 −→ H0(A)∨ ⊗OS −→ ẼA −→ KC ⊗A∨ −→ 0.
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We write down the following commutative diagram

0 0y
y

H0(A) ⊗OS(−C)
=

−→ H0(A) ⊗OS(−C)y
y

0 −→ F̃A −→ H0(A) ⊗OS −→ A −→ 0y
y

y=

0 −→ MA −→ H0(A) ⊗OC −→ A −→ 0y
y

0 0

from which, if we set FA := F̃A ⊗OC and EA := ẼA ⊗OC , we obtain the exact sequence

0 −→MA ⊗K∨
C −→ H0(A) ⊗K∨

C −→ FA −→MA −→ 0

(use that Tor1OS
(MA,OC) = MA ⊗K∨

C). Taking duals, we find the exact sequence

(19) 0 −→ QA −→ EA −→ KC ⊗A∨ −→ 0.

Since S is regular, from (18) we obtain that h0(S, ẼA) = h0(C,A)+h0(C,KC ⊗A∨) while

H0(S, ẼA ⊗OS(−C)) = 0, that is,

h0(S, ẼA) ≤ h0(C,EA) ≤ h0(C,A) + h0(C,KC ⊗A∨).

This shows that the sequence (19) is exact on global sections and completes the proof.
�

Corollary 6.2. Let C ⊂ S and A ∈W r
d (C) be as above. Then the multiplication map

H0(C,KC ⊗A∨) ⊗H0(C,KC ⊗MA) → H0(C,K⊗2
C ⊗A∨ ⊗MA)

is not surjective. In particular, for every base point free pencil A ∈ W 1
d (C) with d ≤ g − 1, the

multiplication map

Sym2H0
(
C,KC ⊗A∨

)
→ H0

(
C,K⊗2

C ⊗A⊗(−2)
)

is not surjective.

Proof. The existence of the bundle EA ∈ Ext1(KC ⊗A∨, QA) = H0(C,K⊗2
C ⊗A∨⊗MA)∨

satisfying h0(C,EA) = h0(C,QA) + h0(C,KC ⊗A∨) implies that the coboundary map

Ext1
(
KC ⊗A∨, QA

)
→ Hom

(
H0(C,KC ⊗A∨),H1(C,QA)

)

given by E 7→ δE , is not injective. We finish the proof by applying Serre duality. �

Corollary 6.3. For C ⊂ S and A ∈W r
d (C) as above, we have that

h0(C,QA ⊗QKC⊗A∨) ≥ h0(C,A)h0(C,KC ⊗A∨) + 1.

Proof. We tensor the exact sequence

0 −→MKC⊗A∨ −→ H0(KC ⊗A∨) ⊗OC → KC ⊗A∨ −→ 0
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by the vector bundle MA ⊗ KC , then apply Corollary 6.2. The conclusion follows be-

cause by assumption H1(C,K⊗2
C ⊗A∨ ⊗MA) = 0. �

Corollary 6.2 can be simplified in the case of linear series of dimension ≥ 2. For
instance we have the following characterization which will be used in Section 6:

Proposition 6.4. Given C ⊂ S a Brill-Noether general curve and A ∈ W 2
d (C) a complete

linear series as above, the multiplication map

Sym2H0(C,KC ⊗A∨) → H0(C,K⊗2
C ⊗A⊗(−2))

is not surjective.

Proof. We start by choosing points p, q ∈ C such that A ⊗ OC(−p − q) ∈ W 1
d−2(C). We

can write the following exact sequence

0 −→ OC(p+ q) −→ QA −→ A⊗OC(−p− q) −→ 0,

which we use together with Corollary 6.3 to write the inequalities

h0(C,A) h0(C,KC ⊗A∨) + 1 ≤ h0(C,QA ⊗QKC⊗A∨) ≤

≤ h0
(
C,QKC⊗A∨ ⊗OC(p+ q)

)
+ h0

(
C,QKC⊗A∨ ⊗A⊗OC(−p− q)

)
.

We apply the Base point free pencil trick to note that the multiplication map

H0(C,KC (−p− q)) ⊗H0(C,KC ⊗A∨) → H0(C,K⊗2
C ⊗A∨(−p− q))

is surjective, hence h0(C,QKC⊗A∨(p+ q)) = h0(C,KC ⊗A∨). Then one must have

h0
(
C,QKC⊗A∨ ⊗A(−p− q)

)
> 2h0(C,KC ⊗A∨),

which implies that the multiplication map

H0(C,KC ⊗A∨) ⊗H0(C,KC ⊗A∨(p+ q)) → H0(C,K⊗2
C ⊗A⊗(−2)(p + q))

is not surjective. Since h0(C,KC ⊗ A∨(p + q)) = h0(C,KC ⊗ A∨) + 1, this implies that
the map

Sym2H0(C,KC ⊗A∨) → H0(C,K⊗2
C ⊗A⊗(−2))

is not surjective either. �

Example 6.5. As an illustration, a general curve [C] ∈ M21 carries a finite number of

linear series A ∈ W 2
16(C) and C

|KC⊗A∨|
→֒ P6 is an embedding for all A ∈ W 2

16(C). The
locus

Z21 := {[C] ∈ M21 : ∃A ∈W 2
16(C) with Sym2H0(C,KC ⊗A∨) ≇ H0(C,K⊗2

C ⊗A⊗(−2))}

contains the locus K21 of sections of K3 surfaces. Since

rank Sym2H0(C,KC ⊗A∨) = rank H0(C,K⊗2
C ⊗A⊗(−2)),

clearly Z21 is a virtual divisor on M21. In fact Z21 is an ”honest” divisor on M21 of
slope s(Z21) < 6 + 12/22 (cf. [F3], [Kh]). Unfortunately, s(Z21) > 6.5, so one cannot
conclude that M21 is of general type.
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To summarize, the existence of the vector bundles EA shows that curves C on
K3 surfaces carry line bundles of the form KC ⊗ A∨ having very special geometric
properties (Corollary 6.3). The vector bundlesEA are produced starting from any linear
seriesA ∈W r

d (C) satisfying suitable genericity condition. This leads to the construction

of Koszul divisors on Mg as being push-forwards of degeneracy loci defined on stacks

G̃r
d of limit linear series, cf. [F2], [F3].

6.1. Koszul divisors on Mg. We can rewrite Corollary 6.2 in terms of Koszul cohomol-
ogy groups. A curve [C] ∈ Kg enjoys the property that K0,2(C,KC ⊗A∨) 6= 0 for every
pencil A ∈ W 1

d (C) with d ≤ g − 1 such that KC ⊗ A∨ is globally generated. This sug-
gests an obvious ways of constructing geometric divisors on Mg which contain the K3
locus Kg by looking at the higher (rather than 0-th order) Koszul cohomology groups
Ki,2(C,KC ⊗ A∨). From a technical point of view the simplest case is when one con-
siders syzygies of linear series residual to a pencil of minimal degree in the case when
the general curve [C] ∈ Mg has a finite number of such pencils. The situation when the
Brill-Noether number is positive will be considered in the forthcoming paper [F4]. A
special case of that new construction can be found in Section 7 of this paper.

We fix an integer i ≥ 0 and set

g := 6i+ 10, d := 9i+ 12, and r := 3i+ 4

hence ρ(g, r, d) = 0. We consider the open substack M0
g ⊂ Mg consisting of curves

[C] ∈ Mg such that W r
d−1(C) = ∅ and W r+1

d (C) = ∅. Note that for a curve [C] ∈ M0
g,

each L ∈ W 3i+4
9i+12(C) is complete and base point free. From Riemann-Roch, the residual

linear seriesKC ⊗L∨ ∈W 1
3i+6(C) is a pencil of minimal degree. We would like to study

the locus of curves [C] ∈ Mg carrying a linear series L ∈ W r
d (C) with extra syzygies of

order i. Our numerical choices for g, r and d imply that this locus is a (virtual) divisor
on Mg. Whenever it is a divisor, it is guaranteed to contain Kg . The next theorem comes
from [F2]:

Theorem 6.6. There exists a partial compactification M
0
g ⊂ M̃g ⊂ Mg of the stack of smooth

curves with codim(Mg − M̃g) ≥ 2, such that if

σ : G̃1
3i+6 → M̃g

denotes the stack of limit linear series, then there exist vector bundles A and B of the same rank

together with a vector bundle morphism φi : A → B over G̃1
3i+6 such that the degeneracy locus

of φi over σ−1(M0
g) equals

Zg,i := {[C,A] ∈ G1
3i+6 : Ki,2(C,KC ⊗A∨) 6= 0}.

The slope of the virtual class of Zg,i is equal to

s
(
[Zg,i]

virt
)

= s
(
σ∗c1(B −A)

)
=

3(4i+ 7)(6i2 + 19i+ 12)

(i+ 2)(12i2 + 31i+ 18)
< 6 +

12

g + 1
.

The question of generic non-degeneracy of the morphism φi is addressed in [F2].
It is proved that φi is generically non-degenerate for i = 0, 1, 2. In particular, the locus
Z22,2 is an effective divisor on M22 of slope s(Z22,2) = 1665/256 = 6.5032.... This barely

fails to make M22 of general type!
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It is conjectured in [F2] that Zg,i is an actual divisor on M6i+10 for all i ≥ 0. To
show that Z22,2 is a divisor on M22 (rather than the entire space M22), we use that (i)
the Hurwitz stack G1

12 is irreducible and (ii) one can find a smooth embedded genus 22

curve C
g
10
30

→֒ P10 of genus 22, such that K2,2(C, g
10
30) = 0. In other words, C ⊂ P10 is cut

out by quadrics and all the syzygies among the quadrics are linear.

Because G1
12 is irreducible, this implies that if [C] ∈ M22 is a general curve, then

K2,2(C,KC ⊗ A∨) = 0, for all A ∈ W 1
12(C). The irreducibility of the Hurwitz stack G1

12

makes it possible to derive information about all g1
12’s on a general curve, even though

we can only see one g1
12 at a time. This trick (which has been used again in [F3] to

prove the Maximal Rank Conjecture), only works in the case ρ(g, r, d) = 0. Proving
transversality statements for Koszul divisors in the case ρ(g, r, d) ≥ 1 requires different
ideas.

7. THE KODAIRA DIMENSION OF M22

In this section we outline the calculation of the class [D22] of an effective divisor
on M22 of slope less than 13/2. Complete details of a more general construction (of
which Theorem 7.1 is a particular case) will appear in [F4]. Precisely, we shall present
in [F4] a way of computing the class of all Koszul divisors on Mg defined in terms of
linear series gr

d in the case ρ(g, r, d) = 1. (The case ρ(g, r, d) = 0 has been dealt with in
[F3]). Specializing (g, r, d) = (22, 6, 25) we obtain our result on the Kodaira dimension
of M22.

Theorem 7.1. The following locus of smooth curves of genus 22

D22 := {[C] ∈ M22 : ∃L ∈W 6
25(C) with Sym2H0(C,L) → H0(C,L⊗2) not injective}

is a divisor on M22. The class of its compactification on M22 is given by the formula:

D22 ≡ 132822768
( 17121

2636
λ− δ0 −

14511

2636
δ0 −

11∑

j=2

bjδj

)
,

where bj > 1 for 2 ≤ j ≤ 11. It follows that s(D22) = 17121/2636 = 6.49506 . . ., therefore

M22 is of general type.

We discuss the calculation of the class of D22 viewed as a virtual degeneracy locus
on a partial compactification of M22. The proof that D22 is indeed a divisor on M22,

that is, that for a general curve [C] ∈ M22 we have that Sym2H0(C,L) → H0(C,L⊗2)
is injective for all L ∈ W 6

25(C) will be presented in [F4] as part of a more general ver-
sion of the Maximal Rank Conjecture (see again [F3] Theorem 1.5 for the corresponding
statement when ρ(g, r, d) = 0).

The idea is to construct two tautological vector bundles over the Severi variety
G2

17 of curves [C] ∈ M22 with a plane model g2
17 and then define the divisor D22 as the

image of the first degeneration locus of a natural map between these bundles.
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We denote by Mp
22 the open substack of M22 consisting of curves [C] ∈ M22 such

that W 6
24(C) = ∅ and W 7

25(C) = ∅. Standard results in Brill-Noether theory guarantee
that codim(M22 − Mp

22,M22) ≥ 2. If Pic2522 denotes the Picard stack of degree 25 over
Mp

22, then we consider the substack G6
25 ⊂ Pic2522 parameterizing pairs [C,L] where

[C] ∈ Mp
22 and L ∈W 6

25(C). We denote by

σ : G6
25 → Mp

22

the forgetful morphism. For a general [C] ∈ Mp
22, the fibre σ−1([C]) = W 6

25(C) is a
smooth curve and G6

25 is an irreducible stack of dimension dim G6
25 = dim M22 + 1.

Let π : Mp
22,1 → Mp

22 be the universal curve and then p2 : Mp
22,1 ×M

p
22

G6
25 → G6

25

denotes the natural projection. If L is a Poincaré bundle over Mp
22,1 ×M

p
22

G6
25, then by

Grauert’s Theorem E := (p2)∗(L) and F := (p2)∗(L
⊗2) are vector bundles over G6

25 with
rank(E) = 7 and rank(F) = 29. There is a natural vector bundle morphism over G6

25

φ : Sym2(E) → F

and we denote by U22 ⊂ G6
25 its first degeneracy locus. We set D22 := σ∗(U22) and

clearly U22 has expected codimension 2 inside G6
25 hence D22 is a virtual divisor on

Mp
22.

Using Proposition 6.4, we are guaranteed that D22 contains the K3 locus K22,

in particular it is a good candidate for a divisor on M22 of exceptionally small slope.
We shall extend the vector bundles E and F over a partial compactification of G6

25.

We denote by ∆p
1 ⊂ ∆0

1 ⊂ Mg the locus of curves [C ∪y E], where E is an arbitrary
elliptic curve, [C] ∈ Mg−1 is a Brill-Noether general curve and y ∈ C is an arbitrary

point. We also denote by ∆p
0 ⊂ ∆0

0 ⊂ Mg the locus consisting of curves [Cyq] ∈ ∆0
0,

where [C, q] ∈ Mg−1,1 is Brill-Noether general and y ∈ C is arbitrary, as well as their
degenerations [C∪qE∞] where E∞ is a rational nodal curve (that is, j(E∞) = ∞). Once
we set

M
p
g := Mp

g ∪ ∆p
0 ∪ ∆p

1 ⊂ M̃g,

we can extend the map σ to a proper morphism σ : G̃6
25 → M

p
22 from the stack G̃6

25 of

limit linear series g6
25 over the partial compactification M

p
22 of M22.

Like in to [F2], [F3] or in Section 5 of this paper, we intersect the (virtual) divisor

D22 with the test curves C0 ⊂ ∆p
0 and C1 ⊂ ∆p

1 obtained from a general pointed curve
[C, q] ∈ M21,1 and a general elliptic curve [E, y] ∈ M1,1. We explicitly describe the
pull-back 2-cycles under σ of the test curves C0 and C1:

Proposition 7.2. Fix general curves [C] ∈ M21 and [E, y] ∈ M1,1 and consider the associated

test curve C1 ⊂ ∆1 ⊂ M22. Then we have the following equality of 2-cycles in G̃6
25:

σ∗(C1) = X +X1 ×X2 + Γ0 × Z0 + n1 · Z1 + n2 · Z2 + n3 · Z3,

where

X := {(y, L) ∈ C ×W 6
25(C) : h0(C,L⊗OC(−2y)) = 6},

X1 := {(y, L) ∈ C ×W 6
25(C) : aL(y) = (0, 2, 3, 4, 5, 6, 8)},

X2 := {lE ∈ G6
8(E) : alE

1 (y) ≥ 2, alE
6 (y) = 8} ∼= P

(H0(OE(8y))

H0(OE(6y))

)
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Γ0 := {(y,A⊗OC(y)) : y ∈ C,A ∈W 6
24(C)}, Z0 = G6

7(E) ∼= E,

Z1 := {lE ∈ G6
9(E) : alE

1 (y) ≥ 3, alE
6 (y) = 9} ∼= P

(H0(OE(9y))

H0(OE(6y))

)
,

Z2 := {lE ∈ G6
8(E) : alE

2 (y) ≥ 3, alE
6 (y) = 8} ∼= P

(H0(OE(8y))

H0(OE(5y))

)
,

Z3 := {lE ∈ G6
8(E) : alE (y) ≥ (0, 2, 3, 4, 5, 6, 7)} ∼=

⋃

z∈E

P

(H0(OE(7y + z))

H0(OE(5y + z))

)
,

where the constants n1, n2 and n3 are explicitly known positive integers.

Remark 7.3. The constants ni, 1 ≤ i ≤ 3 have the following enumerative interpretation.
First n1 is the number of linear series L ∈ W 6

25(C) such that there exists an unspecified
point y ∈ C with aL(y) = (0, 2, 3, 4, 5, 6, 9). Similarly, n2 is the number of those L ∈
W 6

25(C) for which there exists y ∈ C with aL(y) = (0, 2, 3, 4, 5, 7, 8). Finally n3 is the
number of points y ∈ C such that there exists L ∈ W 6

24(C) which is ramified at y. If n0

is the number of g6
24’s on C , then Γ0 consists of n0 disjoint copies of the curve C .

Before describing σ∗(C0), we set some more notation. For a general pointed curve
[C, q] ∈ M21,1 we denote by Y the surface

Y := {(y, L) ∈ C ×W 6
25(C) : h0(C,L⊗OC(−y − q)) = 6}

and by π1 : Y → C the first projection. Inside Y we consider two curves corresponding
to g6

25’s with a base point at q:

Γ1 := {(y,A ⊗OC(y)) : y ∈ C,A ∈W 6
24(C)} and

Γ2 := {(y,A⊗OC(q)) : y ∈ C,A ∈W 6
24(C)}

intersecting transversally in n0 = #
(
W 6

24(C)
)

points. Note that since [C] ∈ M21 is

Brill-Noether general, W 6
24(C) is a reduced 0-dimensional scheme consisting of n0 very

ample (in particular, base point free) g6
24’s. We denote by Y ′ the blow-up of Y at these

n0 points and at the points (q,B) ∈ Y where B ∈ W 6
25(C) is a linear series with the

property that h0(C,B ⊗ OC(−8q)) ≥ 1. We denote by EA, EB ⊂ Y ′ the exceptional
divisors corresponding to (q,A ⊗ OC(q)) and (q,B) respectively, by ǫ : Y ′ → Y the

projection and by Γ̃1, Γ̃2 ⊂ Y ′ the strict transforms of Γ1 and Γ2 respectively.

Proposition 7.4. Fix a general curve [C, q] ∈ M21,1 and consider the associated test curve

C0 ⊂ ∆0 ⊂ M22. Then we have the following equality of 2-cycles in G̃6
25:

σ∗(C0) = Y ′/Γ̃1
∼= Γ̃2,

that is, σ∗(C0) can be naturally identified with the surface obtained from Y ′ by identifying the

disjoint curves Γ̃1 and Γ̃2 over each pair (y,A) ∈ C ×W 6
24(C).

Proof. We fix a point y ∈ C − {q}, denote by [Cyq := C/y ∼ q] ∈ ∆p
0 ⊂ M22 and by

ν : C → Cyq the normalization map. We describe the variety W
6
25(Cyq) ⊂ Pic

25
(Cyq) of

torsion-free sheaves L on the 1-nodal curve Cyq, with deg(L) = 25 and h0(Cyq, L) ≥ 7.

If L ∈W 6
25(Cyq) ⊂W

6
25(Cyq), that is, L is a locally free sheaf, then L is completely

determined by ν∗(L) ∈W 6
25(C) which has the property that h0(C, ν∗L⊗OC(−y− q)) =
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6. However, the line bundles of type A⊗OC(y) or A⊗OC(q) with A ∈W 6
24(C), do not

appear in this association even though they have this property. In fact, they correspond

to the situation when L ∈ W
6
25(Cyq) is not locally free, in which case necessarily one

has that L = ν∗(A), for some A ∈W 6
24(C). Thus Y ∩ π−1

1 (y) is the partial normalization

of W
6
25(Cyq) at the n0 points of the form ν∗(A) with A ∈ W 6

24(C). A special analysis is
required when y = q, that is, when C0

y degenerates to C ∪q E∞, where E∞ is a rational

nodal cubic. If {lC , lE∞
} ∈ σ−1([C∪qE∞]), then an argument along the lines of Theorem

7.2 shows that ρ(lC , q) ≥ 0 and ρ(lE∞
, q) ≤ 1. Then either lC has a base point at q and

then the underlying line bundle of lC is of typeA⊗OC(q) while lE∞
(−18q) ∈W

6
7(E∞),

or else, alC (q) = (0, 2, 3, 4, 5, 6, 8) and then lE∞
(−17q) ∈ P

(
H0(E∞(8q))/H0(E∞(6q))

)
∼=

EB , where B ∈W 6
25(C) is the underlying line bundle of lC . �

We extend the vector bundles E and F over the stack G̃6
25 of limit linear series.

The proof of the following result proceeds along the lines of the proof of Proposition 3.9
in [F2]:

Proposition 7.5. There exist two vector bundles E and F defined over G̃6
25 with rank(E) = 7

and rank(F) = 29 together with a vector bundle morphism φ : Sym2(E) → F , such that the
following statements hold:

• For (C,L) ∈ G6
25, with [C] ∈ Mp

22, we have that E(L) = H0(C,L) and F(L) =
H0(C,L⊗2).

• For t = (C ∪y E, lC , lE) ∈ σ−1(∆p
1), where g(C) = 21, g(E) = 1 and lC = |LC | is

such that LC ∈W 6
25(C) has a cusp at y ∈ C , then E(t) = H0(C,LC ) and

F(t) = H0(C,L⊗2
C (−2y)) ⊕ C · u2,

where u ∈ H0(C,LC ) is any section such that ordy(u) = 0. If LC has a base point at
y, then

E(t) = H0(C,LC ) = H0(C,LC ⊗OC(−y))

and the image of a natural map F(t) → H0(C,L⊗2
C ) is the subspace H0(C,L⊗2

C ⊗
OC(−2y)).

• Fix t = (Cyq := C/y ∼ q, L) ∈ σ−1(∆p
0), with q, y ∈ C and L ∈W

6
25(Cyq) such that

h0(C, ν∗L⊗OC(−y − q)) = 6, where ν : C → Cyq is the normalization map.
In the case when L is locally free we have that

E(t) = H0(C, ν∗L) and

F(t) = H0(C, ν∗L⊗2 ⊗OC(−y − q)) ⊕ C · u2,

where u ∈ H0(C, ν∗L) is any section not vanishing at y and q. In the case whenL is not

locally free, that is, L ∈ W
6
25(Cyq) −W 6

25(Cyq), then L = ν∗(A), where A ∈ W 6
24(C)

and the image of the natural map F(t) → H0(C, ν∗L⊗2) is the subspace H0(C,A⊗2).

We determine the cohomology classes of the surfaces X and Y introduced in
Propositions 7.2 and 7.4 respectively. Our result are expressible in terms of standard
cohomology classes on Jacobians (cf. [ACGH], [F5]), which we now recall. If [C] ∈ Mg
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is a curve satisfying the Brill-Noether theorem, we denote by P a Poincaré bundle on

C × Picd(C) and by

π1 : C × Picd(C) → C and π2 : C × Picd(C) → Picd(C)

the projections. We define the cohomology class η = π∗1([point]) ∈ H2(C × Picd(C)),

and if δ1, . . . , δ2g ∈ H1(C,Z) ∼= H1(Picd(C),Z) is a symplectic basis, then we set

γ := −

g∑

α=1

(
π∗1(δα)π∗2(δg+α) − π∗1(δg+α)π∗2(δα)

)
.

We have the formula c1(P) = dη + γ, corresponding to the Hodge decomposition of
c1(P). We also record that γ3 = γη = 0, η2 = 0 and γ2 = −2ηπ∗2(θ). On W r

d (C) we have
the tautological rank r + 1 vector bundle M := (π2)∗(P|C×W r

d
(C)). The Chern numbers

of M can be computed using the Harris-Tu formula. By repeatedly applying it, we get
all intersection numbers on W r

d (C) which we need:

Lemma 7.6. If [C] ∈ M21 is Brill-Noether general and ci := ci(M
∨) are the Chern classes of

the dual of the tautological bundle onW 2
17(C), we have the following identities inH∗(W 2

17(C),Z):

[W 2
17(C)] =

θ18

73156608000
.

x1 · ξ =
θ19 · ξ

219469824000
,

x2 · ξ = x3 · ξ = 0, for any ξ ∈ H4(Pic21(C)).

x1x2 · ξ =
θ20

1755758592000
· ξ,

x1x3 · ξ = x2x3 · ξ = 0, for any ξ ∈ H2(Pic21(C)),

x2
1 · ξ =

θ20

1097349120000
· ξ,

x2
2 · ξ = −x1x2 · ξ, x

2
3 · ξ = 0, for any ξ ∈ H2(Pic21(C)),

x3
1 =

θ21

7242504192000
, x3

2 = −
t21

6584094720000
,

x3
3 = x1x2x3 =

θ21

36870930432000
,

x2
1x2 = −x3

2, x1x
2
2 = x2

1x3 = x2x
2
3 = 0, x1x

2
3 = x2

2x3 = −x1x2x3.

The next calculation is a particular case of [F5] Proposition 2.7:

Proposition 7.7. Let [C] ∈ M21 be a Brill-Noether general curve and q ∈ C a general point.
If M denotes the tautological rank 3 vector bundle over W 2

17(C) and ci := ci(M
∨), then one

has the following relations:

(1) [X] = π∗2(c2) − 6ηθ + (74η + 2γ)π∗2(c1) ∈ H4(C ×W 2
17(C)).

(2) [Y ] = π∗2(c2) − 2ηθ + (16η + γ)π∗2(c1) ∈ H4(C ×W 2
17(C)).
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Proof. By Riemann-Roch, if (y, L) ∈ X, then the line bundle M := KC ⊗L∨ ⊗OC(2y) ∈
W 2

17(C) has a cusp at y. We realize X as the degeneracy locus of a vector bundle map
over C ×W 2

17(C). For each pair (y,M) ∈ C ×W 2
17(C), there is a natural map

H0(C,M ⊗O2y)
∨ → H0(C,M)∨

which globalizes to a vector bundle morphism ζ : J1(P)∨ → π∗2(M)∨ over C ×W 2
17(C)

(Note that W 2
17(C) is a smooth 3-fold). Then we have the identification X = Z1(ζ) and

the Thom-Porteous formula gives that [X] = c2
(
π∗2(M)−J1(P

∨)
)
. From the usual exact

sequence over C × Pic17(C)

0 −→ π∗1(KC) ⊗P −→ J1(P) −→ P −→ 0,

we can compute the total Chern class of the jet bundle

ct(J1(P)∨)−1 =
(∑

j≥0

(17η + γ)j
)
·
(∑

j≥0

(57η + γ)j
)

= 1 − 6ηθ + 74η + 2γ,

which quickly leads to the formula for [X]. To compute [Y ] we proceed in a similar
way. We denote by p1, p2 : C × C × Pic17(C) → C × Pic17(C) the two projections, by
∆ ⊂ C × C × Pic17(C) the diagonal and we set Γq := {q} × Pic17(C). We introduce the
rank 2 vector bundle B := (p1)∗

(
p∗2(P) ⊗ O∆+p∗

2
(Γq)

)
defined over C ×W 2

17(C) and we

note that there is a bundle morphism χ : B∨ → (π2)
∗(M)∨ such that Y = Z1(χ). Since

we also have that

ct(B
∨)−1 =

(
1 + (17η + γ) + (17η + γ)2 + · · ·

)
(1 − η),

we immediately obtained the desired expression for [Y ]. �

The next results are simple applications of Grothendieck-Riemann-Roch for the
projection morphism p2 : C × C × Pic17(C) → C × Pic17(C):

Proposition 7.8. Let [C] ∈ M21 and denote by p1, p2 : C × C × Pic17(C) → C × Pic17(C)
the natural projections. We denote by A2 the vector bundle on C × Pic17(C) with fibre at each

point A2(y,M) = H0(C,K⊗2
C ⊗M⊗(−2) ⊗OC(2y)). We have the following formulas:

c1(A2) = −4θ − 4γ − 28η and c2(A2) = 8θ2 + 104ηθ + 16γθ.

Proposition 7.9. Let [C, q] ∈ M21,1 be a general pointed curve an we denote by B2 the vector

bundle on C×Pic17(C) having fibre B2(y,M) = H0
(
C,K⊗2

C ⊗M⊗(−2)⊗OC(y+ q)
)

at each

point (y,M) ∈ C × Pic17(C). Then we have that:

c1(B2) = −4θ + 7η − 2γ and c2(B2) = 8θ2 − 28ηθ + 8θγ.

As a first step towards computing [D22] we determine the δ1 coefficient in its
expression:

Theorem 7.10. Let [C] ∈ M21 be Brill-Noether general and denote by C1 ⊂ ∆1 the associated
test curve. Then σ∗(C1) · c2(F − Sym2(E)) = 4847375988. It follows that the coefficient of δ1
in the expansion of D22 is equal to b1 = 731180268.

Proof. We intersect the degeneracy locus of the map Sym2(E) → F with the surface
σ∗(C1) and use that the vector bundles E and F were defined by retaining the sections
of the genus 21 aspect of each limit linear series and dropping the information coming
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from the elliptic curve. It follows that Zi · c2(F − Sym2(E)) = 0 for 1 ≤ i ≤ 3 (since F
and Sym2(E)) are both trivial along the surfaces Zi), and [X1×X2] ·c2(F−Sym2(E)) = 0

(because c2(F−Sym2(E))|X1×X2
is in fact the pull-back of a codimension 2 class from the

1-dimensional cycleX1, therefore the intersection number is 0 for dimensional reasons).
We are left with estimating the contribution coming from X and write that

σ∗(C1)·c2(F−Sym2(E)) = c2(F|X)−c1(F|X)c1(Sym2E|X)+c21(Sym2E|X)−c2(Sym2E|X).

We are going to compute separately each term in the right-hand-side of this expression.

The surface X appears as the first degeneracy locus of a vector bundle morphism
ζ : J1(P)∨ → π∗2(M)∨ which globalizes the maps

H0(C,M ⊗O2y)
∨ → H0(C,M)∨

for all (y,M) ∈ C ×W 2
17(C). We denote by U := Ker(ζ). In other words, U is a line

bundle on X with fibre

U(y,M) =
H1(C,M ⊗OC(−2y))∨

H1(C,M)∨
=

H0(C,L)

H0(C,L⊗OC(−2y))

over a point (y,M) ∈ X. The Chern class of U can be computed from the Harris-Tu
formula:

c1(U)·ξ|X = −c3(π
∗
2(M)∨−J1(P)∨)·ξ|X = −(π∗2(c3)−6ηθπ∗2(c1)+(74η+2γ)π∗2(c2))·ξ|X ,

for any class ξ ∈ H2(C ×W 2
17(C)), and

c21(U) = c4(π
∗
2(M)∨ − J1(P)∨) = π∗2(c3)(74η + 2γ) − 6π∗2(c2)ηθ.

If A3 denotes the rank 30 vector bundle on X having fibres

A3(y,M) = H0(C,L⊗2) = H0(C,K⊗2
C ⊗M⊗(−2) ⊗OC(4y)),

then there is an injective bundle morphism U⊗2 →֒ A3/A2 and we consider the quotient
sheaf

G :=
A3/A2

U⊗2

We note that since the morphism U⊗2 → A3/A2 vanishes along the curve Γ0 corre-
sponding to pairs (y,M) where M has a base point, G has torsion along Γ0. A straight-
forward local analysis now shows that F|X can be identified as a subsheaf of A3 with
the kernel of the map A3 → G. Therefore, there is an exact sequence of vector bundles
on X

0 −→ A2|X −→ F|X −→ U⊗2 −→ 0,

which over a generic point of X corresponds to the decomposition

F(y,M) = H0(C,L⊗2 ⊗OC(−2y)) ⊕ C · u2,

where u ∈ H0(C,L) is such that ordy(u) = 1 (The analysis above, shows that the se-
quence stays exact over Γ0 as well). Hence

c1(F|X) = c1(A2|X) + 2c1(U)

and c2(F|X) = c2(A2|X)+ 2c1(A2|X)c1(U). Furthermore, we note that the vector bundle

π∗2
(
R1π2∗(P)

)∨
|X

is a subbundle of E|X and we have an exact sequence

0 −→ π∗2
(
R1π2∗(P)

)∨
|X

−→ E|X −→ U −→ 0
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from which we find that c1(E|X) = −θ + π∗2(c1) + c1(U). Similarly, we have that

(20) c2(E|X) =
θ2

2
+ π∗2(c2) − θπ∗2(c1) − c1(U)π∗2(c1) − θc1(U).

It is elementary to check that c1(Sym2E|X) = 8 c1(E|X) and that

c2(Sym2E|X) = 27 c21(E|X) + 9 c2(E|X),

therefore we obtain that

σ∗(C1) · c2(F − Sym2(E)) = c2(A2|X) + c1(A2|X)c1(U
⊗2)−

−8c1(A2|X)c1(E|X) − 8c1(E|X)c1(U
⊗2) + 37c21(E|X) − 9c2(E|X) =

=
(
−120 ηθ +

17

2
θ2 − 16 θγ − 9 π∗2(c2) + (224 η + 32 γ − 33 θ)π∗2(c1) + 37π∗2(c21)

)
· [X]+

+(168 η + 24 γ − 25 θ + 49 π∗2(c1)) · c1(U) + 21c21(U) =

= 1754 ηθπ∗2(c2) + 1386 ηπ∗2(c3) − 2498 ηθπ∗2(c
2
1) + 741 ηθ2π∗2(c1) − 4068 ηπ∗2(c1)π

∗
2(c2)−

−51 ηθ3 + 2738 ηπ∗2(c
3
1),

where the last expression lives inside H4(C × W 2
17(C)). Using [F5] Propositions 2.6,

each term in this sum is evaluated and we find that

σ∗(C1) · c2(F − Sym2(E)) = 691 θ21/1207084032000,

which implies the stated formula for b1. �

Theorem 7.11. Let [C, q] ∈ M21,1 be a suitably general pointed curve and L ∈ W 6
25(C) a

linear series with a cusp at q. Then the multiplication map

Sym2H0(C,L) → H0(C,L⊗2)

is injective. It follows that we have the relation a− 12b0 + b1 = 0.

Proof. We consider the pencil R ⊂ Mg obtained by attaching to C at the point q a pencil
of plane cubics. It is well-known that R · λ = 1, R · δ0 = 12 and R · δ1 = −1, thus the
relation a−12b0 +b1 = 0 would be immediate once we show thatR ·c2(F −Sym2(E)) =
0. This follows because of the way the vector bundles E and F are defined over the

boundary divisor ∆0
1 of M̃22, by retaining the aspect of the limit linear series of the

component of genus 21 and dropping the aspect of the elliptic component. �

Theorem 7.12. Let [C, q] ∈ M21,1 be a Brill-Noether general pointed curve and denote by
C0 ⊂ ∆0 the associated test curve. Then σ∗(C0)·c2(F−Sym2(E)) = 42b0−b1 = 4847375988.
It follows that b0 = 132822768.

Proof. This time we look at the virtual degeneracy locus of the morphism Sym2(E) → F
along the surface σ∗(C0). The first thing to note is that the vector bundles E|σ∗(C0) and
F|σ∗(C0) are both pull-backs of vector bundles on Y . For convenience we denote this
vector bundles also by E and F , hence to use the notation of Proposition 7.4, E|σ∗(C0)) =
ǫ∗(E|Y ) and F|σ∗(C0) = ǫ∗(F|Y ). We find that

σ∗(C0) · c2(F − Sym2(E)) = c2(F|Y ) − c1(F|Y ) · c1(E|Y ) + c21(E|Y ) − c2(E|Y )
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and like in the proof of Theorem 7.10, we are going to compute each term in this ex-
pression. We denote by V := Ker(χ), where χ : B∨ → π∗2(M)∨ is the bundle mor-
phism on C ×W 2

17(C) whose degeneracy locus is Y and which globalizes all the maps
H0(C,Oy+q(M))∨ → H0(C,M)∨. Thus the kernel bundle V is a line bundle on Y with
fibre

V (y,M) =
H0(C,L)

H0(C,L⊗OC(−y − q))
,

over each point (y,M) ∈ Y , and where L := KC ⊗M∨⊗OC(y+ q) ∈W 6
25(C). By using

again the Harris-Tu Theorem, we find the following formulas for the Chern numbers of
V :

c1(V ) · ξ|Y = −(c3(π
∗
2(M)∨ −B∨) · ξ|Y ) = (π∗2(c3) + π∗2(c2)(16η + γ) − 2π∗2(c1)ηθ) · ξ|Y ,

for any class ξ ∈ H2(C ×W 2
17(C)), and

c21(V ) = c4(π
∗
2(M)∨ − B∨) = π∗2(c3)(16η + γ) − 2π∗2(c2)ηθ.

Recall that we have introduced in Proposition 7.9 the rank 28 vector bundle B2 over
C ×W 2

17(C) with fibre B2(y,M) = H0(C,L⊗2 ⊗OC(−y − q)). We claim that one has an
exact sequence of bundles over Y

(21) 0 −→ B2|Y −→ F|Y −→ V ⊗2 −→ 0.

If B3 is the rank 30 vector bundle on Y with fibres

B3(y,M) = H0(C,L⊗2) = H0
(
C,K⊗2

C ⊗M⊗(−2) ⊗OC(2y + 2q)
)
,

we have an injective morphism of sheaves V ⊗2 →֒ B3/B2 locally given by

v⊗2 7→ v2 mod H0(C,L⊗2 ⊗OC(−y − q)),

where v ∈ H0(C,L) is any section not vanishing at q and y. Then F|Y is canonically
identified with the kernel of the projection morphism

B3 →
B3/B2

V ⊗2

and the exact sequence (21) now becomes clear. Therefore c1(F|Y ) = c1(B2|Y ) + 2c1(V )
and c2(F|Y ) = c2(B2|Y ) + 2c1(B2|Y )c1(V ). Reasoning along the lines of Theorem 7.10,
we also have an exact sequence

0 −→ π∗2
(
R1π2∗(P)

)∨
|Y

−→ E|Y −→ V −→ 0

and from this we obtain that

c1(E|Y ) = −θ + π∗2(c1) + c1(V )

and

c2(E|Y ) =
θ2

2
+ π∗2(c2) − θπ∗2(c1) − θc1(V ) + c1(V )π∗2(c1).

All in all, we can write the following expression for the total intersection number:

σ∗(C0) · c2(F − Sym2(E)) = c2(B2|Y ) + c1(B2|Y )c1(V
⊗2)−

−8c1(B2|Y )c1(E|Y ) − 8c1(E|Y )c1(V
⊗2) + 37c21(E|Y ) − 9c2(E|Y ) =

=
(17

2
θ2 + 28ηθ − 8θγ − 9π∗2(c2) + (16γ − 33θ − 56η)π∗2(c1) + 37π∗2(c21)

)
· [Y ]+

+(49 π∗2(c1) − 25 θ − 42 η + 12 γ)c1(V ) + 21c21(V ) =
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= 428 ηθπ∗2(c2) − 536 ηθπ∗2(c
2
1) + 168 ηθ2π∗2(c1) − 984 ηπ∗2(c1)π

∗
2(c2)+

+378ηπ∗2(c3) − 17 ηθ3 + 592ηπ∗2(c31),

and using once more [F5] Proposition 2.6, we get that

42b0 − b1 = 509θ21/5364817920000.

Since we already know the value of b1 and a− 12b0 + b1 = 0, this allows us to calculate
a and b0. �

End of the proof of Theorem 7.1. We write D22 ≡ aλ−
∑11

j=0 bjδj . Since

a

b0
=

17121

2636
≤

71

10
,

we are in a position to apply Corollary 1.2 from [FP] which gives the inequalities bj ≥ b0
for 1 ≤ j ≤ 11, hence s(D22) = a/b0 < 13/2. �
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[Hu] A. Hurwitz, A, Über Riemann’sche Flächen mit gegebenen Verzweigungspunkten, Mathematische An-

nalen 39 (1891), 1- 61.
[La1] R. Lazarsfeld, Brill-Noether-Petri without degenerations, Journal Differential Geometry 23 (1986), 299-

307.
[La2] R. Lazarsfeld, A sampling of vector bundle techniques in the study of linear series, in: Lectures on Riemann

Surfaces, (M. Cornalba, X. Gomez-Mont, A. Verjovsky eds.), World Scientific 1989, 500-559.
[Log] A. Logan, The Kodaira dimension of moduli spaces of curves with marked points, American Journal Math-

ematics 125 (2003), 105-138.
[K] S. Kondo, On the Kodaira dimension of the moduli space of K3 surfaces, Compositio Mathematica 116

(1999), 111-117.
[Kh] D. Khosla, Moduli spaces of curves with linear series and the Slope Conjecture, arXiv:0704.1340.
[GIT] D. Mumford and J. Fogarty, Geometric Invariant Theory, Ergenbisse der Mathematik und ihrer Gren-

zgebiete 34 (1982), Springer.
[M1] D. Mumford, Picard groups of moduli problems, in: Proceedings of a Conference in Arithmetic Alge-

braic Geometry, Harper and Row 1965.
[M2] D. Mumford, Stability of projective varieties, L’Enseignement Math. 23 (1977), 39-110.
[M3] D. Mumford, Problems of present day mathematics -VI: Algebraic geometry, in: Mathematical develop-

ments arising from Hilbert problems, Proc. Symposia Pure Math. 28 (1976).
[M4] D. Mumford, Curves and their Jacobians, The University of Michigan Press, Ann Arbor 1975.
[M5] D. Mumford, On the Kodaira dimension of the Siegel modular variety, in: Algebraic Geometry-open

problems, Lecture Notes Mathematics 997 348-375, Springer.
[M6] D. Mumford, Towards an enumerative geometry of the moduli space of curves, in: Arithmetic and Geom-
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