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1 Introduction

The course is an elementary introduction to my experimental work in progress
with Tom Coates, Sergei Galkin, Vasily Golyshev and Alexander Kasprzyk
(http://coates.ma.ic.ac.uk/fanosearch/), funded by EPSRC. I owe a special
intellectual debt to Vasily, who already several years ago insisted that we
should pursue these themes.

I am an algebraic geometer. In the Fall 1988, my first “quarter” in grad-
uate school at the University of Utah, I attended lectures by Mori on the
classification of Fano 3-folds. (The Minimal Model Program classifies pro-
jective manifolds in three classes of manifolds with negative, zero and positive
“curvature:” Fano manifolds are those of positive curvature.)

I learned from Mori that there are 105 (algebraic) deformation families
of Fano 3-folds. I hope that what I tell you in this course is interesting from
several perspectives, but one source of motivation for me is to get a picture of
the classification of Fano 4-folds: how many families are there? Is it 100,000
families; is it 1,000,000 or perhaps 10,000,000 families? If we are seriously
to do algebraic geometry in ≥ 4 dimensions, there is a dearth of examples:
what does a “typical” Fano 4-fold look like?

∗These notes reproduce almost exactly my 4 lectures at the Summer School on “Moduli
of curves and Gromov–Witten theory” held at the Institut Fourier in Grenoble during
20th June–8th July 2011. I want to thank the organisers for a truly outstanding school
and for the extremely lovely atmosphere. These notes were written in haste: please let
me know if you found mistakes. You will find an updated version on my teaching page
http://www2.imperial.ac.uk/∼acorti/teaching.html
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Topics

1 I give a short discussion of local systems on P1 \ S (where S ⊂ P1 is a
finite set) and introduce the notion (due to Vasily Golyshev) of extremal local
system: that is, a local system that is nontrivial, irreducible, and of smallest
possible ramification.

2 Given a Laurent polynomial f : C×n → C, I explain how to construct the
Picard–Fuchs differential operator Lf and its natural solution, the principal
period. By definition, f is extremal if the local system of solutions of Lf is
extremal. I explain the general theory and give some examples. In particular,
we discovered an interesting class of Laurent polynomials where the Picard–
Fuchs local systems has (conjecturally and experimentally) low ramification
, called Minkowski polynomials.

3 I briefly summarize quantum cohomology of a Fano manifold X and
quick-and-dirty methods of calculation. Much of the structure is encoded
in a differential operator Q̂X and power series solution ÎX . I motivate with
examples the conjecture that Q̂X is of small (often minimal) ramification.

4 A Fano manifold X is mirror-dual to a Laurent polynomial f if Q̂X =
Lf . This is a very weak notion of mirror symmetry: to a Fano manifold
X there correspond (infinitely) many f . I demostrate how to derive the
classification of Fano 3-folds (Iskovskikh, Mori–Mukai) from the classification
of 3-variable Minkowski polynomials. I outline a program to use these ideas
in 4 dimensions.

References

This document contains no references. This is due in part to the fact that I
am presenting a fresh new science, and partly to the fact that the notes are
written in haste and I was lazy when it comes to history, attribution, and
detail.

Let me at least here acknowledge my greater intellectual debts. The def-
inition of extremal local systems (with the name “low-ramified local sys-
tems”) and extremal Laurent polynomials (with the name “special Lau-
rent polynomials”) appeared first in [Vasily Golyshev, Spectra and Strain,
arXiv:0801.0432 (hep-th)]. The view of mirror symmetry advocated here
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notes is modelled on [Viktor Przyjalkowski, On Landau–Ginzburg models for
Fano varieties, arXiv:0707.3758 (math.AG)]. The webpage of Sergei Galkin
http://member.ipmu.jp/sergey.galkin/ contains a substantial amount of
relevant material. All the data can be found on our group research blog at
http://coates.ma.ic.ac.uk/fanosearch/.

2 Extremal Local Systems

A local system on a (topological) manifold B is a locally free sheaf of Q-
vector spaces; equivalently, it is a representation of the fundamental group
ρ : π1(B, b) → GLr(Q). (Most of the time we actually work with local systems
of free Z-modules).

Let C be a compact Riemann surface, S ⊂ C a finite set, and V be
a local system on U = C \ S. Below I denote by x ∈ U a point and by
j : U = C \ S ↪→ C the natural (open) inclusion.

Definition 2.1. The ramification of V is:

rf V =
∑
s∈S

dim(Vx/VTs
x )

(where x ∈ C is a generic point and Ts is the monodromy around s ∈ S.)
(V. Golyshev) If C = P1, I say that V is extremal if it is irreducible,

nontrivial, and rf V = 2 rk V.

Lemma 2.2 (Euler’s formula). Let V as above be a local system on U = C\S,
where C is a Riemann surface of genus g. Then

rf V + (2g − 2) rk V = −χ(C, j?V).

Proof. Choose a cellular decomposition of C such that S ⊂ V and V|Df
is

trivial for every cell Df , f ∈ F . We get a resolution of V:

0 → V →
⊕

F

Qr
f →

⊕
E

Qr
E →

⊕
V \S

Qr
v → 0

which implies

χ(C,Rj?V) = χ(U,V) =
(
V − E + F − |S|

)
r =

(
2− 2g − |S|

)
rk V
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On the other hand the short exact sequence of complexes:

0 → j?V → Rj?V →
⊕
s∈S

H1
(
∆ε(s)

×,V
)
[−1] → 0

gives χ(C,Rj?V) = χ(C, j?V)−
∑

s∈S dim VTs
x , so, combining:

χ(C, j?V) = (2g − 2) rk V +
∑
s∈S

dim
(
Vx/VTs

x

)
.

Remark 2.3. • If V is nontrivial irreducible, then

H0(C, j?V) = Vπ1(CrS,x)
x = (0)

and, similarly, H2(C, j?V) = H0
(
C, j!(V∗)

)∗
= (0). Thus, if C = P1

and V is nontrivial irreducible, then −χ(P1; j?V) = h1(P1; j?V) ≥ 0.
Thus, extremal means: smallest ramification. From the point of view
of just topology, this is a very natural class of objects to consider. (In
general it is also useful to look at local systems of small ramification.)

• The central theme of this lectures is the different ways that extremal
local systems arise naturally in geometry. I hope to convince you that
extremal local systems are interesting in themselves.

• My local systems support variations of (polarized, pure) Hodge struc-
tures; in particular, they are always polarised (Or, Sp2r).

We expect extremal polarised pure motivic sheaves to be rigid objects; in
particular, we expect them always to be defined over number fields. Here is
a very natural question that nobody, it seems, has considered before.

Problem 2.4. Classify extremal local systems topologically. Classify ex-
tremal polarised pure motivic sheaves.

3 Extremal Laurent Polynomials

By definition, a Laurent polynomial is a regular algebraic map (morphism)
f : C×n → C, that is, an element of the polynomial ring C[x1, x

−1
1 , . . . , xn, x

−1
n ]

(where x1, . . . , xn are the standard co-ordinates on C×n).
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Definition 3.1. Let f : C×n → C be a Laurent polynomial. The principal
period of f is:

π(t) =
( 1

2π i

)n
∫
|x1|=···=|xn|=1

1

1− tf(x1, . . . , xn)

d x1

x1

· · · d xn

xn

Theorem 3.2. There principal period satisfies a ordinary differential equa-
tion L · π(t) ≡ 0 where L ∈ C〈t,D〉 (D = t d

dt
) is a polynomial differential

operator1.

Definition 3.3. A Picard–Fuchs operator Lf ∈ C〈t,D〉 of f is a generator
(uniquely defined up to multiplication by a constant) of the annihilator ideal
of the principal period π(t).

Definition 3.4 (V. Golyshev). f is an Extremal Laurent Polynomial (ELP)
if the local system SolLf of solutions of the ODE Lf · () ≡ 0 is extremal.

Remark 3.5. • The proof of Theorem 3.2 makes it clear that SolLf is
a summand of grW

n−1R
n−1f! ZC×n .

• Consider a semistable rational elliptic surface f : X → C. In general
f has 12 singular fibres; Beauville classified surfaces with the smallest
number, 4, of singular fibres. These surfaces of Beauville can all be
realised as extremal Laurent polynomials.

• Intuitively, a Laurent polynomial is extremal if it is maximally degen-
erate in the sense that as many critical values co-incide as possible.
For this reason, given a polytope P , we expect that there are (at most)
finitely many ELPs f with Newt (f) = P .

How to compute the Picard–Fuchs operator and the
ramification in practice

1 Computing with the residue theorem gives π(t) =
∑
cmt

m where cm =
coeff1f

m is the period sequence. Indeed, expanding π(t) as a power series in

1Eventually I will add a proof of this fact relying on the combinatorics of Newton(f)
also providing an estimate of the degree (in t and D of the operator.)
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t and applying the residue theorem n times:

π(t) =
( 1

2π i

)n
∫
|x1|=···=|xn|=1

1

1− tf

d x1

x1

· · · d xn

xn

=

=
∞∑

m=0

tm
( 1

2π i

)n
∫
|x1|=···=|xn|=1

fm d x1

x1

· · · d xn

xn

=
∞∑

m=0

cmt
m . (1)

In practice, the computation of coeff1 f
m, say for 1 ≤ m ≤ 600, is very

expensive.

2 Consider a polynomial differential operator L =
∑
tkPk(D) where Pk(D) ∈

C[D] is a polynomial in D; then L · π ≡ 0 is equivalent to the recursion rela-
tion

∑
Pk(m− k)cm−k = 0. In practice, to compute Lf one uses knowledge

of the first few periods and linear algebra to guess the recursion relation.

3 The computation of rf(SolLf ) is an algorithm built on standard Fuchsian
theory. (I don’t have the time to explain this.)

Example 3.6. Consider f(x, y) = x+ y + 1
xy

. It is very easy to see that:

π(t) =
∑
m≥0

(3m)!

(m!)3
t3m

it is best to work with u = t3; now π(u) =
∑
cmu

m where the coefficients cm
satisfy the recursion relation:

n2cn − 3(3n− 1)(3n− 2)cn−1 = 0

and, by what we said, this is equivalent to:[
D2 − 3u(3D + 1)(3D + 2)

]
π(u) = 0 .

Studying this ODE, we see that f is extremal.

Example 3.7. Consider f(x, y) = x+ xy + y + 1
xy

. In this case

Lf = 8D2 − tD − t2(5D + 8)(11D + 8)−
− 12t3(30D2 + 78D + 47)− 4t4(D + 1)(103D + 147)−

− 99t5(D + 1)(D + 2) .

Here it is possible to see that rf(SolLf ) = 5 = 2 rk(SolLf ) + 1 so the poly-
nomial f is not extremal. In fact, there are no ELPs with this Newton
polytope.
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Research Program, Part I (a rather idealised form)

Construct examples of ELP in 3, 4 and 5 variables systematically by com-
puter. In some cases, classify all ELP. More precisely:

• Fix a lattice polytope P . Classify all ELP f with Newt (f) = P .

• Do this for a natural class of polytopes, for instance reflexive polytopes.
(Kreuzer and Skarke show that there are 4, 319 reflexive polytopes in
3 dimensions and more than 473 million in 4 dimensions.)

Minkowski polynomials

I describe (for simplicity, in 2 and 3 variables only) a class of Laurent poly-
nomials that we discovered and christened “Minkowski polynomials” (MP)
because they have something to do with Minkowski decomposition. This
class is especially nice because:

• MPs have (experimentally, conjecturally) low ramification.

• In our experience, all Minkowski polynomials mirror a Fano manifold.

By a lattice polygon we always mean a (possibly degenerate) polytope
P ⊂ Rn of dimension ≤ 2. Then P ∩Zn is an affine lattice whose underlying
lattice we denote by Lattice(P ).

Definition 3.8. • A lattice polygon P ⊂ R2 is admissible if Int(P ) ∩
Z2 = ∅.

• A lattice polytope P ⊂ Rn is reflexive if one of the two equivalent
conditions hold: (a) the polar polytope

P ∗ = {f ∈ Rn ∗ | 〈f, v〉 ≥ −1∀v ∈ P}

is also a lattice polytope, or (b) IntP ∩ Zn = {0}.

Definition 3.9. Let Q ⊂ Rn be a lattice polygon. A lattice Minkowski
decomposition (LMD) of Q is:

• a Minkowski decomposition Q = R+S into lattice polygons R, S, such
that:

• Lattice(Q) = Lattice(R) + Lattice(S).
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The Minkowski ansatz Fix a reflexive polytope P ⊂ Rn of dimension
≤ 3. We describe a recipe to write down Laurent polynomials

f =
∑

m∈P∩Zn

cm xm

with Newton(f) = P . I just need to tell you how to choose the coefficients
cm. In all cases, I always take c0 = 0. (This is an over-all normalization
choice that corresponds to the fact that p1 = 0 in the quantum period, see
below.)

If P is a (reflexive or admissible) polygon, I just need to tell you how to
construct the edge terms. An edge E of P lattice Minkowski decomposes into
a sum of k copies of the standard unit interval [0, 1] and the corresponding
term is fE = (1 + x)k.

If P is a 3-tope, then I treat the edges as above. Next I need to give
a recipe for the facet terms fF , F ⊂ P a facet. First lattice Minkowski
decompose each facet into irreducibles

F = F1 + · · ·+ Fr .

I say that the decomposition is admissible if all Fi are admissible. Given an
admissible decomposition of every facet of P , the recipe assigns a MP. The
facet term corresponding to F is

fF =
∏

fFi

where fFi
is given as above using the recipe for admissible polygons.

MPs in 2 variables There are 16 reflexive polygons (it is a good exercise
to derive this list for yourself). All support one MP. This gives 16 MPs
but only 10 period sequences. These are in 1-to-1 correspondence with del
Pezzo surfaces of degree ≥ 3. The 10 period sequences are extremal with two
exception: the first we already met in Example 3.7 (mirror of F1), the other
is:

Example 3.10. f(x, y) = x+ y + 1
x

+ 1
y

+ 1
xy

(mirror of dP7). Here

Lf = 7D2 + tD(31D − 3)− t2(85D2 + 238D + 112)−
− 2t3(358D2 + 785D + 425)− 2t4(D + 1)(669D + 970)−

− 731t5(D + 1)(D + 2) .

and rf(SolLf ) = 5 = 2 rk(SolLf ) + 1.
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MPs in 3 variables In 3 variables, we have shown the following facts:

• There are 4,319 reflexive 3-topes;

• they have 344 distinct facets, and these have 79 lattice Minkowski ir-
reducible pieces;

• of these, the admissible ones are An-triangles for 1 ≤ n ≤ 8.

• There are thousands of MPs but only 165 period sequences. We are
confident that they are all extremal.

Example 3.11. Consider the reflexive polytope in R3 with vertices: 1 0 0 −2 −3 −1
0 1 0 0 −1 −1
0 0 1 −1 −1 1


This is polytope 121 in the Kreuzer–Skarke PALP list:

The pentagonal facet (as pictured, this is the base) has two Minkwoski
decompositions:

=+ = +

and so polytope 121 supports two Minkowski polynomials:

f1 = x+ y + z + 3x−1 + x−1y−1z + x−2z−1 + 2x−2y−1 + x−3y−1z−1

f2 = x+ y + z + 2x−1 + x−1y−1z + x−2z−1 + 2x−2y−1 + x−3y−1z−1

The principal periods associated to f1 and f2 are:

π1(t) = 1 + 6t2 + 90t4 + 1860t6 + 44730t8 + 1172556t10 + · · ·
π2(t) = 1 + 4t2 + 60t4 + 1120t6 + 24220t8 + 567504t10 + · · ·
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The corresponding Picard–Fuchs operators are:

L1 = 144t4D3 + 864t4D2 + 1584t4D − 40t2D3 + 864t4−
− 120t2D2 − 128t2D +D3 − 48t2

L2 = 128t4D3 + 768t4D2 + 1408t4D + 28t2D3 + 768t4 + 84t2D2+

+ 88t2D −D3 + 32t2

In 4 variables, there are > 473 million reflexive polytopes. We have
inherited the database of Maximilian Kreuzer and we are now in the process
of making a database of facets in preparation for computing their lattice
Minkowski decompositions.

Not all ELP are MP

Consider the pictured polygon. This is one of the smallest facets for which

· · ·

· · ·

· · ·

· · ·

· · ·

•

•

•

•

••

(1,0)

(2,4)

(0,0)
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

the Minkowski ansatz has nothing to say. Consider the Laurent polynomial
with this Newton polygon given by:

f = 1 + x+ 2xy2 + x2y4 + axy

For generic a the completion of f = 0 is a nonsingular curve of genus 1; it
becomes singular exactly when a = ±4 and in this case the geometric genus
of the completion of f = 0 is zero. Let us take a = 4 and use this as a new
“puzzle piece” for the Minkowski ansatz.
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Consider the 3-dimensional reflexive polytope with PALP id 9. This has
four faces: two smooth triangles, one A2-triangle, and one face equal to the
polygon shown above. The corresponding Laurent polynomial is:

F = x+ y + z + x−4y−2z−1 + 2x−2y−1 + 4x−1

It has period sequence:

1, 0, 8, 0, 120, 0, 2240, 0, 47320, 0, . . .

The Picard–Fuchs operator is:

512t4D3+3072t4D2+5632t4D−48t2D3+3072t4−144t2D2−160t2D+D3−64t2

It can be seen that f is extremal, but it does not mirror any Fano 3-fold.
(One can do the same thing with a = −4.)

4 Fano Manifolds and quantum cohomology

The quantum period

Definition 4.1. A complex projective manifold Xn of dimension n is a Fano
manifold if the anticanonical line bundle −KX = ∧nTX = Ωn,∨

X is ample.

Remark 4.2. • If n = 2 X is called a del Pezzo surface. It is well-known
that a del Pezzo surface is isomorphic to P1 × P1 or the blow up of P2

in ≤ 8 general points.

• It is known that there are precisely 105 deformation families of nonsin-
gular Fano 3-folds. There are 17 families with b2 = 1 (Fano, Iskovskikh)
and 88 families with b2 ≥ 2 (Mori–Mukai).

I state a well-known theorem of Mori that plays a crucial role in what
follows:

Theorem 4.3. Let X be a Fano manifold. Denote by NEX ⊂ H2(X; R) the
Mori cone of X: that, is, the covex cone generated by (classes of) algebraic
curves C ⊂ X. Then NEX is a closed rational polyhedral cone.
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When X is Fano, denote by M0,k,m the moduli space of stable morphisms
f : (C, x1, . . . , xk) → X where C is a nodal curve of genus 0 with k marked
points x1, . . . , xk, and deg f ?(−KX) = m. This moduli space has virtual
dimension m− 3 + n+ k. Here we are mainly interested in M0,1,m and the
(unique) evaluation morphism

em : M0,1,m → X

Denote by ψ the (first Chern class of) the line bundle on M0,1,m of cotangent
lines : the fibre of this line bundle at f : (C, x) → X is the fibre of ωC at x.

Definition 4.4. The quantum period ofX is the power seriesK(t) =
∑
pmt

m

where pm =
∫
M0,1,m

ψm−2e?
m(pt). The sequence pm is the quantum period

sequence.

Theorem 4.5. The quantum period satisfies a ordinary differential equation
Q · KX(t) ≡ 0 where Q ∈ Z〈t,D〉 (D = t d

dt
) is a polynomial differential

operator.

Proof. In short: our quantum period KX(t) is a stripped-down version of
the small J-function of quantum cohomology. The result then follows from
elementary properties of small quantum cohomology. I now explain all this
in greater detail.

In what follows we denote by M0,k,β the moduli space of maps of degree
β ∈ NEX ∩ H2(X,Z). Recall that the small quantum product a ∗ b of
(even degree) cohomology classes a, b ∈ Hev(X; C) is defined by the following
formula, which is to hold for all c ∈ Hev(X; C):

(a ∗ b, c) = (a ∪ b, c) +
∑

0 6=β∈NE X∩H2(X;Z)

qβ〈a, b, c〉0,3,β

where (a, b) =
∫

X
a ∪ b is the Poincaré inner product and

〈a, b, c〉0,3,β =

∫
M0,3,β

ev?
1(a) ∪ ev?

2(b) ∪ ev?
3(c)

is the 3-point correlator. The Frobenius manifold structure is equally well
encoded in an integrable algebraic connexion ∇ on:

• the trivial bundle with fibre Hev(X; C) on
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• the torus T = Spec C[H2(X,Z)].

In other words T is the torus with character group Homgroups(T,C×) =
H2(X; Z), co-character group Homgroups(C×,T) = H2(X; Z), and group of
C-valued points T(C) = C× ⊗H2(X; Z). Note that Lie T = H2(X; C). The
connexion ∇ is defined as follows: if ψ : T → H2(X; C) and X ∈ Lie T =
H2(X; C):

∇Xψ = X · ψ −X ∗ ψ .

The fact that this connexion is algebraic follows from the fact that quantum
cohomology is graded and that −KX > 0 on NEX. The fact that the
connexion is integrable (flat) is fundamental and it means that the action
of Lie T on M = {ψ : T → Hev(X; C)} extends to an action of the ring
D of differential operators on T: in other words, M is a D-module, called
the quantum D-module. In general, out of a D-module, we can make two
local systems: the local system HomD(O,M) of flat sections of M , and the
local system HomD(M,O) of solutions of M . Sections of these local systems
tautologically satisfy algebraic PDEs.

Recall that the (small) J-function of X is defined as follows:

JX(q) = 1 +
∑

β∈NEX∩H2(X;Z)

qβJβ, where Jβ = evβ
?

1

1− ψ

(here evβ : M0,1,β denotes the unique evaluation map). It is well-known that
JX(q) is a solution of the quantum D-module and therefore it tautologically
satisfies an algebraic PDE. Note that JX(q) is cohomology valued but it
makes sense to take its degree-0 component J0

X(q) ∈ H0(X,C).
Finally, the anticanonical class −KX ∈ H2(X; Z) is a co-character of T,

that is, it “is” a group homomorphism which I denote κ : C× → T, and it is
clear from the definition that KX(t) = J0

X ◦ κ(t) (here t is the co-ordinate
function on C×), and the discussion above makes it clear that it satisfies an
algebraic ODE.

Definition 4.6. The quantum differential operator of X is the generator
QX ∈ Z〈t,D〉 of the annihilator ideal of the quantum period K(t).

How to compute QX in practice In practice one starts by fixing a basis
{T a} of Hev(X; Z) with T 0 = 1 the fundamental class. Let M = M(t)
be the matrix of quantum multiplication by −KX in this basis, written as a
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function on C× by composing with κ : C× → T. Next consider the differential
equation on C× {

DΨ(t) = ΨM

Ψ(0) = I

for Ψ: C× → End
(
Hev(X,C)

)
a matrix. (Note: tautologically, the differen-

tial κ? : Lie C× → Lie T sends D = t d
dt

to −KX ∈ H2(X; C) = Lie T.) Then
the first column of Ψ is JX ◦ κ(t); the first entry of the first column is our
quantum period KX(t).

Remark 4.7. It is important that the matrix Ψ is on the left of M ; otherwise
we would be computing the flat sections of the quantum D-module. We wish
to compute the solutions instead (which is the same as the flat sections of
the dual D-module).

Example 4.8. Consider nowX = P2 with cohomology ring C[P ]/P 3. Choose
the basis 1,−K = 3P,K2 = 9{pt} for the cohomology. The matrix of quan-
tum multiplication by −K, in this basis, is:

M =

0 0 27t3

1 0 0
0 1 0


where the coefficient of t3 in the upper right corner of the matrix is calculated
as a nontrivial Gromov–Witten number:

〈−K ∗ (K2), pt〉0,3,[line] = 3〈K2, pt〉0,2,[line] = 27〈pt, pt〉0,2,[line] = 27 .

Next we consider the system

D(ψ0, ψ1, ψ2) = (ψ0, ψ1, ψ2)M

The column ψ0 satisfies the differential operator

QX = D3 − 27t3 with solution: K(t) =
∞∑

m=0

tm
1

(m!)3
.
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The regularized quantum period and Mirror symmetry

The previous example suggests the following definitions:

Definition 4.9. The regularised quantum period is the Fourier–Laplace trans-
form K̂(t) =

∑
(m!)pmt

m of the quantum period K(t).

The regularised quantum differential operator of X is the generator Q̂X ∈
Z〈t,D〉 of the annihilator ideal of the regularised quantum period K̂X(t).

Expectation 4.10. We hope that V = Sol Q̂X has low ramification. More

precisely, we hope that rf V ≤ 2 rk V + dimH
n
2

, n
2

prim, the primitive cohomology
of Hodge type n/2, n/2. (In particular, when dimX is odd, we hope that V
is extremal.)

The following is a very weak form of Mirror symmetry for Fano manifolds.

Definition 4.11. The Laurent polynomial f is mirror-dual to the Fano man-
ifold X if π(t) = K̂(t) (equivalently, Lf = Q̂X).

Remark 4.12. It is well-known that QX has a pole of order 2 (an irregular
singularity) at ∞ and regular singularities elsewhere. On the other hand,
by a theorem of Deligne, Picard–Fuchs operators have regular singularities
everywhere on P1: hence, regularisation is necessary before a comparison
is possible. Alternatively, we could have decided to compare the quantum
period directly with the oscillating integral of f . If we had done so, however,
we would have missed the low ramification property.

Warning 4.13. This is a very weak notion of mirror symmetry. To a Fano
manifold X there correspond infinitely many mirror Laurent polynomials f .

What we’ve done: Fano 3-folds

Definition 4.14. A Minkowski period sequence it the period sequence {cm}
of a Minkowski polynomial f . Let Lf =

∑D
k=0 t

kPk(D)Pk ∈ Z〈t,D〉 be the
corresponding Picard–Fuchs operator. The period sequence is of orbifold type
if Lf (0) = P0(D) has some nonintegral roots. Otherwise Lf (0) has integral
roots and we say that the period sequence is of manifold type.

• We made a list of all Minkowski polynomials in 3 variables supported
on one of the 4,319 reflexive 3-topes. In 3 variables, there are 165 period
sequences.
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• In most cases, we were able to calculate the Minkowski Picard–Fuchs
operators and local monodromies and we found that they are all ex-
tremal.

• Of the 165 period sequences, 67 are of orbifold type. The other 98
are in one-to-one correspondence with 98 of the 105 families of Fano
3-folds.

Remark 4.15. For the remaining 7 families, we know mirror Laurent poly-
nomials whose Newton polytopes are nonreflexive.

Research Program, Part II (a rather idealised form)

• Make a list of all Minkowski polynomials in 4 variables (or, perhaps, a
larger meaningful class of Laurent polynomials) and calculate the (first
few hundred terms of their) period sequences.

• Compute the Minkowski Picard–Fuchs operators and verify that they
are of low ramification.

• Use the list of Minkowski period sequences as a (partial) directory of
Fano 4-folds: the first few (say 10) terms of the period sequence are
like a phone number of a residence that may be occupied by a Fano
4-fold.

• Extract information (Hilbert function, Chern numbers, Betti cohomol-
ogy) about the (potential) Fano 4-folds from the Picard–Fuchs opera-
tors.

• Construct the Fano 4-folds as smoothings of the singular toric Fano
4-fold with fan polytope Newton(f). (This ought to become clearer
once we make contact with the Gross–Siebert program.)

Methods of Calculation

I explain how to calculate the quantum period of a Fano complete intersection
in a toric manifold using the quantum Lefschetz theorem of Givental and
Coates–Givental.
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Toric varieties For us, a toric variety is a GIT quotient:

X = Cr//χ(C×)b

where (C×)b acts via a group homomorphism ρ : (C×)b → (C×)r, where (C×)r

acts on Cr via its natural diagonal action. The group homomorphism ρ is
given dually by a b× r integral matrix:

D = (D1, . . . Dr) : Zr → Zb

that we call the weight data of the toric variety X.
The weight data alone does not determine X: it is necessary to choose a

(C×)b-linearized line bundle L on Cr: this choice is equivalent to the choice of
a character χ ∈ Zb of (C×)b: denoting by Lχ the corresponding line bundle,
we have

H0(Cr;Lχ)(C×)b

=
{
f ∈ C[x1, . . . , xr] | f(λx) = χ(λ) f(x) ∀λ ∈ (C×)b

}
.

Having made this choice, the set of stable points is

U s(χ) =
{
a ∈ Cr | ∃N � 0, ∃f ∈ H0(Cr;Lχ)(C×)b

, f(a) 6= 0
}
.

The set of χ ∈ Zb for which U s(χ) 6= ∅ generates a rational polyhedral
cone in Rb with a partition in locally closed rational polyhedral chambers
defined such that U s(χ) depends only on the chamber containing χ. We
always choose χ in the interior of a chamber of maximal dimension, and then
we define X = U s(χ)/(C×)b. We have an identification Zb = H2(X; Z) =
Pic(X) and the chamber containing χ is then identified with the ample cone
AmpX. The appropriate Euler sequence shows that −KX =

∑r
i=1Di.

Theorem 4.16 (Givental). Let X be a toric Fano manifold. Then

KX(t) =
∑

k∈Zb∩NE X

t−KX ·k 1

(D1 · k)! · · · (Dr · k)!
.

Theorem 4.17 (Givental). Let F be a Fano manifolds and L1, . . . , Lc ∈
Nef F . Consider:

X = (f1 = · · · = fc = 0) ⊂ F, where fi ∈ H0(F ;Li) .

Assume:
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• X is nonsingular of the expected codimension c = codimX F , and

• A = −(KX +
∑c

i=0)Li) ∈ AmpF .

Then KX(t) = exp(−a1t)IX(t) where

IX(t) =
∑

k∈Zb∩NE F

tA·k
(L1 · k)! · · · (Lc · k)!

(D1 · k)! · · · (Dr · k)!
= 1 + a1t+O(t2) .

5 Three examples

I give three examples illustrating the program in 3 dimensions.

Example 1

Proposition 5.1. The period π1(t) of the MP f1 of Example 3.11 is the
regularized quantum period of the Fano 3-fold P1 × P1 × P1.

Proof. J(t) =
∑

k,l,m≥0
t2k+2l+2m

k!k!l!l!m!m!
hence:

Ĵ(t) =
∑

k,l,m≥0

t2k+2l+2m (2k + 2l + 2m)!

k!k!l!l!m!m!

= 1 + 6t2 + 90t4 + 1860t6 + 44730t8 + 1172556t10 + · · ·

Example 2

Proposition 5.2. The period π2(t) of the MP f2 of Example 3.11 is the
regularized quantum period of the Fano 3-fold W , where W is a divisor of
bidegree (1, 1) in P2 × P2.

Proof. Quantum Lefschetz gives J(t) =
∑

k,l≥0 t
2k+2l (k+l)!

k!k!k!l!l!l!
hence:

Ĵ(t) =
∑
k,l≥0

t2k+2l (k + l)!(2k + 2l)!

k!k!k!l!l!l!

= 1 + 4t2 + 60t4 + 1120t6 + 24220t8 + 567504t10 + 14030016t12 + · · ·
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Example 3

Consider now the polytope with vertices: 1 0 0 0 0 1 −1 −1
0 1 1 −1 −1 0 1 −2
0 0 2 −2 0 −1 1 −2


This is polytope 2093 in the Kreuzer–Skarke PALP list. It supports a unique
Minkowski polynomial:

f = yz2 + 2yz + x+ y + 2z + x−1yz + xz−1 + 2z−1 + y−1 + 3x−1+

+ y−1z−1 + y−1z−2 + 3x−1y−1z−1 + x−1y−2z−2

The principal period of f is:

π(t) = 1 + 22t2 + 174t3 + 2514t4 + 34200t5 + 501070t6 + 7586880t7 + · · ·

The corresponding Picard–Fuchs operator is:

L = 1156602627t10D4 + 11566026270t10D3 + 2432454171t9D4+

+ 40481091945t10D2 + 21710463138t9D3 + 2180832814t8D4+

+ 57830131350t10D + 69451424553t9D2 + 17076830696t8D3+

+ 1081614794t7D4 + 27758463048t10 + 92867844258t9D+

+ 49152182076t8D2 + 7275730258t7D3 + 320495624t6D4+

+ 42694428672t9 + 60631223566t8D + 18475102414t7D2+

+ 1803663274t6D3 + 56396924t5D4 + 26375039372t8 + · · ·
+ 20646075298t7D + 3923559726t6D2 + 257499448t5D3+

+ 5230066t4D4 + 8365088348t7 + 3859944956t6D+

+ 453227034t5D2 + 19311296t4D3 + 113734t3D4+

+ 1418470580t6 + 369455180t5D + 22953224t4D2+

+ 641894t3D3 − 18907t2D4 + 115564004t5 + 12261988t4D

− 49938t3D2 + 24976t2D3 − 1031tD4 + 2204080t4−
− 358692t3D − 28323t2D2 + 2174tD3 + 16D4−

− 165208t3 − 16128t2D − 55tD2 − 16D3 − 2816t2.
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Proposition 5.3. π(t) is the regularized quantum period of the Fano 3-fold
X which is number 9 in Mori–Mukai’s list of rank-2 Fano 3-folds. Here X
is the blow up of P3 in a curve Γ of degree 7 and genus 5.

Proof. Γ is cut out by the equations:

rk

(
l0 l1 l2
q0 q1 q2

)
< 2

where the li are linear forms and the qj are quadratics. Write:

y0 = l0q1 − l1q0

y1 = l2q0 − l0q2

y2 = l0q1 − l1q0 .

The relations (szyzgies) between these equations are generated by:

l0y0 + l1y1 + l2y2 = 0 ,

q0y0 + q1y1 + q2y2 = 0 .

Thus X is defined by these two equations in P3×P2, where the first factor has
co-ordinates x0, x1, x2, x3 and the second factor has co-ordinates y0, y1, y2.

Since X is a complete intersection in P3×P2 of type (1, 1) · (2, 1), we have
−KX = (1, 1). Quantum Lefschetz gives:

IX(t) =
∑

l,m≥0

tl+m (l +m)!(2l +m)!

l!l!l!l!m!m!m!
=

= 1 + 3t+
37t2

2
+

769t3

6
+

7307t4

8
+

786991t5

120
+

33872833t6

720
+

+
188039513t7

560
+

165697813t8

70
+ · · ·

We recover the quantum period of X as:

KX(t) = exp(−3t) IX(t) =

= 1 + 14t2 +
245t3

3
+ 602t4 +

64796t5

15
+

1114619t6

36
+

46294021t7

210
+

6920662871t8

4480
+ · · ·
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and the regularized quantum period of X as:

K̂(t) = 1 + 22t2 + 174t3 + 2514t4 + 34200t5 + 501070t6 + 7586880t7+

+ 117858370t8 + · · ·
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