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1 Introduction

The course is an elementary introduction to my experimental work in progress
with Tom Coates, Sergei Galkin, Vasily Golyshev and Alexander Kasprzyk
(http://coates.ma.ic.ac.uk/fanosearch/), funded by EPSRC. I owe a special
intellectual debt to Vasily, who already several years ago insisted that we
should pursue these themes.

[ am an algebraic geometer. In the Fall 1988, my first “quarter” in grad-
uate school at the University of Utah, I attended lectures by Mori on the
classification of Fano 3-folds. (The Minimal Model Program classifies pro-
jective manifolds in three classes of manifolds with negative, zero and positive
“curvature:” Fano manifolds are those of positive curvature.)

I learned from Mori that there are 105 (algebraic) deformation families
of Fano 3-folds. I hope that what I tell you in this course is interesting from
several perspectives, but one source of motivation for me is to get a picture of
the classification of Fano 4-folds: how many families are there? Is it 100,000
families; is it 1,000,000 or perhaps 10,000,000 families? If we are seriously
to do algebraic geometry in > 4 dimensions, there is a dearth of examples:
what does a “typical” Fano 4-fold look like?

*These notes reproduce almost exactly my 4 lectures at the Summer School on “Moduli
of curves and Gromov—Witten theory” held at the Institut Fourier in Grenoble during
20" June-8*" July 2011. I want to thank the organisers for a truly outstanding school
and for the extremely lovely atmosphere. These notes were written in haste: please let
me know if you found mistakes. You will find an updated version on my teaching page
http://www2.imperial.ac.uk/~acorti/teaching.html



Topics

1 1 give a short discussion of local systems on P!\ S (where S C P! is a
finite set) and introduce the notion (due to Vasily Golyshev) of extremal local
system: that is, a local system that is nontrivial, irreducible, and of smallest
possible ramification.

2 Given a Laurent polynomial f: C*™ — C, I explain how to construct the
Picard-Fuchs differential operator L; and its natural solution, the principal
period. By definition, f is extremal if the local system of solutions of Ly is
extremal. I explain the general theory and give some examples. In particular,
we discovered an interesting class of Laurent polynomials where the Picard—
Fuchs local systems has (conjecturally and experimentally) low ramification
, called Minkowski polynomials.

3 I briefly summarize quantum cohomology of a Fano manifold X and
quick-and-dirty methods of calculation. Much of the structure is encoded
in a differential operator )x and power series solution Ix. I motivate with
examples the conjecture that @)y is of small (often minimal) ramification.

4 A Fano manifold X is mirror-dual to a Laurent polynomial f if @ X =
Ly. This is a very weak notion of mirror symmetry: to a Fano manifold
X there correspond (infinitely) many f. I demostrate how to derive the
classification of Fano 3-folds (Iskovskikh, Mori-Mukai) from the classification
of 3-variable Minkowski polynomials. I outline a program to use these ideas
in 4 dimensions.

References

This document contains no references. This is due in part to the fact that I
am presenting a fresh new science, and partly to the fact that the notes are
written in haste and I was lazy when it comes to history, attribution, and
detail.

Let me at least here acknowledge my greater intellectual debts. The def-
inition of extremal local systems (with the name “low-ramified local sys-
tems”) and extremal Laurent polynomials (with the name “special Lau-
rent polynomials”) appeared first in [Vasily Golyshev, Spectra and Strain,
arXiv:0801.0432 (hep-th)]. The view of mirror symmetry advocated here
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notes is modelled on [Viktor Przyjalkowski, On Landau—Ginzburg models for
Fano varieties, arXiv:0707.3758 (math.AG)]. The webpage of Sergei Galkin
http://member.ipmu. jp/sergey.galkin/ contains a substantial amount of
relevant material. All the data can be found on our group research blog at
http://coates.ma.ic.ac.uk/fanosearch/.

2 Extremal Local Systems

A local system on a (topological) manifold B is a locally free sheaf of Q-
vector spaces; equivalently, it is a representation of the fundamental group
p: m(B,b) — GL,.(Q). (Most of the time we actually work with local systems
of free Z-modules).

Let C' be a compact Riemann surface, S C C a finite set, and V be
a local system on U = C'\ S. Below I denote by z € U a point and by
j: U=C\S — C the natural (open) inclusion.

Definition 2.1. The ramification of V is:

ffV="> dim(V,/V]")

SES

(where x € C'is a generic point and T} is the monodromy around s € S.)
(V. Golyshev) If C' = P!, T say that V is extremal if it is irreducible,
nontrivial, and rf V =21k V.

Lemma 2.2 (Euler’s formula). Let V as above be a local system on U = C\ S,
where C' is a Riemann surface of genus g. Then

rf V+ (29 —2)1kV = —x(C, 4, V).

Proof. Choose a cellular decomposition of C' such that S C V and V|p, is
trivial for every cell Dy, f € F'. We get a resolution of V:

oﬁvﬁ@Q;ﬁ@@gﬁ@Q;ﬁo
F E V\S

which implies

X(C,RjV)=x(UV)=(V-E+F—|S)r=(2-29—|5|)kV



On the other hand the short exact sequence of complexes:

0— 4V — RV — EHH (A(s)", V)[-1] = 0

SES

gives x(C, Rj,.V) = x(C, 7.V) — 3. dim VI, so, combining:

X(C.3V) = (29 = 2)1kV + > dim(V,/V]).

ses

Remark 2.3. e If V is nontrivial irreducible, then
HY(C,j.V) = V3O = (0)

and, similarly, H*(C, V) = H°(C,j(V*))" = (0). Thus, if C = P!
and V is nontrivial irreducible, then —x(P'; 7, V) = h'(P'; 5, V) > 0.
Thus, extremal means: smallest ramification. From the point of view
of just topology, this is a very natural class of objects to consider. (In
general it is also useful to look at local systems of small ramification.)

e The central theme of this lectures is the different ways that extremal
local systems arise naturally in geometry. I hope to convince you that
extremal local systems are interesting in themselves.

e My local systems support variations of (polarized, pure) Hodge struc-
tures; in particular, they are always polarised (O,, Spa,).

We expect extremal polarised pure motivic sheaves to be rigid objects; in
particular, we expect them always to be defined over number fields. Here is
a very natural question that nobody, it seems, has considered before.

Problem 2.4. Classify extremal local systems topologically. Classify ex-
tremal polarised pure motivic sheaves.

3 Extremal Laurent Polynomials

By definition, a Laurent polynomial is a regular algebraic map (morphism)

f: C*™ — C, that is, an element of the polynomial ring C[zy, 27, ..., 2, 7;,!]
(where 1, ..., x, are the standard co-ordinates on C*").
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Definition 3.1. Let f: C*™ — C be a Laurent polynomial. The principal
period of f is:

t) < 1 )n/ 1 dxy dx,
7'[' _= —_— e
2w |z |="=|@n|=1 1— tf(l'l, R ,mn) T Tn

Theorem 3.2. There principal period satisfies a ordinary differential equa-
tion L -7(t) = 0 where L € C(t,D) (D = t) is a polynomial differential
operator?. O

Definition 3.3. A Picard-Fuchs operator Ly € C(t, D) of f is a generator
(uniquely defined up to multiplication by a constant) of the annihilator ideal
of the principal period 7(t).

Definition 3.4 (V. Golyshev). f is an Extremal Laurent Polynomial (ELP)
if the local system Sol L; of solutions of the ODE Ly - () = 0 is extremal.

Remark 3.5. e The proof of Theorem 3.2 makes it clear that Sol L is
a summand of grlV | "1 fy Zcx n.

e Consider a semistable rational elliptic surface f: X — C. In general
f has 12 singular fibres; Beauville classified surfaces with the smallest
number, 4, of singular fibres. These surfaces of Beauville can all be
realised as extremal Laurent polynomials.

e Intuitively, a Laurent polynomial is extremal if it is mazimally degen-
erate in the sense that as many critical values co-incide as possible.
For this reason, given a polytope P, we expect that there are (at most)
finitely many ELPs f with Newt (f) = P.

How to compute the Picard—Fuchs operator and the
ramification in practice

1 Computing with the residue theorem gives m(t) = > ¢,,t™ where ¢, =
coeffy f™ is the period sequence. Indeed, expanding 7(t) as a power series in

Eventually I will add a proof of this fact relying on the combinatorics of Newton(f)
also providing an estimate of the degree (in ¢ and D of the operator.)



t and applying the residue theorem n times:

() < 1 )n/ 1 dux dx,
m — o — N —
2T |z1|="=|mn|=1 1-— tf T Tn

0 1 n dml dl’n oo
- tm <_> / mo__Z ... — Cmtm . 1
7712:0 27T7/ |1 |="=|2zn|=1 f T T, Z ( )

In practice, the computation of coeff; f™, say for 1 < m <
expensive.

0
600, is very

2 Consider a polynomial differential operator L = >~ t* P,(D) where P(D) €
C[D] is a polynomial in D; then L -7 = 0 is equivalent to the recursion rela-
tion Y P,(m — k)cm—r, = 0. In practice, to compute Ly one uses knowledge
of the first few periods and linear algebra to guess the recursion relation.

3 The computation of rf(Sol L) is an algorithm built on standard Fuchsian
theory. (I don’t have the time to explain this.)

Example 3.6. Consider f(z,y) =z 4y + ﬁ It is very easy to see that:
m>0

it is best to work with u = #3; now 7(u) = >_ ¢,,u™ where the coefficients c,,
satisfy the recursion relation:

nc, —3(3n — 1)(3n — 2)c,.1 =0
and, by what we said, this is equivalent to:
D? —3u(3D +1)(3D + 2)|m(u) = 0.

Studying this ODE, we see that f is extremal.
Example 3.7. Consider f(z,y) =x+2y+y+ ;%y In this case

Ly =8D*—tD —t*(5D + 8)(11D + 8)—

— 12t3(30D? + 78D + 47) — 4t*(D + 1)(103D + 147)—
—99t°(D +1)(D +2).

Here it is possible to see that rf(Sol Ly) =5 = 2rk(Sol L) + 1 so the poly-
nomial f is not extremal. In fact, there are no ELPs with this Newton

polytope.



Research Program, Part I (a rather idealised form)

Construct examples of ELP in 3, 4 and 5 variables systematically by com-
puter. In some cases, classify all ELP. More precisely:

e Fix a lattice polytope P. Classify all ELP f with Newt (f) = P.

e Do this for a natural class of polytopes, for instance reflexive polytopes.
(Kreuzer and Skarke show that there are 4,319 reflexive polytopes in
3 dimensions and more than 473 million in 4 dimensions.)

Minkowski polynomials

[ describe (for simplicity, in 2 and 3 variables only) a class of Laurent poly-
nomials that we discovered and christened “Minkowski polynomials” (MP)
because they have something to do with Minkowski decomposition. This
class is especially nice because:

e MPs have (experimentally, conjecturally) low ramification.
e In our experience, all Minkowski polynomials mirror a Fano manifold.

By a lattice polygon we always mean a (possibly degenerate) polytope
P C R” of dimension < 2. Then PNZ" is an affine lattice whose underlying
lattice we denote by Lattice(P).

Definition 3.8. e A lattice polygon P C R? is admissible if Int(P) N
72 =0.

e A lattice polytope P C R"™ is reflerive if one of the two equivalent
conditions hold: (a) the polar polytope

P ={feR"|(f,v)>—-1Vve P}
is also a lattice polytope, or (b) Int P NZ" = {0}.

Definition 3.9. Let () C R" be a lattice polygon. A lattice Minkowski
decomposition (LMD) of @ is:

e a Minkowski decomposition () = R+ .S into lattice polygons R, S, such
that:

e Lattice(Q) = Lattice(R) + Lattice(S).



The Minkowski ansatz Fix a reflexive polytope P C R" of dimension
< 3. We describe a recipe to write down Laurent polynomials

f= Z Con ™
mePNZ"™
with Newton(f) = P. I just need to tell you how to choose the coefficients
cm- In all cases, I always take ¢ = 0. (This is an over-all normalization
choice that corresponds to the fact that p; = 0 in the quantum period, see
below.)

If P is a (reflexive or admissible) polygon, I just need to tell you how to
construct the edge terms. An edge E of P lattice Minkowski decomposes into
a sum of k copies of the standard unit interval [0, 1] and the corresponding
term is fp = (1 + 2)*.

If P is a 3-tope, then I treat the edges as above. Next I need to give
a recipe for the facet terms fr, F© C P a facet. First lattice Minkowski
decompose each facet into irreducibles

F=F+--+F,.

I say that the decomposition is admissible if all F; are admissible. Given an
admissible decomposition of every facet of P, the recipe assigns a MP. The
facet term corresponding to F' is

where fr, is given as above using the recipe for admissible polygons.

MPs in 2 variables There are 16 reflexive polygons (it is a good exercise
to derive this list for yourself). All support one MP. This gives 16 MPs
but only 10 period sequences. These are in 1-to-1 correspondence with del
Pezzo surfaces of degree > 3. The 10 period sequences are extremal with two
exception: the first we already met in Example 3.7 (mirror of Fy), the other
is:

Example 3.10. f(z,y) =z +y+ % + % + é (mirror of dP7). Here
Ly =7D*+tD(31D — 3) — t*(85D% + 238D + 112)—
— 2t3(358D? + 785D + 425) — 2t*(D + 1)(669D + 970)—
—731°(D +1)(D +2).
and rf(Sol Ly) =5 = 2rk(Sol Ls) + 1.



MPs in 3 variables In 3 variables, we have shown the following facts:
e There are 4,319 reflexive 3-topes;

they have 344 distinct facets, and these have 79 lattice Minkowski ir-
reducible pieces;

of these, the admissible ones are A,-triangles for 1 <n < 8.

There are thousands of MPs but only 165 period sequences. We are
confident that they are all extremal.

Example 3.11. Consider the reflexive polytope in R? with vertices:

00 -2 =3 -1
0 0 -1 -1

1
01
001 -1 -1 1

This is polytope 121 in the Kreuzer—Skarke PALP list:

The pentagonal facet (as pictured, this is the base) has two Minkwoski
decompositions:

l?.éﬁ o Rl \

and so polytope 121 supports two Minkowski polynomials:

f=ax+y+z+3c +aly e+ a2 20 2y a3yt
fo=ax+y+z+20 oy o4 20 2y a3yt
The principal periods associated to f; and fy are:

mi(t) = 1+ 6t% + 90t* + 186015 + 44730¢% + 1172556t + - - -
mo(t) = 1+ 4t% + 60t* + 1120t° + 24220t° + 5675040 + - - -



The corresponding Picard-Fuchs operators are:

Ly = 144¢* D? + 864t* D? 4+ 1584t* D — 40t>D? + 864t*—
—120t2D?% — 128¢t>D + D? — 48t2

Lo = 128t D? + 768¢t* D? 4 1408t* D + 28t>D? + 768t* + 84t>D*+
+ 882D — D? + 3242

In 4 variables, there are > 473 million reflexive polytopes. We have
inherited the database of Maximilian Kreuzer and we are now in the process
of making a database of facets in preparation for computing their lattice
Minkowski decompositions.

Not all ELP are MP

Consider the pictured polygon. This is one of the smallest facets for which

(2:4)

the Minkowski ansatz has nothing to say. Consider the Laurent polynomial
with this Newton polygon given by:

f=1+xz+2xy>+ 22" + axy

For generic a the completion of f = 0 is a nonsingular curve of genus 1; it
becomes singular exactly when a = +4 and in this case the geometric genus
of the completion of f = 0 is zero. Let us take a = 4 and use this as a new
“puzzle piece” for the Minkowski ansatz.
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Consider the 3-dimensional reflexive polytope with PALP id 9. This has
four faces: two smooth triangles, one As-triangle, and one face equal to the
polygon shown above. The corresponding Laurent polynomial is:

F=a+4+y+z+aty 2z 4202y 447!
It has period sequence:
1,0,8,0,120,0,2240,0,47320,0, . ..
The Picard—Fuchs operator is:
512t D +3072t* D*45632t* D —48t* D*+3072t* — 144> D*—160t* D+ D* — 64¢”

It can be seen that f is extremal, but it does not mirror any Fano 3-fold.
(One can do the same thing with a = —4.)

4 Fano Manifolds and quantum cohomology

The quantum period

Definition 4.1. A complex projective manifold X" of dimension n is a Fano
manifold if the anticanonical line bundle —Kx = A"Tx = Q%" is ample.

Remark 4.2. e If n =2 X is called a del Pezzo surface. It is well-known
that a del Pezzo surface is isomorphic to P* x P! or the blow up of P?
in < 8 general points.

e [t is known that there are precisely 105 deformation families of nonsin-
gular Fano 3-folds. There are 17 families with b, = 1 (Fano, Iskovskikh)
and 88 families with by > 2 (Mori-Mukai).

I state a well-known theorem of Mori that plays a crucial role in what
follows:

Theorem 4.3. Let X be a Fano manifold. Denote by NE X C Hy(X;R) the
Mori cone of X : that, is, the covex cone generated by (classes of ) algebraic
curves C C X. Then NE X is a closed rational polyhedral cone.
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When X is Fano, denote by M, j, ,, the moduli space of stable morphisms
f:(C,xq,...,x) — X where C is a nodal curve of genus 0 with &£ marked
points z1,...,x, and deg f*(—Kx) = m. This moduli space has wvirtual
dimension m — 3 +n + k. Here we are mainly interested in Mg, ,, and the
(unique) evaluation morphism

Em - M()J’m — X

Denote by v the (first Chern class of) the line bundle on My 1, of cotangent
lines: the fibre of this line bundle at f: (C,z) — X is the fibre of w¢ at x.

Definition 4.4. The quantum period of X is the power series K (t) = > ppt™
where p,, = [ Mot Y™ 2e* (pt). The sequence p,, is the quantum period
sequence. -

Theorem 4.5. The quantum period satisfies a ordinary differential equation
Q- Kx(t) = 0 where Q € Z{t,D) (D = t&) is a polynomial differential
operator.

Proof. In short: our quantum period Kx(t) is a stripped-down version of
the small J-function of quantum cohomology. The result then follows from
elementary properties of small quantum cohomology. I now explain all this
in greater detail.

In what follows we denote by M, ;. 3 the moduli space of maps of degree
B € NEX N Hy(X,Z). Recall that the small quantum product a * b of
(even degree) cohomology classes a,b € H®¥(X;C) is defined by the following
formula, which is to hold for all ¢ € H*(X;C):

(@xb,c) =(aUb,c)+ Z ¢’(a,b, )oz,
0#£BENE XNH(X;Z)

where (a,b) = [, aUb is the Poincaré inner product and

(a,b,¢)o35 = / evy(a) Uevy(b) Uevs(c)
Mos,g

is the 3-point correlator. The Frobenius manifold structure is equally well
encoded in an integrable algebraic connexion V on:

e the trivial bundle with fibre H°V(X;C) on
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e the torus T = Spec C[Hy (X, Z)].

In other words T is the torus with character group Homgoups(T,C*) =
Hy(X;Z), co-character group Homgoups(C*,T) = H?*(X;Z), and group of
C-valued points T(C) = C* ® H*(X;Z). Note that Lie T = H*(X;C). The
connexion V is defined as follows: if ¢p: T — H?(X;C) and X € LieT =
H?*(X;C):

Vxl/J:X~¢—X*¢.

The fact that this connexion is algebraic follows from the fact that quantum
cohomology is graded and that —Ky > 0 on NEX. The fact that the
connexion is integrable (flat) is fundamental and it means that the action
of LieT on M = {¢: T — H®(X;C)} extends to an action of the ring
D of differential operators on T: in other words, M is a D-module, called
the quantum D-module. In general, out of a D-module, we can make two
local systems: the local system Homp(O, M) of flat sections of M, and the
local system Homp (M, O) of solutions of M. Sections of these local systems
tautologically satisfy algebraic PDEs.
Recall that the (small) J-function of X is defined as follows:

1
L=

Jx(q) =1+ Z ¢’ Js, where J5=ev?
BENEXNH2(X;Z)

(here ev?: My, g denotes the unique evaluation map). It is well-known that
Jx(q) is a solution of the quantum D-module and therefore it tautologically
satisfies an algebraic PDE. Note that Jx(gq) is cohomology valued but it
makes sense to take its degree-0 component J%(q) € HY(X,C).

Finally, the anticanonical class —Kyx € H*(X;Z) is a co-character of T,
that is, it “is” a group homomorphism which I denote x: C* — T, and it is
clear from the definition that Kx(t) = J% o k(t) (here ¢ is the co-ordinate
function on C*), and the discussion above makes it clear that it satisfies an
algebraic ODE. O]

Definition 4.6. The quantum differential operator of X is the generator
Qx € Z{t, D) of the annihilator ideal of the quantum period K (¢).

How to compute (Qx in practice In practice one starts by fixing a basis
{T*} of H*(X;Z) with T° = 1 the fundamental class. Let M = M(t)
be the matrix of quantum multiplication by —Kx in this basis, written as a
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function on C* by composing with x: C* — T. Next consider the differential
equation on C*

DU(t) = UM
(o) =1

for ¥: C* — End (H VX, C)) a matrix. (Note: tautologically, the differen-

tial k.: LieC* — LieT sends D =t 4 to —Kx € H*(X;C) = LieT.) Then
the first column of ¥ is Jx o k(t); the first entry of the first column is our
quantum period Kx(t).

Remark 4.7. It is important that the matrix W is on the left of M; otherwise
we would be computing the flat sections of the quantum D-module. We wish

to compute the solutions instead (which is the same as the flat sections of
the dual D-module).

Example 4.8. Consider now X = P? with cohomology ring C[P]/P3. Choose
the basis 1, —K = 3P, K? = 9{pt} for the cohomology. The matrix of quan-
tum multiplication by — K, in this basis, is:

27t3

M = 0
0

O = O
_ o O

where the coefficient of #3 in the upper right corner of the matrix is calculated
as a nontrivial Gromov-Witten number:

(=K = (K?),pt)os,ting] = 3(K>, Pt)o.2,1ine] = 27(Pt, Pt)o.2 line] = 27 .

Next we consider the system

D (v, 91, v2) = (o, Y1, P2) M

The column 1), satisfies the differential operator

> 1
Qx = D® — 27t*  with solution: K (t) = mz:()tm (ml)?
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The regularized quantum period and Mirror symmetry
The previous example suggests the following definitions:

Definition 4.9. The regularised quantum period is the Fourier—Laplace trans-
form K () = Y (m!)pmt™ of the quantum period K (t).

The regularised quantum differential operator of X is the generator @ x €
Z(t, D) of the annihilator ideal of the regularised quantum period Kx(t).

Expectation 4.10. We hope that V = Sol @X has low ramification. More
precisely, we hope that rfV < 2rkV + dim H?2 2, the primitive cohomology

prim?

of Hodge type n/2,n/2. (In particular, when dim X is odd, we hope that V
is extremal.)

The following is a very weak form of Mirror symmetry for Fano manifolds.

Definition 4.11. The Laurent polynomial f is mirror-dual to the Fano man-
ifold X if 7(t) = K(t) (equivalently, L; = Qx).

Remark 4.12. It is well-known that @) x has a pole of order 2 (an irregular
singularity) at oo and regular singularities elsewhere. On the other hand,
by a theorem of Deligne, Picard—Fuchs operators have regular singularities
everywhere on P!': hence, regularisation is necessary before a comparison
is possible. Alternatively, we could have decided to compare the quantum
period directly with the oscillating integral of f. If we had done so, however,
we would have missed the low ramification property.

Warning 4.13. This is a very weak notion of mirror symmetry. To a Fano
manifold X there correspond infinitely many mirror Laurent polynomials f.

What we’ve done: Fano 3-folds

Definition 4.14. A Minkowski period sequence it the period sequence {c,}
of a Minkowski polynomial f. Let Ly = Y p_ t*Py(D)P, € Z({t, D) be the
corresponding Picard—Fuchs operator. The period sequence is of orbifold type
if Ly(0) = Po(D) has some nonintegral roots. Otherwise L;(0) has integral
roots and we say that the period sequence is of manifold type.

e We made a list of all Minkowski polynomials in 3 variables supported
on one of the 4,319 reflexive 3-topes. In 3 variables, there are 165 period
sequences.
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In most cases, we were able to calculate the Minkowski Picard—Fuchs
operators and local monodromies and we found that they are all ex-
tremal.

Of the 165 period sequences, 67 are of orbifold type. The other 98
are in one-to-one correspondence with 98 of the 105 families of Fano
3-folds.

Remark 4.15. For the remaining 7 families, we know mirror Laurent poly-
nomials whose Newton polytopes are nonreflexive.

Research Program, Part II (a rather idealised form)

Make a list of all Minkowski polynomials in 4 variables (or, perhaps, a
larger meaningful class of Laurent polynomials) and calculate the (first
few hundred terms of their) period sequences.

Compute the Minkowski Picard-Fuchs operators and verify that they
are of low ramification.

Use the list of Minkowski period sequences as a (partial) directory of
Fano 4-folds: the first few (say 10) terms of the period sequence are
like a phone number of a residence that may be occupied by a Fano

4-fold.

Extract information (Hilbert function, Chern numbers, Betti cohomol-
ogy) about the (potential) Fano 4-folds from the Picard-Fuchs opera-
tors.

Construct the Fano 4-folds as smoothings of the singular toric Fano
4-fold with fan polytope Newton(f). (This ought to become clearer
once we make contact with the Gross—Siebert program.)

Methods of Calculation

I explain how to calculate the quantum period of a Fano complete intersection
in a toric manifold using the quantum Lefschetz theorem of Givental and
Coates—Givental.
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Toric varieties For us, a toric variety is a GIT quotient:
X =C/[(C)

where (C*)? acts via a group homomorphism p: (C*)* — (C*)", where (C*)"
acts on C" via its natural diagonal action. The group homomorphism p is
given dually by a b x r integral matrix:

D= (Dy,...D,): 7" — 7"

that we call the weight data of the toric variety X.

The weight data alone does not determine X: it is necessary to choose a
(C*)b-linearized line bundle L on C”: this choice is equivalent to the choice of
a character x € Z of (C*)?: denoting by L, the corresponding line bundle,
we have

H(C L) = {f € Clay,..., ] | f0w) = x(V) f(2) YA € (€)'}
Having made this choice, the set of stable points is

U'() = {aeC [3N >0, 3f € BT L), f(a) £0}.

The set of xy € Z° for which U®(x) # 0 generates a rational polyhedral
cone in R’ with a partition in locally closed rational polyhedral chambers
defined such that U*®(yx) depends only on the chamber containing x. We
always choose y in the interior of a chamber of maximal dimension, and then
we define X = U*(x)/(C*)’. We have an identification Z* = H?(X;Z) =
Pic(X) and the chamber containing x is then identified with the ample cone
Amp X. The appropriate Euler sequence shows that —Kx = >/ | D;.

Theorem 4.16 (Givental). Let X be a toric Fano manifold. Then

~Kxk 1
Kx(t) = Z t (Dy-k)! - (D, - k)

keZbNNE X

]

Theorem 4.17 (Givental). Let F' be a Fano manifolds and Ly,...,L. €
Nef . Consider:

X=(fi=-=f.=0)CF, where f;cHF;L;).

Assume:
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o X s nonsingular of the expected codimension ¢ = codimy F', and

o A= _(KX + Zf:O)L’L> € Amp F.
Then Kx(t) = exp(—ayt)Ix(t) where

= K ZZZ;IEFtAk((gi B Ef;r lli))" =1+at+0().

5 Three examples

I give three examples illustrating the program in 3 dimensions.

Example 1

Proposition 5.1. The period 7 (t) of the MP f, of Example 3.11 is the

reqularized quantum period of the Fano 3-fold P* x P! x P!,
Proof. J(t) =

t2k+2l+2m

K Lm>0 KR mim] DENCE:

EVENTm!Im!
k,l,m>0

= 1+ 6t% + 90t* + 1860t° + 44730t® + 1172556¢'° +

Example 2

Proposition 5.2. The period mo(t) of the MP fy of Example 3.11 is the
reqularized quantum period of the Fano 3-fold W, where W s a divisor of
bidegree (1,1) in P? x P2.

Proof. Quantum Lefschetz gives J(t) = 3, ;5 t** D hence:

ey ean (k4 D2k +21)!
KRV

k>0
= 1 4 4% + 60t* + 1120t° + 24220t + 567504¢'° + 14030016¢'% + - - -
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Example 3

Consider now the polytope with vertices:

100 O O 1 -1 -1
011 -1 -1 0 1 =2
002 -2 0-1 1 =2

This is polytope 2093 in the Kreuzer—Skarke PALP list. It supports a unique
Minkowski polynomial:

f=y+2z+a+y+2z2+atyz+az 22yt 43207+
+y ety e 3y e 2

The principal period of f is:
m(t) = 1+ 22t% + 174+ 4 2514¢" + 34200¢° + 501070¢° + 7586880¢" + - - -

The corresponding Picard-Fuchs operator is:

L = 1156602627t'° D* + 11566026270t D? + 2432454171t D*+
+ 40481091945t D? + 21710463138t? D? + 2180832814¢° D*+
+ 57830131350t'°D + 69451424553t7 D? + 17076830696t D+
+ 1081614794t D* 4 27758463048t'% + 92867844258t° D+
+ 49152182076t% D* + 7275730258t D? 4 320495624t° D+
+ 42694428672t7 + 6063122356615 D + 18475102414¢" D*+
+ 1803663274t° D? + 563969245 D* + 26375039372t + - - -
+ 20646075298t" D + 3923559726t% D? + 257499448t° D3+
+ 5230066t* D* 4 8365088348t 4 3859944956t° D+
+453227034t° D? + 19311296t D? + 1137343 D+
+ 1418470580t° + 369455180t° D + 22953224t D?+
+ 641894t*D® — 18907t D* + 115564004¢° 4 12261988t* D
— 49938t> D? + 24976t D* — 1031t D* + 2204080t* —
— 358692t D — 28323t D? + 2174tD* + 16D*—
— 165208t3 — 16128t>D — 55tD* — 16D — 2816t
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Proposition 5.3. 7(t) is the regularized quantum period of the Fano 3-fold
X which is number 9 in Mori-Mukai’s list of rank-2 Fano 3-folds. Here X
is the blow up of P? in a curve I' of degree 7 and genus 5.

Proof. T is cut out by the equations:

rk ol b <2
do 41 42
where the [; are linear forms and the ¢; are quadratics. Write:

Yo = log1 — Ligo
y1 = lago — loge
y2 = logi — liqo -

The relations (szyzgies) between these equations are generated by:

loyo -+ llyl -+ l2y2 = O y
qoYo + q1y1 + q2y2 = 0.

Thus X is defined by these two equations in P2 x P2, where the first factor has
co-ordinates xg, 1, T2, x3 and the second factor has co-ordinates vy, y1, 2.

Since X is a complete intersection in P2 x P? of type (1,1)-(2,1), we have
—Kx = (1,1). Quantum Lefschetz gives:

B (L Fm)N 2L +m)!
L) = > ¢ M mimim!
3742 . 7693 . 7307t . 78699115 . 338728331
9 6 8 120 720
1880395137 165697813t
+ + +

1,m>0

=1+3t+

560 70
We recover the quantum period of X as:
Kx(t) = exp(—3t) Ix(t) =
245t3 64796t5  1114619t°  46294021t7
=1+ 148+ —— 4+ 602t"
+ + 3 + 602" + B + 36 + 510
69206628718
4480
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and the regularized quantum period of X as:

K(t) = 1+ 22t + 174> 4 2514¢* + 34200¢° 4 501070t + 7586880t +
+ 117858370t% + - - -

]
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