CRITICAL EXPONENTS AND RIGIDITY IN NEGATIVE
CURVATURE

GILLES COURTOIS

1. INTRODUCTION

The goal of this lecture is to describe a theorem of M.Bonk and B.Kleiner on the
rigidity of discrete groups acting on CAT(-1)-spaces whose limit set’s Hausdorff and
topological dimension coincide. We will give the proof of M.Bonk and B.Kleiner
and also an alternative proof in particular cases. Before going into it we first set
up some historical background.

A famous theorem of G.D.Mostow states that a compact hyperbolic manifold of
dimension n > 3 is determined up to isometry by its fundamental group. In other
words, if I is a cocompact lattice in PO(n, 1), with n > 3, there is a unique faithfull
and discrete representation p : ' = PO(n, 1) up to conjugacy.

On the other hand, for some lattices I' of PO(n, 1) there exist many faithfull
discrete nonconjugate representations p : ' = PO(m,1) 2 < n < m as described
in the following example.

Bendings: Let us assume that a lattice I’ in PO(n, 1) is a free product A%o B of
its subgroups A and B over the amalgamated subgroup C such that C' cocompactly
preserves a totally geodesic copy of the hyperbolic space H?~! in H"”. For such a
group I' the quotient manifold M = H"/I" is a compact hyperbolic manifold with
a totally geodesic embedded and separating hypersurface N = H®!/C. One can
consider a Fuchsian representation pg : I' = PO(n + 1,1). A representation p of
a lattice T' of PO(n,1) in PO(m,1) with 2 < n < m is called fuchsian if p(T)
preserves a totally geodesic copy of the hyperbolic space H™ in H™. Let I' be a
lattice of PO(n,1), a fuchsian representation py of I' in PO(m,1) with m > n can
61 Iod > € PO(m,1).

For such a fuchsian representation pg of I' = A x¢ B in PO(n + 1,1) the group
po(C) preserves a totally geodesic copy of the hyperbolic space H™ ! in H"*!.
The group po(C) is then centralized in PO(n + 1,1) by the subgroup of rotations
around H" ! in H**!' which is isomorphic to S'. For 7, = e® € S, let us define
pt : T = PO(n+1,1) by ps(a) = a for all a € A and p;s(b) = r;, 'br; for all b € B.
As ry commutes with pg(C) there is no ambiguity in the definition of p:(c) for
¢ € C = AN B. Tt can be shown that for ¢ # 0 small enough, the group po(T) does
not preserve any totally geodesic copy of H” in H™t! and thus cannot be conjugate
to po, cf. [11].

One way of distinguishing between a Fuchsian and a non Fuchsian representa-
tion p of a cocompact lattice T' of PO(n,1) into PO(m,1), m > n is to compare
their limit set. Basically the size of the limit set of G =: p(T') for a non fuchsian
representation p is stricly larger than the size of the limit set of Gy =: po(T") for
any Fuchsian representation py.

be obtained this way: pg: A €T — <
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Before going further, let us turn to a more general setting and introduce some
notations.

Let X be a CAT(-1)-space, cf. [4]. Examples of CAT(-1)-space are Cartan
Hadamard manifold of negative curvature K < —1, ie. simply connected manifolds
of negative sectional curvature K < —1.

For a discrete group of isometry G of a CAT(-1)-space X, we define the limit set

A(G) of G as the closure of the orbit of some (and hence any) point o € X in the

ideal boundary 8X of X, namely A(G) = Go™ °~ N dX.

A subset Y C X is said quasi-convex if there is a constant C' > 0 such that every
geodesic segment with endpoints in Y lies in the C-neighborhood of Y. The group
(G is said quasi-convex cocompact if there exist a G-invariant quasi-convex subset
Y C X with compact quotient Y/G.

In the case of a Cartan Hadamard manifold X of negative sectional curvature
K < —1, quasi-convex cocompactness is equivalent to the following convex cocom-
pactness property. The convex hull of A(G) is the smallest G-invariant convex
subset of X U0X containing A(G), and we denote it by H(G).

Definition 1.1. A discrete group of isometry G of X is convex cocompact if
H(G)/G is a compact subset of X/G.

For example if pg : I' = PO(n + 1,1) is a Fuchsian representation a cocompact
lattice T’ of PO(n,1), then Gy = po(T') is a convex cocompact group of the hy-
perbolic space H**! .The limit set A(Gy) of G is the boundary OH", the convex
hull H(Gy) is the totally geodesic copy of H™ in H"*! preserved by Gy and the
convex cocompactness of G comes from the cocompactness of . If G = p;(T) are
bendings then the G;’s are convex cocompact for ¢t small enough, and the limit set
A(G,) of each such G is then a topological n — 1-dimensional sphere [15], [8].

For a CAT(-1) space X, let us define a distance on the ideal boundary as follows.
Let o be a fixed point in X. Let &, £’ be two points in X and denote by [(&,¢')
the distance between o and the geodesic joining ¢ and &'. The following

(1.1) A&, &) = e 1EE)

is a distance on 0X. This distance depends on the choice of the base point o but
two different choices of a base point give rise to equivalent distances, [8].

We denote by 6(G) the Hausdorff dimension with respect to the distance d of the
limit set A(G). Let us recall that the d-Hausdorff measure H? on a metric space
(M,d) is defined as follows. For A C M and 1 > 0, we set

Hyj(A) = inf{%;(diam(E;)"}
where the infimum is taken on all sequences {E;} of subset of M which cover A and
whose diameter satisfies diamE; < n for all j’s, and H%(A) = lim,_,o H(A). We
say that M has Hausdorff dimension § if H¢(M) = 0 for d > 6 and H¢(M) = oo

for d < 4.
The following definitions will be usefull.

Definition 1.2. (i) A complete metric space (M,d) of Hausdorff dimension § is
said Ablfors reqular if there is a constant C > 0 such that

C '’ < H(B(»,7)) < Cr®
for every ball B(r) of radius r in (M,d).
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(1) A metric space is uniformly perfect if there exist a constant C > 0 such that
for every x € M and 0 < r < diamM , there is a point y € M which satisfies

C™'r <d(z,y) <r

An Ahlfors regular space is automatically uniformly perfect. This can be easily
deduced from the fact that B(z,r) — B(z,C~'r) has positive measure for C large
enough.

For example the limit set (A(G),d) of quasi-convex cocompact group G acting
on a CAT(-1)-space is Ahlfors regular and uniformly perfect.

Whenever the group G is quasi-convex cocompact, the Hausdorff dimension 6(G)
of A(G) can be defined as the critical exponent of the Poincaré series ¥, ¢ ge %5t (010
where dist stands for the distance in X, [15]

0(G)=inf{s >0 | EgeGe—Sdist(OvFO) < oo}

Let us remark that the critical exponent of the Poincaré series X cge
does not depend on the choice of the point o because of the triangle inequality.

For example, if po : T' = PO(n + 1,1) is a Fuchsian representation a cocompact
lattice I' of PO(n,1) and Gy = po(I") then 6(Go) = n — 1. For a non fuchsian
faithfull discrete convex cocompact representation p : ' — PO(n + 1,1) with
G = p(T'), the limit set of G is stricly “bigger” than the limit set of Gg, namely,
0(G) > 6(Gy) = n — 1. In particular for the above bendings §(G;) is strictly
increasing. This has been first observed by H.Poincaré, then proved by R.Bowen
for n = 2 and D.Sullivan for larger n and extended by several authors in variable
curvature or without special assumption on G, [6], [15], [1], [12].

For a quasi-convex cocompact representation of a cocompact lattice of PO(n, 1)
in a CAT(-1) space M.Bourdon proved the following

—sdist(o,I'0)

Theorem 1.3. [6] Let T’ be a cocompact lattice in PO(n,1) and p: T — Isom(X)
a discrete faithfull representation of T in the isometry group of a CAT(-1) space
X. We assume that G =: p(T') is quasi-convex cocompact. Then, 6(G) > n —1 and
0(G) =n—1 if and only if G preserves a totally geodesic copy H of H™ in X with
compact quotient H/G.

In the particular case of the above bendings p; of a cocompact lattice T' of
PO(n,1) in PO(m,1), m > n, the limit set A(G;) of Gy = p(T') is a (n — 1)-
dimensional topological sphere of Hausdorff dimension §(G;) > n — 1 for ¢ small
enough and equality §(G¢) = n — 1 happens if and only if ¢ = 0.

Let us stress the fact that in the theorem 1.2, the convex cocompact group G in
is assumed to be isomorphic to a cocompact lattice of PO(n,1).

It’s worth mentioning that the same conclusion of the theorem 1.2 still holds for
any convex cocompact group G in PO(m, 1) which is not assumed to be isomorphic
to a cocompact lattice of PO(n, 1) but whose limit set is supposed to be homeo-
morphic to a standard n-sphere, 2 < n < m — 1. This was actually obseved earlier
by Izeki, [9].

Theorem 1.4. [9] Let G be a discrete convexr cocompact group of isometry of
PO(m,1). Let us assume that the limit set A(G) of G is homeomorphic to a n-
dimensionel sphere. Then, 6(G) > n and §(G) = n if and only if G preserves a
totally geodesic copy of H™ ! in H™.
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M.Bonk and B.Kleiner have extended this result to the case of a discrete group
G of isometries of a CAT(-1)-space X.

Theorem 1.5. [3] Let G be a convex cocompact group of isometries of a CAT(-1)
space X. Let 6(G) and dimy,,(A(G)) be the Hausdorff and topological dimension
of the limit set A(G). We assume that §(G) = dimy,(G)) = n for some integer
n > 2. Then, G preserves a totally geodesic copy H of the hyperbolic space H™ !
embedded in X, such that H/G is compact.In particular, G is a cocompact lattice
in PO(n,1).

Remark: In the theorem 1.2, G is assumed to be isomorphic to a cocompact
lattice in PO(n,1). On the contrary in the theorem 1.5, G is not assumed to be a
cocompact lattice in PO(n, 1), but this fact is a part of the conclusion. In fact the
proof of the theorem 1.5 relies on the theorem 1.2: M.Bonk and B.Kleiner actually
show that under the assumptions of the theorem 1.5 then G is isomorphic to a
cocompact lattice in PO(n, 1).

The following rigidity theorem which was observed by G.Knieper is a particular
case of the theorem 1.5.

Theorem 1.6. [10] Let M = X/G be a (n + 1)-dimensional compact riemannian
manifold with sectional curvature K < —1, where X is the universal covering space
of M and G its fundamental group. If 6(G) = n then M is hyperbolic, i.e. K = —1.

As G is cocompact the limit set A(G) coincides with the ideal boundary of X
which is a n-dimensional topological sphere thus the theorem 1.6 follows from the
theorem 1.5.

In the next section we will give an altenative proof of the theorem 1.6 which is
inspired from [1].

2. ALTERNATIVE PROOF OF THE THEOREM 1.5 IN A SIMPLER CASE

We first give a proof of the theorem 1.6 distinct of the original one and which
does not use the theorem 1.5.
Let us recall the theorem 1.6.

Theorem 2.1. [10] Let M = X/G be a (n + 1)-dimensional compact riemannian
manifold with sectional curvature K < —1, where X is the universal covering space
of M and G its fundamental group. If 6(G) = n then M is hyperbolic, i.e. K = —1.

Proof. We shall use the following criterium for a Cartan Hadamard manifold X to
be isometric to the hyperbolic space H*™!. For # € X and # € X let us denote
B(z,6) the Busemann function defined by

B(z,0) = tli)rgo dist(z,c(t)) — dist(o, c(t))

where o0 is a fixed base point in X and c¢(¢) a geodesic ray joining o to 6.
The following lemma characterizes the hyperbolic space H”t! among Cartan
Hadamard manifolds.

Lemma 2.2. Let X be a (n + 1)-dimensional Cartan Hadamard manifold with
Busemann function B. Then X is isometric to the hyperbolic space H* ™! if and
only if for each 8 € 80X and v € X, we have HessB(z,0) + dB(x,0) ® db(x,0) =
g(z) where HessB is the Hessian of B with respect to the variable x and g is the
riemannian metric on X .
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This lemma amounts to saying that the horospheres of X (which are the level
sets of the functions B(.,6)) have their second fundamental form proportional to
the metric if and only if X is of constant sectional curvature K = —1.

Proof. The only if part is obvious. Let us prove the other way. Let (r,a) be the
polar coordinates at the point o € X where r is the distance from o and o € S™ !
the spherical coordinate. If the Buseman function of the Cartan Hadamard mani-
fold X satisfies HessB(x,0) + dB(x,0) ® db(x,0) = g(z), it is easy to check that
for any point # € X with polar coordinates (r,«) and any point § € 9X we
have expB(x,0) = coshr — cosasinhr, where « is the angle at o between the ge-
odesic joining o and z and the geodesic joining o and . In the hyperbolic space
the Buseman function Bg(y,¢) associated to an origin yo also satisfies the rela-
tion expBo(y,&) = coshr — cosasinhr, where (r,€) are the polar coordinate of
y at the origin yy. The choice of an isometry between the tangent space of X
at o and the tangent space of the hyperbolic space H"t! at yo provides a diffeo-
morphism f : X UO0X — H"t! UOH"! between X U 0X and H*' U OH"H!
which reads in polar coordinates f(r,a) = (r,a). Since the Busemann functions
B and By of X and H"t! have the same expression in polar coordinate, we get
that B(z,0) = Bo(f(z), f(0)). Therefore for any z,y € X we have dx(z,y) =
sup{B(z,0) — B(y,6) | 0 €0X} = sup{Bo(f(z), (6)) — Bo(f(y), f(8)) | 0
OX} = sup{Bo(f(x),€) — Bo(f(4),) | &€ OH™1} = dyuos(f(x), f()). Hence
f is an isometry and X is a hyperbolic space.

O

The proof of the theorem 2.1 therefore boils down in showing that if §(G) =n
then HessB(z,0) + dB(z,0) ® db(z,0) = g(z).

For that purpose we shall construct a smooth map F' : M — M homotopic to
the Identity map and whose Jacobian satisfies |JacF(z)| < (det k(x))~! where
k(x) is the quadratic form defined on the tangent space Tr(,) M by

21 K= [ HessB(F(%),6)(.,.) + dB(F(%),6)(.) ® db(F(%),0)(.)dpus

where F and # stands for the lifts of F and z to the universal cover M of M, and
1z is the measure of Patterson that we will describe below.

Before decribing the construction of the map F, let us end the proof of the
theorem 2.1. We assume that M is orientable (if not we replace it by a 2-fold
covering). As F' is homotopic to the Identity, it is a degree one map therefore if {2
is the volume form of M one has

(22)  volM = /M o | < /M|JacF(x)|dac§ /M(detk(ac))_lda:.

On the other hand the sectional curvature of M satisfies K < —1, therefore by
the Rauch comparison theorem we have for every y € X, and 6 € 0X,

(2.3) HessB(y,0) + dBy.¢) ® dBy 9y > 9(y),
thus detk(xz) > 1. We therefore get

vol M S/ (detk(z))"'dx < volM.
M
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and hence detk(x) = 1. From this and the inequality 2.4 one easily get that for all
y € X and 0 € 90X

HessB(y,0) + dB ¢ ® dBy gy = g(y),

using the fact that the measures py are positive on open subsets of 9.X. The lemma
2.2 then concludes the proof of the theorem 2.1. O

Let us now explain the construction of the map F'.

We first define a map which associates a point in X to a measure p supported
on the ideal boundary 0X whose support is not reduced to a point. Let p be a
measure supported on 0X. Let D, : X — R be the function defined by

(2.4) Du) = [ eP0Naue)

A computation shows that

(2.5) HessD,(y) = /{9X(HessB(y’9) +dB(y,0) ® dB(yﬁ))eB(y’e)du(G).

By 2.3 we then get

(2.6) HessD,(y) > Du(y)g,

thus HessD,(y) is positive definite and D,, is strictly convex.
Claim: If the support of p contains at least two points, we have

lim _D,(y) = +o0.
Yyr—0X

Proof. Let y; € X a sequence such that
(2.7) lim y;, = 6p € 0X.
k—o0

As the support of y contains at least two points, we have supp(u)N(0X —{6p}) #
(), thus there exists a compact subset K C 8X — {6y} such that u(K) > 0 therefore,

(2.8) / Bt gy > / BN dy — o0
oxX K
because for every § € K we have lim,, 4, B(yx,0) = +o00. O

We then have the following lemma.

Lemma 2.3. Let pu a finite borel measure on dX whose support contains at least
two points. The function D, has a unique minimum. This minimum will be denoted

by C().

Recall that a family of Patterson measures (u.),. associated to a discrete

group of isometry GG of X is a set of positive finite measures y, supported on oX,
x € X, such that the following holds for all z € X, v € G,

(2.9) Hye = Vsl
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(2.10) e = e PEO,

where 0 € X is a fixed origin, B the Busemann function associated to o and §
the critical exponent of G.

Whenever G is cocompact the support of p equals X thus according to the
lemma we can define the map F : X — X for z € X by

(2.11) F(z)=C(eB@®0 ).

The map F satisfies the following properties.
(i) F' is a smooth G-equivariant map.
(ii) |JacF (z)] < (det  k(x))*

Proof. (i) The smoothness of F' comes from the smoothness of the Busemann func-
tion B(zx, ) with respect to x for each fixed #. From the equivariance of the family
of Patterson measures, cf. 2.9 and the cocycle relation B(yy,~v0) — B(vyz,~0) =
B(y,8) — B(z,0) we get the invariance under the diagonal action of G on X x X of
the function of z and y defined by D,-5(.s),, (y) = [ox € By.0)=B(2.9)qy, (#) which

implies the equivariance of F. By equivariance F is homotopic to the Identity.
(ii) The point F(z) is characterized by
B(F(z),0)—B(z,0 _
(2.12) /8 B POy () = 0

In order to simplify the notations we will denote v, the measure (¥ (#).0)=B(=.0) ;,
and ¢ instead of §(C). We will also write DF(u) instead of DF(z)(u).

By differentiating 2.12 we get the following characterization of the differential of

. foru e T,X and v € T; (I)X one has

/85( [Hess By, (DF (1), v) + dB( (4 ) (V)AB (1) ) (DF (u))]dv (6)

(2.13) =(6+1) /8 - AB(#0,0)(V)AB(e ) () (6)

Let us recall that we defined the quadratic forms & for v € Tﬁ(m)f( by

(2.14) k(v,v) = /3 DBy (0:0) + (B0 0 (v))?]dve (6).

Let us define the quadratic form A by

(2.15) h(v,v) = /8)2 dB(ﬁ(w)ﬂ)(v)ngz(H).

The relation 2.13 writes, for v € T, X and v € Tp(z)f( :

(2.16) k(DF(u),v) = (5 + 1) /8 B (00 (0) B ) () ().
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We define the quadratic form &' on T, X for u € T, X by

(2.17) B (u,u) = o dB(; 9 (u)*dv,(8),

and one derives from 2.16

(2.18) |k(DF'(J:)(u),U)| <(0+ l)h(v,v)l/Qh'(u,u)l/Q.

One now can estimate the Jacobian of F. If DF is not of rank n + 1, then
JacF(z) = 0. Let us assume that DF is of rank n 4 1. Let us denote by H' [resp.
H and K] the selfadjoint operator (with respect to §) associated to the quadratic
form h' [resp. h, k].

Let (v;)!]' be an orthonormal basis of Tﬁ(m)f( which diagonalizes H and (u;)?1}
an orthonormal basis of T, X such that the matrix of K o DF(z) : T, X — Tp(w)X
is triangular. Then,

(2.19) detK.|JacF ()] < (6 + 1)" (I h(vg, 0) Y2 (B (u, ug)H?)
thus,

TraceH) (n+1)/2 (TraceH' ) (n+1)/2
n+1 n+1 :
In these inequalities one can normalize the measures

v, = eB(F(z),G)—B(m,@)uI

(220)  detK.|JacF(z)| < (0 + l)nﬂ(

such that their total mass equals one, which gives

(2.21) traceH = S h(v;,v;) < 1,
the last inequality coming from the fact that for all 6 € 9X,
(2.22) SPAB ) 0y (00)* <N dBpg gl = 1
and from the previous normalization.
Similarly,
(2.23) traceH' = Y1 R (uiyu;) < 1.

We then obtain from (2.20)

5+ 1\ n+1
n+ 1) '
Thanks to (2.3), we have detK > 1, so that

(2.24) detK .| JacF (z)| < (

(2.25) \Jack (z)] < (5 1 )”H.

n+1
This proves (ii). O
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3. SKETCH OF PROOF OF THE THEOREM OF BONK-KLEINER

The strategy of proof is to show that with the assumptions of the theorem 1.5,
the group G actually is isomorphic to a cocompact lattice in PO(n,1) and then
apply the theorem 1.2. The way of doing this is to apply the following theorem of
P.Tukia which characterize discrete subgroups of PO(n,1).

Theorem 3.1. [14] Let G be a group acting uniformly quasi-Mdbius on the standard
sphere (S™,can). We assume that the induced action of G on Tri(S™) is cocompact,
then the action of G on S™ is conjugate by a quasi-Mdébius homeomorphism to an
action by Mébius transformations of S™.

The proof of the theorem 1.5 therefore boils down in showing that the action of
G on its limit set (A(G),d) is quasi-Mobius conjugate to an action on (S™, can).

The topological dimension assumption on the limit set A(G) provides a lipschitz
map from (A(G),d) to S™ whose image I'm(f) contains an open subset of S™. By
metric topology arguments one deduce that (A(G), d) has a weak tangent bilipschitz
homeomorphic to the euclidean space R”, cf. proposition 6.1.

On the other hand the limit set (A(G),d) of G has the following selfsimilarity
property. For any weak tangent (S, p) of (A(G),d), the one point compactification
(S, p) of (S, p) is quasi-Mobius homeomorphic to (A(G), d),cf. proposition 4.5. Since
(A(G), d) has a weak tangent bilipschitz homeomorphic to the euclidean space R™ we
get that (A(G), d) is quasi-M&bius homeomorphic to the standard sphere (S, can).
Therefore the action of G on (A(G),d) is conjugate to a uniform quasi-M&bius
action of G on (S",can).

The theorem of P.Tukia then asserts that G is quasi-Mobius conjugate to a
subgroup of M&bius transformations of S™. The induced action of G on Tri(S™)
is properly discontinuous and cocompact, therefore extends to an isometric action
of G on H"t!'. The theorem 1.2 of M.Bourdon then applies and the theorem 1.5
follows.

4. WEAK TANGENT AND SELF SIMILARITY OF LIMIT SETS
Let (Mg, dy), (M,d) be metric spaces with base points p € M}, and p € M.

Definition 4.1. The sequence (My,dy,px) is said to converge to (M,d,p) in the
pointed Gromov-Hausdorff topology if VR > 0, Ve > 0, 3N € N, 3Dy, C By, (pr, R),
3D}, C Bu(p,R), 3fk : Dy — Dj, such that fi, are bijections, py € Dy, p € Dj, and
for any k,

(1) fe(px) =p
(2) Dy, is e-dense in By, (pr, R) and Dy, is e-dense in By(p, R)

(3) Vo, y € Dy, we have |d(fi(x), fi(y)) — di(2,y)| < e

Example: The product R x %S ! of the real line with a circle of radius % converges
to R in the pointed Gromov-Hausdorff topology.

Definition 4.2. Let (M,d) be a metric space. A weak tangent of (M,d) is a
complete metric space (S, p,0) with a base point o € S such that there exist a
sequence (M, Axd,pr) converging in the Gromov-Hausdorff topology to (S, p,0) for
some sequence \j, — +00.
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Example 1: Let (M, g) be a riemannian manifold; then every weak tangent at
a point z € M is isometric to the tangent space T, M of M at x endowed with the
euclidean distance induced by g(z). For general metric spaces weak tangent are not
unique.

Example 2: Let (M, d) be a metric space and (5, p,0) a weak tangent of (M, d)
at a point p € M. Let (S, p’,0) be a weak tangent of (S, p,0) at o. Then (S', p’,0)
is a weak tangent of (M, d) at p.

As one see on the example 1 a weak tangent (S, p,0) of a metric space (M,d)
may be unbounded so we shall now put a distance p on the one point compactifi-
cation S = S U {oo} such that the two distances p and p on S are “quasi-Mobius”
equivalent. Let us now define quasi-Mdbius map between metric spaces and decribe
the construction of p.

Let (M,d) be a metric space. The cross ratio of a four-uple of distinct points
(z1,%2,%3,%4) is the real number

d(xla Ig)d(ﬂl’g, m4)
d(flfl, .’L‘4)d(l’2, ‘T?))

Definition 4.3. Let f: (M,d) — (M',d’) be an injective map between two metric
spaces and 1 : [0,4+00[— [0, 400 a homeomorphism such that n(0) = 0. The map
f is said to be n-quasi-Mdébius if for any quadruple of points z; € M, 1 < i < 4,
[f(ml)a f(xQ)a f(mS)a f($4)] < 77([331:372,933:5”4])-

Remark: As a consequence of the definition one can see that a n-quasi-Md&bius
map [ : (M,d) — (M’,d’) is a homeomorphism on its image f(M) and that
the inverse map f=! : (f(M),d') — (M,d) is n'-quasi-Mdbius for the home-
omorphism 7'(t) = n(1/t)~!. This can be easily seen by exchanging z; and
To in the definition of a quasi-Mdébius map, which gives n(1/[z1, z2, 73, 74]) % <

[f(21), f(22), f(xs), f(24)].

[$1,I2,$3,$4] =

Example: Let G be a quasi-convex cocompact group of isometries of a CAT(-1)
space X and (A(G),d) the limit set of G endowed with the distance d defined in
1.1. Then G acts uniformly quasi-M&bius on (A(G),d), which means that there
exist an increasing homeomorphism 7 : [0, +00[— [0, +0o[ such that the action of
each element g € G on (A(G),d) is n-quasi-Mébius, cf. [5].

For more details on quasi-Mdbius maps see the M.Bourdon’s lecture.

Lemma 4.4. Let (S, p) be an unbounded metric space with a base point o and S =
SU{oo} the one point compactification of S. There exist a distance po on S inducing
the topology of S such that (S, p) and (S, p,) are n-quasi-Mébius homeomorphic for
n(t) = 16t.

Proof. Let us consider the function h, : $ — [0, +00[ defined by h,(00) = 0 and for
allz € S

_ 1
1+ p(o,x)

For z and y € S let us define p, by po(z,y) := ho(x)ho(y)p(x,y) if x and y
€ S, po(m,00) = po(00,z) = ho(x) and p,(c0,00) = 0. If z and y € S we define
po(x,y) = inf{SF=1 p,(x;,2;11)} where the infimum is taken over all sequences of

ho(x)
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points o, ...zx in S with zo = z and zj, = y. The reader can easily check that the
lemma is a consequence of the following inequalities

(11) 199) < o) < poliy)

O

The next proposition is one key point in the proof of the theorem 1.5. Roughly
speaking it says that the limit set A(G) of a convex cocompact group G of a CAT(-
1) space has a selfsimilarity property. More precisely this means that (A(G),d) is
quasi-Mdbius homeomorphic to (S, p,) for any weak tangent (S, p,0) of (A(G),d).

Proposition 4.5. Let G be a convex cocompact group acting on a CAT(-1) space,
(A(G),d) the limit set of G endowed with the metric defined in 1.1. If (S, p,0) is a

weak tangent of (A(G),d) then (S, p,) is quasi-Mdbius homeomorphic to (A(G),d).

Proof. Let us consider a weak tangent (S, p, 0) = limy, o0 (A(G), A\xd, p) of (A(G), d).
In order to simplify the notations we will denote Z the limit set A(G) and A\ Z
the metric space (A(G), Ard). For an arbitrary metric space (M,d) we will write
By (p,r) the ball of radius r centered at p € M.

Let Dy C Bs(o,k) [resp. Dy C By, z(pk, k) | be maximal + separated subsets
such that o € Dy and pr € Dy and bijections fy, : Dy, — Dy, such that

(42) Ned(Fel@), fulw) = pla,)| < ¢

for any z, y in S.
Such sets Dy, Dy and maps f exist since (S, p,0) is the limit of (Z, A\xd).
It follows from 4.1 and the % maximal separation of the sets Dy and Dy that

(13 $99) < Ned(fila). fu(y) < 20(a.y)

thus the sequence of maps fj is uniformly bilipschitz.

Now we can assume that Dy C S contains a fixed triple of distinct points Yo, Y1, Y2
in S. Let us denote =¥ = fi(y;), i =0,1,2.

As G is convex cocompact, its action on the set Tri(Z) of triples of distinct
points in Z = A(G) is cocompact. Therefore there exist a sequence 7, € G and a
positive number § such that

(4.4) d(vea}, vexh) > 6
and
(4.5) p(Yisy;) > 6

for 4,7 € {0,1,2}.

Let us define hy : (D, p) C (S,p) — (Di,d) C (Z,d) defined by hy := 7, o f;
where Dj, = v;(Dy). As G is convex cocompact it acts uniformly quasi-M&bius on
(A(G), d) thus there exist an increasing homeomorphism 7 : [0, +oo[— [0, +00[ such
that the action of each element 75 € G on (A(G),d) is n-quasi-Mdbius. Therefore,
by (4.3) we get that hy = i o fi is 16n-quasi-Mobius. By the lemma 4.4, the maps
hy, can be considered as 16n-quasi-Mdbius maps hy : (Dy, p) C (S, po) — (D}, d) C
(Z,d).
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Claim 1: The sequence hy : (D, p) C (S, po) = (D4, d) C (Z,d) is equicontin-
uous.

Let us prove the claim. We shall prove the existence of a function y : [0, co[—
[0, oo satisfying lim,_o () = 0 and such that for any =,y € Dy, po(z,y) = r
then d(hi(z), hi(y)) < p(r).

Let us consider the points yl and z¥, i = 0,1,2, such that (4.4) and (4.5) hold,
and denote z¥ = hy(y;) = vi.(z¥). We can normalize d such that § = 1 in (4.4) and
(4.5), therefore we have

(4.6) d(zf,25) > 1
and
(4.7) ﬁo(yiayj) >1

for i, € {0,1,2}.

Let ¢,y € Dy, po(x,y) = r. There are three cases:

1) po(z,y) =1 < 1/4 and p,(ys, ) < 1/2

2) polw,y) =1 < 1/4 and po(y1,7) > 1/2

3) po(z,y) > 1/4.

Case 1). We have p,(z,y2) > 1/2, po(z,ys3) > 1/2, po(y,y2) > 1/4 and
ﬁo(yvy?)) > 1/4

¢ From these inequalities and the fact that [hy (x), b (y2), hi (), he(y3)] < 0z, y2,9, y3])
we easily get

(4.8) d(h (), hi(y)) < (diam(2))*n(8diam(S)p, (. y))-

Case 2). As p,(y2,ys) > 1 there exist i € {2,3} such that p,(y,y;) > 1/2. ;From
this and the fact that [hy(x), he(yi), he(y), be(y1)] < n([z, vi, v, y1]) we get

(4.9) d(h (), hi(y)) < (diam(2))*n(ddiam(S)p, (. y))-
Case 3). We have p,(x,y) > 1/4, therefore
(4.10) dlhi(e), ha ) < D) < dgiam(2)po(a, )

JFrom (4.8), (4.9) and (4.10) we obtain the equicontinuity of the h’s taking
u(r) = inf{(diam(Z2))*n(4diam(S)r), (diam(Z))*n(4diam(S)r), 4diam(Z)r}. This
ends the proof of the claim 1.

Moreover the Hausdorff distance distg(Dy,S) between (Dy, p,) and (S, j,) sat-
isfies limy_ oo distH(Dk, 5') =0.

Claim 2 : The Hausdorff distance dg(hi(Dy,), Z) between hy(Dy,) and Z satis-
fies lln’lk_mo dH(hk ([)k): Z) =0.

Let us prove the claim 2.

Let us recall that hg : (D, p,) C (S,p,) — (D},d) C (Z,d) is defined by
hi =y o fr where D} = (D). We have chosen a fixed triple of distinct points
Y0, Y1, Y2 1n Dk C S with p(y;,y;) > & and such that =¥ = fi(y;), i = 0,1,2
satisfies §&— < d(z¥ ,:c]) <5 C . The v;’s have been chosen such that d(z¥, ]) >0
where zf = vk( k). Let us also recall that Dy is L-dense in Bg(o,k) and Dy is
%—dense in By, z(p, k). Let us write Ry, = ;‘—ﬁk, €r = kl—z, O = %, B = % With
these notations, Dy, is e, Rg-dense in Bz(p, Ry). Note that z¥ € Byz(p, uxRy),

d(z* ,a:]) > 5kRk and that & is bounded.
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Let us now take z € Z. The point z can be written z = y,x;. There are two
cases.

Case 1: z € B(p, Ri).

In that case, there exist y, € Dy N B(p, Ry) such that d(zg,yr) < exRg. Let us
show now that d(vryx, vezr) = d(Vxyx,2) — 0 when k — oo. This will prove the
claim 2 because Yy € Dy Since d(z¥, %) > 6, Ry, for i # j then we have for, say
z¥ and 2%, the following estimates d(yy, z§) > 8% and d(wy,2%) > %L By the
fact that the 7;’s act uniformly quasi-Mobius

h/kmka’ykmllca VeYk, ’ykmé:] S n([wlh mlfa Yk, l”;])

and one can easily deduce from all this that

(dzam(Z))2 46k/l,k
0nRi T\ 62

therefore d(viygr, vexr) = d(yxyx,z) — 0, which proves the claim 2 in the case 1.
Case 2: z, ¢ B(p, Ry).

As (Z,d) is uniformly perfect and Dy, is exRi-dense in Bz(p, Ry), there exist

a point y, in Dy N Bz(p, Rg) so that % > (C, for a positive constant Cy

k

independant of k. We can assume that pp < Cy/2 because py tends to 0 when k
tends to infinity. The ~;’s act uniformly quasi-Md&bius thus we have

d(Vryr, wr) <

[k, et wyns 1ws] < ek, oF, yi, 25]).
In our situation we get from triangle inequality
d(x¥,yr) > Ri(Co — ),
d(m‘lzcaxk) > d(mkap) - ukRk
d(@k, yx) < 2d(zy,p) and
d(mlfvwlg) < QﬂkRka

therefore, we get n([z, z¥, yr, 25]) <17 ((d(wk’p‘)‘fi’ﬁ(lﬁz’ﬁ)@iuk)), thus

16414
Vkres Vi s VY, YTh] < ( e > :

One then easily deduce

(diam(2))? n (125
d(VeTk; THYE) < 3

which proves that d(z,vcyx) = d(Vexk, YY) tends to 0 when k tends to infinity
and finishes the proof of the claim 2.

Let us summarize whatAwe have obtained so far. We have an equicontinuous se-
quence of maps hy, : (Dx,p),) C (S, po) = (D%, d) C (Z,d) such that the Hausdorff

distance dH(hk(f)k), Z) between hy(Dy) and Z satisfies limg_, oo dH(hk(f)k),Z) =
- 1

0. Moreover as Dy is p-dense in (S,p) it is easy to check that the Hausdorff
distance distz(Dy,S) tends to 0 when k tends to oo using the relation (4.1)
between p and p,. By an argument similar to the Ascoli’s theorem, one can
then show that a subsequence hg, uniformly converges to a quasi-M&bius map
h: (S,po) = (Z,d), Le. limg, o dist(hy,,h|p, ) = 0, where dist(hy,,hlp, ) =
sup{d(hy,z),h(z)) | x € Dy,}. The same arguments also hold for the sequence
h,;nl - (D}, d) C (Z,d) = (Dy, po) C (S, p,) which therefore uniformly subconverge
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to a quasi-Mébius map f : (Z,d) — (S, p,). Clearly one has foh = Idg and
h o f = Idz which concludes the proof of the proposition 4.5. O

5. TOPOLOGICAL DIMENSION AND REGULAR MAPS

In this section S™ , R™ will denote the standard n-dimensional sphere and eu-
clidean space endowed with their natural distances dg=, dg» and (Z,d), (S, p) com-
pact metric spaces. Let us recall that if fand g are to continuous maps from Z to
S™, the distance dist(f, g) between f and g is defined by

dist(f,g) = sup{ds~ (f(z),9(x)) | z € Z}.

Definition 5.1. Let f : Z — S™ be a continuous map. A pointy € Imf C S™
is called a stable value of f if there exist € > 0 such that for each continuous map
g: Z — S"™ satisfying dist(f,g) < € we have y € I'mg.

Example: Let f(z) = 2° defined on R, then 0 is not a stable value and any
y > 0 is a stable value.
Let us summarize in the following lemma, two properties concerning stable values.

Lemma 5.2. (i) The set of stable values of a continuous map f : Z — S™ is an
open subset of S™.

(i) If f :+ Z — R™ is a continuous map, then y € R"™ is a stable value if and
only if y is a stable value of the restriction fig-1(wy of f to F~Y(W) for any open
neighborhood W of .

Proof. (i) Let y € Imf be a stable value of f and e coming from the stability of f.
For any y' € S™ so that ds-~(y,y’) < € we pick up a small rotation ® of S™ such
that ®(y’) = y. It is possible to choose ® such that dist(®,Idg~) < €, therefore
we have dist(® o f, f) < € so that there exist z € Z with ® o f(z) = y and thus
flx) =y
(i) Let us assume that y € R™ is not a stable value of fj;; where U = f~'(W)
and W is some open neighborhood of y. For § > 0 such that B(y,é) C W let
us denote V = f~(R"” — B(y,6)) and (p1,p2) a partition of unity subordinate
to the open cover (U,V) of R”. By our assumption for any ¢ > 0 there exist a
continuous map gy : U — R”™ such that d(f,gy) < inf(e, ) and y ¢ Im(gy). The
map g = pi1gu + p=f is a continuous map such that d(g, f) < e and y ¢ Im(g)
contradicting the stability of y for f.
O

Definition 5.3. A metric space Z has topological dimension > n if there exist a
Lipschitz map f : Z — S™ which has a stable value.

There is another equivalent definition of the topological dimension obtained by
considering open covers. Let us recall that the order of an open cover U = {U; |[i €
I} is the supremum of all numbers #I’, where I' C I, for which Ny U; # 0.

Definition 5.4. A metric space Z has topological dimension < n if and only if
every open cover of Z has an open refinement of order at most n + 1.

Regular maps and maps of bounded multiplicity are playing an important role
in the proof of the theorem 1.5. Let us define it now.



CRITICAL EXPONENTS AND RIGIDITY IN NEGATIVE CURVATURE 15

Definition 5.5. A map g : (S, p) = R™ is reqular if it is Lipshitz and if there exist
N € N such that for any R > 0 the inverse image g *(B(R)) of any ball of radius
R in R™ can be covered by at most N balls of radius R in S.

Definition 5.6. A map g : (S,p) = R™ has bounded multiplicity if there exist
N € N such that for any y € R™ we have #g~'(y) < N.

Remark: If g : (S, p) — R™ is regular, it has bounded multiplicity.

The following statement describe the regular maps f : (Z,d) — R™ between a
compact metric space (Z,d) all of whose open subsets have topological dimension
> n and R™. Such maps are almost covering maps. As a corollary we get that
such compact metric spaces which admit regular maps into R™ have weak tangent
bilipschitz homeomorphic to R™.

Proposition 5.7. Let (Z,d) be a compact metric space such that every non empty
subset has topological dimension > n, f: Z — R™ a reqular map. Then there exist
an open subset V C Imf with V = Imf such that U := f~'(V) is dense in Z and
flu : U = V is a covering locally bilipschitz map.

Corollary 5.8. Let (Z,d) be a compact metric space such that every non empty
subset has topological dimension > n. Let us suppose that there exist a reqular map
f:Z — R™ Then (Z,d) has a weak tangent bilipschitz homeomorphic to R™.

Before sketching the proof of this proposition, we need some preliminaries about
stability.

Let (Z,d) be a compact metric space of topological dimension n and f : (Z,d) —
R™ a continuous map. Without further assumption the map f may have no stable
value (for example a constant map). But when f is regular then f possesses stable
values.

Lemma 5.9. Let (Z,d) be a compact metric space of topological dimension at least
n and f:(Z,d) = R" a regular map. Then f has stable values.

Proof. By regularity the preimage of all points of R is finite so that for any y € R™
and any € > 0 there exist r, > 0 such that f~'(B(y,r,)) is a finite disjoint union
of open subsets of diameter less than € (located in disjoint neighbourhoods of the
points of f~1(y)). Let us consider an open cover Y = {U; | i € I} of R" such that
each U; € U whose intersection with the image I'm(f) of f in nonempty is a subset
of some B(y,r,) and such that the order of i{ is equal to n+ 1, (for example U/ can
be chosen as the open star cover associated to a fine enough triangulation of R"™).
By construction for any U; € U the open subset f~!(U;) is a finite disjoint union
of open subsets of diameter less than € in Z. These open subsets of small diameter
yield an open covering V ={V; | j € J} of Z. By construction, for j € J, the
subset V; is appearing in the finite decomposition of f’l(Ua(j)) for some Uy ;) in U.
This defines amap a : I = J. If a(j) = «a(j') for distinct j,j' € J, then V;NV; =0
since V; and V are distinct parts of the decomposition of f~* (Uagj) = f’l(Ua(jz))
therefore a induces a simplicial map ® : Ner(V) — Ner(U) which sends k-simplex
to k-simplex. In particular the order of V is less than or equal to n + 1. We
consider now a partition of unity p = {p; | i € I} of R” subordinate to ¢/ and
the partition of unity n = {n; | j € J} of Z defined by n; := x;.(pagj) © f)
subordinate to V where x; is the characteristic function of V;. Considering p; and
7; as barycentric coordinates of R” and Z in Uf and V respectively, we get continuous
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maps p : R® — Ner(U) and n : Z — Ner(V) such that ® ony = po f. Therefore
f=p ' o®on because p is clearly an homeomorphism. As & is a simplicial map,
it is easy to see that if there exist a stable value £ of 1 in the interior of some
n-simplex of Ner(V), then p~! o ®(¢) is a stable value of f. We conclude the proof
of the lemma by proving that n posseses such a stable value £&. Namely let us
assume by contradiction that it is not true. Then there is a collection S of points
in the interior of each n-simplex of Ner()) which are not stable values of 1. It is
therefore possible to perturb 1 on a neighbourhood of S to get a map 7' such that
Im(n') NS = 0. We may then compose n' by the “radial projection” from S onto
the (n — 1)-skeleton of Ner(V) to get a map 1" whose barycentric coordinates still
are subordiante to V. We then pull back the open star cover of Ner(V) and get a
refinement of V of order les than or equal to n which contradicts the assumption
on the topological dimension of Z. O

The proof of the proposition 5.7 is based on the stable points of f that we
describe now.

Definition 5.10. Let f : Z — R"™ be a continuous map between a topological space
Z and R™. A point x € Z is called a stable point of f if f(x) is a stable value of
the restriction fy of f to U for any open neighborhood U of x.

A map f possesses stable points when it has bounded multiplicity:

Lemma 5.11. If (Z,d) is a compact metric space and f : Z — R™ a regular map,
then the preimage of a stable value contains a stable point.

Proof. We just sketch the proof. Since f is a regular map it is of bounded multi-
plicity. Let us denote f~!(y) = {z1,...,7x}. Assume the lemma is not true, then
there exist open disjoint balls B(z;, ;) such that for each i = 1,.., k, y is not a sta-
ble value of f|g(z; r)- For 6 > 0 small enough, we have f~'(B(y,0)) = Uij=1,.. .k U;
where the U;’s are open subsets of B(z;,7;) and then y is not a stable value of
fi5-1(B(y.6))> Which contradict the lemma 5.2 (ii).

O

The stable multiplicity function is the function x4 : R® — N defined by u(y) =
the number of stable points in f~*(y).

Lemma 5.12. Let (Z,d) be a compact metric space such that the topological di-
mension of all nonempty open subsets of Z is > n and f : (Z,d) — R™ a regular
map. Let V C R™ be the subset of points y € R™ where the stable multiplicity p is
locally mazimal and U := f~Y(V'). Then,

(i) V is an open dense subset of Im(f) on which the multiplicity function u is
locally constant.

(ii) The restriction fi of f to U is a local homeomorphism.

Proof. The proof is a consequence of the two following claims.

Claim 1: Let us consider y € Im(f) and € > 0, then there exist § > 0 such
that for all y’ € B(y,d) and all stable points = € f~1(y), there is a stable point in
F~1 W) N Bla,e).

Claim 2: Let y € Im(f) such that p is locally maximal at y. Then every
x € f~Y(y) is a stable point.

Since f is of bounded multiplicity and u takes integer values then V is clearly a
dense subset of I'm(f). By the claim 1, V is an open subset of R and u is locally
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constant on V. This proves (i). By the claim 2, the map y — #f !(y) is locally
constant on V' and by claim 1 f is therefore locally injective on U which proves (ii).
Let us prove the two claims.

Claim 1: Let z be a stable point in f~!(y). For all € > 0, y is a stable value of
f|B(a,¢)» and since the set of stable values is an open set there exist a 0(z) > 0 such
that all y' € B(y,d(x)) are regular values of fp(, . The lemma 5.11 provides a
stable point 2’ € f~!(y') N B(z,€) and by regularity there is finitely many (stable)
point in f~!(y) so that we can choose § = inf(5(z)).

Claim 2: Let W be a relatively compact open neighborhood of y such that pu(y)
is maximal on . Assume the claim is not true. There exist € f~!(y) such that
x ¢ {x1,...,xx} where {z1,...,2;} denotes the set of stable points of f~!(y) and
€ > 0 such that B(z,€), B(z1,€),.., B(xg,€) are disjoint. By lemma 5.9 there exist
a stable value y' € K := W N B(y,d) of f1B(z,0ns-1(k) Where § = 6(y,€) comes
from the claim 1. Therefore by claim 1 and lemma 5.11 respectively there are stable
points of f~!(y') in each of the balls B(x,€), .., B(xy,€) and B(z, €), contradicting
our assumption.

O

We now can end the proof of the proposition 5.7: let f : Z — R™ a regular map
where (Z,d) be a compact metric space such that the topological dimension of all
nonempty open subsets of Z is > n and V' C R™ be the subset of points y € R™
where the stable multiplicity p is locally maximal, then according to the lemma
5.12 it remains to prove that U := f~1(V) is dense in Z and that f is locally
bilipschitz. We first prove the density of U: let us consider a nonempty open set O
in Z. By the lemma 5.9 f(O) has nonempty interior and since V' is dense in Im(f),
f(O) NV # 0 therefore O meets U := f~1(V) which proves the density of U in Z.

Let us now prove that g =: f|; is locally bilipschitz. Since g is Lipschitz we have
to prove that the inverse of g is Lipschitz. We can argue locally and restrict U so
that U C f~1(B) where B is an open ball in R". We have to prove the existence of a
constant C' such that for all z # y € U, d(z,y) < C|f(x)— f(y)|. Let us consider the
euclidean ball B'(f(x), R) centered at f(z) where R := 2|f(x) — f(y)| and denote
A the euclidean segment joining f(x) and f(y). Then, S := g~1(A) is a compact
connected subset of U containing x, y and such that S ¢ f~'(B'(f(z),R)). By
regularity of f, we see that S is covered by N open balls of radius R of Z. We then
get easily that d(z,y) < diam(S) <2NR < 4N|f(x) — f(y)|. This proves that fjir
is bilipschitz and ends the proof of the proposition 5.7.

6. TOPOLOGICAL DIMENSION AND HAUSDORFF DIMENSION

Let (X, d) be a compact metric space whose topological and Hausdorff dimension
coincide. Let us write n this dimension. We also will assume that the space (X, d)
is n-Ahlfors regular. This means that there exist a constant C' > 0 such that

c'r" < H*(B(z,r)) < Cr",
for any ball B(z,r) of (X,d), where H" stands for the Hausdorff measure of (X, d).
In general a topological space of topological dimension n may not contain any
subset homeomorphic to an open subset of R™. We will see however that if (X, d)
be a compact n-Ahlfors regular metric space of topological dimension n then one
can find a weak tangent of (X, d) which is bilipschitz homeomorphic to R™.
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Proposition 6.1. Let (X,d) be a compact n-Ahlfors regular metric space whose
topological dimension is equal to n, then (X, d) has a weak tangent bilipschitz home-
omorphic to R™,

Proof. The proof boils down in proving the existence of a weak tangent (S, p) of
(X,d) and a regular map ¢ : (S,p) — R™. The corollary 5.8 then implies the
existence of a weak tangent (T',0) of (S, p) which is bilipschitz homeomorphic to
R"™. Since weak tangent of a weak tangent of a space (X,d) is a weak tangent of
(X, d), this ends the proof of the proposition. Let us prove now the existence of a
weak tangent (S, p) of (X, d) and a regular map g : (S, p) — R™.

Let f : (X,d) — S™ be a Lipschitz map with a regular value. Such a map actually
exist because of the assumption on the topological dimension of X. We will find the
regular map g among the “weak tangents” of the map f. Let us define what a weak
tangent of the map f is. We consider weak tangent (S, p,0) = limy_, . (X, Axd, p)
and (R™, eucl,0) = limy_, o (S™, Agcan, pg) of (X,d) and (S™, can, py) respectively,
where (R, eucl,0) and (S™, can, py) are the standard euclidean space and the stan-
dard sphere. We recall that all weak tangent of the standard sphere are isometric
to the euclidean space. By definition there exist sequences of maps ¥y, : (S, p,0) —

(X, \id,p), @ : (X, \ed,p) = (S,p,0), Uy : (R?, eucl,0) — (S™, Agcan, pg), and
;. 1 (S™, Apcan, po) — (R™, eucl,0) which are “almost isometries” on balls of radius
R for all fixed R. Amap g : (S, p,0) — (R", eucl,0) such that g = limy,_, o, ®0fo¥,
is called a weak tangent of f : (X,d) — S™. Note that weak tangents of a Lipschitz
map always exist for any choice of fixed marked points p and pg. Here we want
to find such a weak tangent which is regular. For that purpose we will have to
choose p in an appropriate way. More precisely we want to show the existence of
an N € N such that for each ball Br»(R) of radius R in R", g~ (Bgn (R)) can be
covered by N balls of radius CR in (S, p) where C is a constant independant of R.
By approximation this is equivalent to saying that for each ball By, g» (R) of radius
R of (S™, Arcan), f~'(Bx, s (R)) can be covered by N balls of A X of radius CR,
where A\ X the space X endowed with the homothetic metric Axd. Equivalently
this means that for each ball Bsn(%) in (S™, can), f‘l(BSn(/\%)) can be covered
by N balls of radius C % in (X,d). The end of the proof of the proposition would
be very easy under the following assumption:

(x) for any r > 0, HE(f*(Bgn(r))) < C'r™ for some constant C'.
Namely, let us choose {z;}ic; a maximal set of points in f~!'(Bgn(r)) such that
B(z;,r) N B(zj,r) = @ for all i # j in I. Then by Ahlfors regularity we have
HY (UBx(z;,7) > C|I|r™ for some constant C, where |I| is the cardinal of I.
On the other hand if L denotes the Lipschitz constant of f, then Bx (z;, t37) C
f~1(Bsn(2r)), therefore HY (UBx (2, 4y) < H¥(f ' (Bs~(2r))) < 2"C'r™ thus
1] < T

Unfortunalely the assumption (*) does not a priori hold, thus we have to look
at bad points. For § > 0 and A > 0 let us define Ls(z) = Supogtgéw
and Esy ={x € S™ | Ls(x) > A}

We claim that one can choose § small enough and A large enough such that
HZ%. (E5 ) < e for an arbitrary small number e.

Let us assume the claim and finish the proof of the proposition. Let us denote
U =X - f1(Es)) so that f(U) = f(X) — Es . Since f has a regular value,
f(X) contains an open subset of S™ therefore HZ.(f(X)) > 0. By the claim we
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can choose 0 and A such that f(U) = f(X) — Ejs,» has positive Hausdorff measure
HZ.(f(U)) > 0. Since f is Lipschitz , we then get that H%(U) > 0.

We choose a point of density p of U and a weak tangent g : (S, p, 0) — (R", eucl, 0)
of f: (X,d,p) = (S™, can,pg) where (S, p,0) = limy_, . (X, A\rd, p) and (R", eucl, 0)
limy,_, o0 (S™, Agcan, pg)-

Let us prove the regularity of g. We have to prove the existence of V € N such
that for any R > 0, n € N and any ball Bsn(—k) of radius % centered at an
arbitrary point, the set Ay =: f!(Bgn (H)) NB(p, % 2) can be covered by N balls
of radius C{¥ in (X, d).

Since p is a point of density of U we have limy, oo ARH%(B(p, %) -U)=0
and therefore by Ahlfors regularity of (X, d) we easily get the existence of a point
xy, € U such that dist(mk,ffl(BSn(ﬁ))ﬂB(p, bv £)) < & where L is the Lipschitz

constant of f. Setting A} = f~(Bgn (ﬁ)) N B(p, 5 ) we therefore get
SR nRR

A C fH(Bsn (f(z1),~—)) N B(p, ).

Ak Ak

Since zj € U, then f(xy) ¢ Es » hence

oo 5R 5CR.,,
HY (f H(Bsn (f(21), 7)) < (5—)

Ak Ak

and therefore
5CR

HE (A7) < (300"

(From this we can argue like in the case when the assumption (%) holds and con-
clude.

We now prove the claim.

Let us denote L the function defined on Im(f) C S™ by

L(z) = lim supe ot " HE(f~(B(z, 1))).
The family Ej, is a decreasing family of measurable subsets when 6 tends to
0 and Ns>oEsx = {x € Im(f) | L(z) > A}, therefore lims o HZ.(Es)) =
H%. ({z | L(z) > A}
The claim will then follow from the estimate:

Hg.({z | L(z) > A}) <

>

for some constant C.

Let us prove this estimate. Let us denote Ex = {z € Im(f) | L(z) > A}. For
each z € E,, there exist ¢, 0 < ¢t < 4, such that HY(f 1 (B(z,t))) > At". This
defines a set B of ball of radii less than or equal to § which cover F,. By a Vitali’s
covering lemma one can find a sequence B; of balls of B of radii r; tending to 0
such that the B; are pairwise disjoint, E\ C UB;(5r;), where B;(5r;) is the ball
with same center as B; of radius 5r;. The construction of this sequence B; goes
as follows. Let R; be the supremum of the radii of the balls in B. We first take
a maximal set of disjoint balls of B of radii r such that R;/2 < r < R;. Then we
continue the same way with the supremum R, of the radii of balls in B which are
disjoint of the ones already chosen. It is then easy to check that E) is covered by
UB;(5r;) and that the radii of the B;’s tends to zero because (S™,can) is Ahlfors
regular.
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By construction we have

S <ATTHE (UB;) < ATTHM(SM).

Therefore, we get

HE. (Ey) < X;(diam(B;(5r;))" < (10)"\" ' H™(S™),

which proves the estimate.
This ends the proof of the proposition.

(1]

(13]

(14]
(13]
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