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1. Introduction
The goal of this lecture is to describe a theorem of M.Bonk and B.Kleiner on therigidity of discrete groups acting on CAT(-1)-spaces whose limit set's Hausdor� andtopological dimension coincide. We will give the proof of M.Bonk and B.Kleinerand also an alternative proof in particular cases. Before going into it we �rst setup some historical background.A famous theorem of G.D.Mostow states that a compact hyperbolic manifold ofdimension n � 3 is determined up to isometry by its fundamental group. In otherwords, if � is a cocompact lattice in PO(n; 1), with n � 3, there is a unique faithfulland discrete representation � : �! PO(n; 1) up to conjugacy.On the other hand, for some lattices � of PO(n; 1) there exist many faithfulldiscrete nonconjugate representations � : � ! PO(m; 1) 2 � n < m as describedin the following example.Bendings: Let us assume that a lattice � in PO(n; 1) is a free product A�CB ofits subgroups A and B over the amalgamated subgroup C such that C cocompactlypreserves a totally geodesic copy of the hyperbolic space Hn�1 in Hn. For such agroup � the quotient manifold M = Hn=� is a compact hyperbolic manifold witha totally geodesic embedded and separating hypersurface N = Hn�1=C. One canconsider a Fuchsian representation �0 : � ! PO(n + 1; 1). A representation � ofa lattice � of PO(n; 1) in PO(m; 1) with 2 � n < m is called fuchsian if �(�)preserves a totally geodesic copy of the hyperbolic space Hn in Hm. Let � be alattice of PO(n; 1), a fuchsian representation �0 of � in PO(m; 1) with m > n can

be obtained this way: �0 : A 2 �! � A 00 Id
� 2 PO(m; 1):

For such a fuchsian representation �0 of � = A �C B in PO(n+ 1; 1) the group�0(C) preserves a totally geodesic copy of the hyperbolic space Hn�1 in Hn+1.The group �0(C) is then centralized in PO(n + 1; 1) by the subgroup of rotationsaround Hn�1 in Hn+1 which is isomorphic to S1. For rt = eit 2 S1, let us de�ne�t : � ! PO(n + 1; 1) by �t(a) = a for all a 2 A and �t(b) = r�1t brt for all b 2 B.As rt commutes with �0(C) there is no ambiguity in the de�nition of �t(c) forc 2 C = A\B. It can be shown that for t 6= 0 small enough, the group �0(�) doesnot preserve any totally geodesic copy of Hn in Hn+1 and thus cannot be conjugateto �0, cf. [11].One way of distinguishing between a Fuchsian and a non Fuchsian representa-tion � of a cocompact lattice � of PO(n; 1) into PO(m; 1), m > n is to comparetheir limit set. Basically the size of the limit set of G =: �(�) for a non fuchsianrepresentation � is stricly larger than the size of the limit set of G0 =: �0(�) forany Fuchsian representation �0. 1
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Before going further, let us turn to a more general setting and introduce somenotations.Let X be a CAT(-1)-space, cf. [4]. Examples of CAT(-1)-space are CartanHadamard manifold of negative curvature K � �1, ie. simply connected manifoldsof negative sectional curvature K � �1.For a discrete group of isometry G of a CAT(-1)-space X, we de�ne the limit set�(G) of G as the closure of the orbit of some (and hence any) point o 2 X in theideal boundary @X of X, namely �(G) = GoX[@X \ @X.A subset Y � X is said quasi-convex if there is a constant C > 0 such that everygeodesic segment with endpoints in Y lies in the C-neighborhood of Y . The groupG is said quasi-convex cocompact if there exist a G-invariant quasi-convex subsetY � X with compact quotient Y=G.In the case of a Cartan Hadamard manifold X of negative sectional curvatureK � �1, quasi-convex cocompactness is equivalent to the following convex cocom-pactness property. The convex hull of �(G) is the smallest G-invariant convexsubset of X [ @X containing �(G), and we denote it by H(G).

De�nition 1.1. A discrete group of isometry G of X is convex cocompact ifH(G)=G is a compact subset of X=G.
For example if �0 : � ! PO(n+ 1; 1) is a Fuchsian representation a cocompactlattice � of PO(n; 1), then G0 = �0(�) is a convex cocompact group of the hy-perbolic space Hn+1 .The limit set �(G0) of G is the boundary @Hn, the convexhull H(G0) is the totally geodesic copy of Hn in Hn+1 preserved by G0 and theconvex cocompactness of G0 comes from the cocompactness of �. If Gt = �t(�) arebendings then the Gt's are convex cocompact for t small enough, and the limit set�(Gt) of each such Gt is then a topological n� 1-dimensional sphere [15], [8].For a CAT(-1) space X, let us de�ne a distance on the ideal boundary as follows.Let o be a �xed point in X. Let �, �0 be two points in @X and denote by l(�; �0)the distance between o and the geodesic joining � and �0. The following

(1.1) d(�; �0) =: e�l(�;�0)
is a distance on @X. This distance depends on the choice of the base point o buttwo di�erent choices of a base point give rise to equivalent distances, [8].We denote by �(G) the Hausdor� dimension with respect to the distance d of thelimit set �(G). Let us recall that the d-Hausdor� measure Hd on a metric space(M;d) is de�ned as follows. For A �M and � > 0, we set

Hd� (A) = inff�j(diam(Ej)dg
where the in�mum is taken on all sequences fEjg of subset ofM which cover A andwhose diameter satis�es diamEj � � for all j's, and Hd(A) = lim�!0Hd� (A). Wesay that M has Hausdor� dimension � if Hd(M) = 0 for d > � and Hd(M) = 1for d < �.The following de�nitions will be usefull.
De�nition 1.2. (i) A complete metric space (M;d) of Hausdor� dimension � is
said Ahlfors regular if there is a constant C > 0 such that

C�1r� � H�(B(x; r)) � Cr�
for every ball B(r) of radius r in (M;d).
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(ii)A metric space is uniformly perfect if there exist a constant C > 0 such that

for every x 2M and 0 < r < diamM , there is a point y 2M which satis�es

C�1r � d(x; y) � r
An Ahlfors regular space is automatically uniformly perfect. This can be easilydeduced from the fact that B(x; r)� B(x;C�1r) has positive measure for C largeenough.For example the limit set (�(G); d) of quasi-convex cocompact group G actingon a CAT(-1)-space is Ahlfors regular and uniformly perfect.Whenever the group G is quasi-convex cocompact, the Hausdor� dimension �(G)of �(G) can be de�ned as the critical exponent of the Poincar�e series �g2Ge�sdist(o;�o),where dist stands for the distance in X, [15]

�(G) = inffs > 0 j �g2Ge�sdist(o;�o) <1g:
Let us remark that the critical exponent of the Poincar�e series �g2Ge�sdist(o;�o)does not depend on the choice of the point o because of the triangle inequality.For example, if �0 : �! PO(n+ 1; 1) is a Fuchsian representation a cocompactlattice � of PO(n; 1) and G0 = �0(�) then �(G0) = n � 1. For a non fuchsianfaithfull discrete convex cocompact representation � : � ! PO(n + 1; 1) withG = �(�), the limit set of G is stricly \bigger" than the limit set of G0, namely,�(G) > �(G0) = n � 1. In particular for the above bendings �(Gt) is strictlyincreasing. This has been �rst observed by H.Poincar�e, then proved by R.Bowenfor n = 2 and D.Sullivan for larger n and extended by several authors in variablecurvature or without special assumption on G, [6], [15], [1], [12].For a quasi-convex cocompact representation of a cocompact lattice of PO(n; 1)in a CAT(-1) space M.Bourdon proved the following

Theorem 1.3. [6] Let � be a cocompact lattice in PO(n; 1) and � : �! Isom(X)
a discrete faithfull representation of � in the isometry group of a CAT(-1) spaceX. We assume that G =: �(�) is quasi-convex cocompact. Then, �(G) � n� 1 and�(G) = n� 1 if and only if G preserves a totally geodesic copy H of Hn in X with
compact quotient H=G.

In the particular case of the above bendings �t of a cocompact lattice � ofPO(n; 1) in PO(m; 1), m > n, the limit set �(Gt) of Gt = �t(�) is a (n � 1)-dimensional topological sphere of Hausdor� dimension �(Gt) � n � 1 for t smallenough and equality �(Gt) = n� 1 happens if and only if t = 0.Let us stress the fact that in the theorem 1.2, the convex cocompact group G inis assumed to be isomorphic to a cocompact lattice of PO(n; 1).It's worth mentioning that the same conclusion of the theorem 1.2 still holds forany convex cocompact group G in PO(m; 1) which is not assumed to be isomorphicto a cocompact lattice of PO(n; 1) but whose limit set is supposed to be homeo-morphic to a standard n-sphere, 2 � n � m� 1. This was actually obseved earlierby Izeki, [9].
Theorem 1.4. [9] Let G be a discrete convex cocompact group of isometry ofPO(m; 1). Let us assume that the limit set �(G) of G is homeomorphic to a n-
dimensionel sphere. Then, �(G) � n and �(G) = n if and only if G preserves a
totally geodesic copy of Hn+1 in Hm.
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M.Bonk and B.Kleiner have extended this result to the case of a discrete groupG of isometries of a CAT(-1)-space X.

Theorem 1.5. [3] Let G be a convex cocompact group of isometries of a CAT(-1)
space X. Let �(G) and dimtop(�(G)) be the Hausdor� and topological dimension
of the limit set �(G). We assume that �(G) = dimtop(G)) = n for some integern � 2. Then, G preserves a totally geodesic copy H of the hyperbolic space Hn+1
embedded in X, such that H=G is compact.In particular, G is a cocompact lattice
in PO(n; 1).
Remark: In the theorem 1.2, G is assumed to be isomorphic to a cocompactlattice in PO(n; 1). On the contrary in the theorem 1.5, G is not assumed to be acocompact lattice in PO(n; 1), but this fact is a part of the conclusion. In fact theproof of the theorem 1.5 relies on the theorem 1.2: M.Bonk and B.Kleiner actuallyshow that under the assumptions of the theorem 1.5 then G is isomorphic to acocompact lattice in PO(n; 1).The following rigidity theorem which was observed by G.Knieper is a particularcase of the theorem 1.5.

Theorem 1.6. [10] Let M = X=G be a (n + 1)-dimensional compact riemannian
manifold with sectional curvature K � �1, where X is the universal covering space
of M and G its fundamental group. If �(G) = n then M is hyperbolic, i.e. K = �1.

As G is cocompact the limit set �(G) coincides with the ideal boundary of Xwhich is a n-dimensional topological sphere thus the theorem 1.6 follows from thetheorem 1.5.In the next section we will give an altenative proof of the theorem 1.6 which isinspired from [1].
2. Alternative proof of the theorem 1.5 in a simpler case

We �rst give a proof of the theorem 1.6 distinct of the original one and whichdoes not use the theorem 1.5.Let us recall the theorem 1.6.
Theorem 2.1. [10] Let M = X=G be a (n + 1)-dimensional compact riemannian
manifold with sectional curvature K � �1, where X is the universal covering space
of M and G its fundamental group. If �(G) = n then M is hyperbolic, i.e. K = �1.
Proof. We shall use the following criterium for a Cartan Hadamard manifold X tobe isometric to the hyperbolic space Hn+1. For x 2 X and � 2 @X let us denoteB(x; �) the Busemann function de�ned by

B(x; �) = limt!1 dist(x; c(t))� dist(o; c(t))
where o is a �xed base point in X and c(t) a geodesic ray joining o to �.The following lemma characterizes the hyperbolic space Hn+1 among CartanHadamard manifolds.
Lemma 2.2. Let X be a (n + 1)-dimensional Cartan Hadamard manifold with
Busemann function B. Then X is isometric to the hyperbolic space Hn+1 if and
only if for each � 2 @X and x 2 X, we have HessB(x; �) + dB(x; �) 
 db(x; �) =g(x) where HessB is the Hessian of B with respect to the variable x and g is the
riemannian metric on X.



CRITICAL EXPONENTS AND RIGIDITY IN NEGATIVE CURVATURE 5
This lemma amounts to saying that the horospheres of X (which are the levelsets of the functions B(:; �)) have their second fundamental form proportional tothe metric if and only if X is of constant sectional curvature K = �1.

Proof. The only if part is obvious. Let us prove the other way. Let (r; �) be thepolar coordinates at the point o 2 X where r is the distance from o and � 2 Sn�1the spherical coordinate. If the Buseman function of the Cartan Hadamard mani-fold X satis�es HessB(x; �) + dB(x; �) 
 db(x; �) = g(x), it is easy to check thatfor any point x 2 X with polar coordinates (r; �) and any point � 2 @X wehave expB(x; �) = coshr � cos�sinhr, where � is the angle at o between the ge-odesic joining o and x and the geodesic joining o and �. In the hyperbolic spacethe Buseman function B0(y; �) associated to an origin y0 also satis�es the rela-tion expB0(y; �) = coshr � cos�sinhr, where (r; �) are the polar coordinate ofy at the origin y0. The choice of an isometry between the tangent space of Xat o and the tangent space of the hyperbolic space Hn+1 at y0 provides a di�eo-morphism f : X [ @X ! Hn+1 [ @Hn+1 between X [ @X and Hn+1 [ @Hn+1
which reads in polar coordinates f(r; �) = (r; �). Since the Busemann functionsB and B0 of X and Hn+1 have the same expression in polar coordinate, we getthat B(x; �) = B0(f(x); f(�)). Therefore for any x; y 2 X we have dX(x; y) =supfB(x; �)�B(y; �) j � 2 @Xg = supfB0(f(x); f(�))�B0(f(y); f(�)) j � 2@Xg = supfB0(f(x); �)�B0(f(y); �) j � 2 @Hn+1g = dHn+1(f(x); f(y)). Hencef is an isometry and X is a hyperbolic space.

�

The proof of the theorem 2.1 therefore boils down in showing that if �(G) = nthen HessB(x; �) + dB(x; �)
 db(x; �) = g(x).For that purpose we shall construct a smooth map F : M ! M homotopic tothe Identity map and whose Jacobian satis�es jJacF (x)j � (det k(x))�1 wherek(x) is the quadratic form de�ned on the tangent space TF (x)M by
(2.1) k(x)(:; :) = Z

@X HessB( ~F (~x); �)(:; :) + dB( ~F (~x); �)(:)
 db( ~F (~x); �)(:)d�~x
where ~F and ~x stands for the lifts of F and x to the universal cover ~M of M , and�~x is the measure of Patterson that we will describe below.Before decribing the construction of the map F , let us end the proof of thetheorem 2.1. We assume that M is orientable (if not we replace it by a 2-foldcovering). As F is homotopic to the Identity, it is a degree one map therefore if 
is the volume form of M one has
(2.2) volM = j ZM F �
 j � Z

M jJacF (x)jdx � Z
M (detk(x))�1dx:

On the other hand the sectional curvature of M satis�es K � �1, therefore bythe Rauch comparison theorem we have for every y 2 ~X, and � 2 @ ~X,
(2.3) HessB(y; �) + dB(y;�) 
 dB(y;�) � g(y);
thus detk(x) � 1. We therefore get

volM � Z
M (detk(x))�1dx � volM:
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and hence detk(x) = 1. From this and the inequality 2.4 one easily get that for ally 2 X and � 2 @X

HessB(y; �) + dB(y;�) 
 dB(y;�) = g(y);using the fact that the measures �~y are positive on open subsets of @X. The lemma2.2 then concludes the proof of the theorem 2.1. �

Let us now explain the construction of the map F .We �rst de�ne a map which associates a point in X to a measure � supportedon the ideal boundary @X whose support is not reduced to a point. Let � be ameasure supported on @X. Let D� : ~X ! R be the function de�ned by
(2.4) D�(y) = Z

@ ~X eB(y;�)d�(�)
A computation shows that

(2.5) HessD�(y) = Z
@ ~X(HessB(y;�) + dB(y;�) 
 dB(y;�))eB(y;�)d�(�):

By 2.3 we then get
(2.6) HessD�(y) � D�(y)~g;

thus HessD�(y) is positive de�nite and D� is strictly convex.Claim: If the support of � contains at least two points, we have
limyk!@ ~XD�(y) = +1:

Proof. Let yk 2 ~X a sequence such that
(2.7) limk!1 yk = �0 2 @ ~X:

As the support of � contains at least two points, we have supp(�)\(@ ~X�f�0g) 6=;, thus there exists a compact subset K � @ ~X�f�0g such that �(K) > 0 therefore,
(2.8) Z

@ ~X eB(yk;�)d� � Z
K eB(yk;�)d�! +1:

because for every � 2 K we have limyk!�0 B(yk; �) = +1. �

We then have the following lemma.
Lemma 2.3. Let � a �nite borel measure on @ ~X whose support contains at least
two points. The function D� has a unique minimum. This minimum will be denoted
by C(�).

Recall that a family of Patterson measures (�x)x2 ~X associated to a discretegroup of isometry G of X is a set of positive �nite measures �x supported on @ ~X,x 2 ~X, such that the following holds for all x 2 ~X, 
 2 G,
(2.9) �
x = 
��x
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(2.10) �x = e��B(x;�)�o;
where o 2 ~X is a �xed origin, B the Busemann function associated to o and �the critical exponent of G.Whenever G is cocompact the support of �0 equals @X thus according to thelemma we can de�ne the map ~F : ~X ! ~X for x 2 ~X by

(2.11) ~F (x) = C(e�B(x;�)�x):
The map ~F satis�es the following properties.(i) ~F is a smooth G-equivariant map.(ii) jJac ~F (x)j � (det k(x))�1

Proof. (i) The smoothness of ~F comes from the smoothness of the Busemann func-tion B(x; �) with respect to x for each �xed �. From the equivariance of the familyof Patterson measures, cf. 2.9 and the cocycle relation B(
y; 
�) � B(
x; 
�) =B(y; �)�B(x; �) we get the invariance under the diagonal action of G on X �X ofthe function of x and y de�ned by De�B(x;�)�x(y) = R@X eB(y;�)�B(x;�)d�x(�) whichimplies the equivariance of ~F . By equivariance ~F is homotopic to the Identity.
(ii) The point ~F (x) is characterized by

(2.12) Z
@ ~X dB( ~F (x);�)eB( ~F (x);�)�B(x;�)d�x(�) = 0:

In order to simplify the notations we will denote �x the measure eB( ~F (x);�)�B(x;�)�xand � instead of �(C). We will also write D ~F (u) instead of D ~F (x)(u).By di�erentiating 2.12 we get the following characterization of the di�erential of~F : for u 2 Tx ~X and v 2 T ~F (x) ~X, one has
Z
@ ~X [HessB( ~F (x);�)(D ~F (u); v) + dB( ~F (x);�)(v)dB( ~F (x);�)(D ~F (u))]d�x(�)

(2.13) = (� + 1) Z@ ~X dB( ~F (x);�)(v)dB(x;�)(u)d�x(�):
Let us recall that we de�ned the quadratic forms k for v 2 T ~F (x) ~X by

(2.14) k(v; v) = Z
@ ~X [DdB( ~F (x);�)(v; v) + (dB( ~F (x);�)(v))2]d�x(�):

Let us de�ne the quadratic form h by
(2.15) h(v; v) = Z

@ ~X dB( ~F (x);�)(v)2d�x(�):
The relation 2.13 writes, for u 2 Tx ~X and v 2 T ~F (x) ~X :

(2.16) k(D ~F (u); v) = (� + 1) Z@ ~X dB( ~F (x);�)(v)dB(x;�)(u)d�x(�):
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We de�ne the quadratic form h0 on Tx ~X for u 2 Tx ~X by

(2.17) h0(u; u) = Z
@ ~X dB(x;�)(u)2d�x(�);

and one derives from 2.16
(2.18) jk(D ~F (x)(u); v)j � (� + 1)h(v; v)1=2h0(u; u)1=2:

One now can estimate the Jacobian of ~F . If D ~F is not of rank n + 1, thenJac ~F (x) = 0. Let us assume that D ~F is of rank n+ 1. Let us denote by H 0 [resp.H and K] the selfadjoint operator (with respect to ~g) associated to the quadraticform h0 [resp. h, k].Let (vi)n+1i=1 be an orthonormal basis of T ~F (x) ~X which diagonalizes H and (ui)n+1i=1an orthonormal basis of Tx ~X such that the matrix of K �D ~F (x) : Tx ~X ! T ~F (x) ~Xis triangular. Then,
(2.19) detK:jJac ~F (x)j � (� + 1)n+1(�n+1i=1 h(vi; vi)1=2)(�n+1i=1 h0(ui; ui)1=2)thus,
(2.20) detK:jJac ~F (x)j � (� + 1)n+1�TraceHn+ 1

�(n+1)=2�TraceH 0
n+ 1

�(n+1)=2:
In these inequalities one can normalize the measures

�x = eB( ~F (x);�)�B(x;�)�x
such that their total mass equals one, which gives
(2.21) traceH = �n+1i=1 h(vi; vi) � 1;

the last inequality coming from the fact that for all � 2 @ ~X,
(2.22) �n+1i=1 dB( ~F (x);�)(vi)2 � jjdB( ~F (x);�)jj2 = 1

and from the previous normalization.Similarly,
(2.23) traceH 0 = �n+1i=1 h0(ui; ui) � 1:

We then obtain from (2.20)
(2.24) detK:jJac ~F (x)j � � � + 1n+ 1

�n+1:
Thanks to (2.3), we have detK � 1, so that

(2.25) jJac ~F (x)j � � � + 1n+ 1
�n+1:

This proves (ii). �
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3. Sketch of proof of the theorem of Bonk-Kleiner

The strategy of proof is to show that with the assumptions of the theorem 1.5,the group G actually is isomorphic to a cocompact lattice in PO(n; 1) and thenapply the theorem 1.2. The way of doing this is to apply the following theorem ofP.Tukia which characterize discrete subgroups of PO(n; 1).
Theorem 3.1. [14] Let G be a group acting uniformly quasi-M�obius on the standard
sphere (Sn; can). We assume that the induced action of G on Tri(Sn) is cocompact,
then the action of G on Sn is conjugate by a quasi-M�obius homeomorphism to an
action by M�obius transformations of Sn.

The proof of the theorem 1.5 therefore boils down in showing that the action ofG on its limit set (�(G); d) is quasi-M�obius conjugate to an action on (Sn; can).The topological dimension assumption on the limit set �(G) provides a lipschitzmap from (�(G); d) to Sn whose image Im(f) contains an open subset of Sn. Bymetric topology arguments one deduce that (�(G); d) has a weak tangent bilipschitzhomeomorphic to the euclidean space Rn, cf. proposition 6.1.On the other hand the limit set (�(G); d) of G has the following selfsimilarityproperty. For any weak tangent (S; �) of (�(G); d), the one point compacti�cation(Ŝ; �̂) of (S; �) is quasi-M�obius homeomorphic to (�(G); d),cf. proposition 4.5. Since(�(G); d) has a weak tangent bilipschitz homeomorphic to the euclidean space Rn weget that (�(G); d) is quasi-M�obius homeomorphic to the standard sphere (Sn; can).Therefore the action of G on (�(G); d) is conjugate to a uniform quasi-M�obiusaction of G on (Sn; can).The theorem of P.Tukia then asserts that G is quasi-M�obius conjugate to asubgroup of M�obius transformations of Sn. The induced action of G on Tri(Sn)is properly discontinuous and cocompact, therefore extends to an isometric actionof G on Hn+1. The theorem 1.2 of M.Bourdon then applies and the theorem 1.5follows.
4. Weak tangent and self similarity of limit sets

Let (Mk; dk), (M;d) be metric spaces with base points pk 2Mk and p 2M .
De�nition 4.1. The sequence (Mk; dk; pk) is said to converge to (M;d; p) in the
pointed Gromov-Hausdor� topology if 8R > 0, 8� > 0, 9N 2 N, 9Dk � BMk(pk; R),9D0k � BM (p;R), 9fk : Dk ! D0k such that fk are bijections, pk 2 Dk, p 2 D0k and
for any k,

(1) fk(pk) = p
(2) Dk is �-dense in BMk(pk; R) and D0k is �-dense in BM (p;R)
(3) 8x, y 2 Dk, we have jd(fk(x); fk(y))� dk(x; y)j � �.

Example: The product R� 1kS1 of the real line with a circle of radius 1k convergesto R in the pointed Gromov-Hausdor� topology.
De�nition 4.2. Let (M;d) be a metric space. A weak tangent of (M;d) is a
complete metric space (S; �; o) with a base point o 2 S such that there exist a
sequence (M;�kd; pk) converging in the Gromov-Hausdor� topology to (S; �; o) for
some sequence �k ! +1.
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Example 1: Let (M; g) be a riemannian manifold; then every weak tangent ata point x 2M is isometric to the tangent space TxM of M at x endowed with theeuclidean distance induced by g(x). For general metric spaces weak tangent are notunique.Example 2: Let (M;d) be a metric space and (S; �; o) a weak tangent of (M;d)at a point p 2M . Let (S0; �0; o) be a weak tangent of (S; �; o) at o. Then (S0; �0; o)is a weak tangent of (M;d) at p.As one see on the example 1 a weak tangent (S; �; o) of a metric space (M;d)may be unbounded so we shall now put a distance �̂ on the one point compacti�-cation Ŝ = S [ f1g such that the two distances � and �̂ on S are \quasi-M�obius"equivalent. Let us now de�ne quasi-M�obius map between metric spaces and decribethe construction of �̂.Let (M;d) be a metric space. The cross ratio of a four-uple of distinct points(x1; x2; x3; x4) is the real number

[x1; x2; x3; x4] := d(x1; x3)d(x2; x4)d(x1; x4)d(x2; x3)
De�nition 4.3. Let f : (M;d)! (M 0; d0) be an injective map between two metric
spaces and � : [0;+1[! [0;+1[ a homeomorphism such that �(0) = 0. The mapf is said to be �-quasi-M�obius if for any quadruple of points xi 2 M , 1 � i � 4,[f(x1); f(x2); f(x3); f(x4)] � �([x1; x2; x3; x4]).
Remark: As a consequence of the de�nition one can see that a �-quasi-M�obiusmap f : (M;d) ! (M 0; d0) is a homeomorphism on its image f(M) and thatthe inverse map f�1 : (f(M); d0) ! (M;d) is �0-quasi-M�obius for the home-omorphism �0(t) = �(1=t)�1. This can be easily seen by exchanging x1 andx2 in the de�nition of a quasi-M�obius map, which gives �(1=[x1; x2; x3; x4])�1 �[f(x1); f(x2); f(x3); f(x4)].
Example: Let G be a quasi-convex cocompact group of isometries of a CAT(-1)space X and (�(G); d) the limit set of G endowed with the distance d de�ned in1.1. Then G acts uniformly quasi-M�obius on (�(G); d), which means that thereexist an increasing homeomorphism � : [0;+1[! [0;+1[ such that the action ofeach element g 2 G on (�(G); d) is �-quasi-M�obius, cf. [5].For more details on quasi-M�obius maps see the M.Bourdon's lecture.

Lemma 4.4. Let (S; �) be an unbounded metric space with a base point o and Ŝ =S[f1g the one point compacti�cation of S. There exist a distance �̂0 on Ŝ inducing

the topology of Ŝ such that (S; �) and (S; �̂o) are �-quasi-M�obius homeomorphic for�(t) = 16t.
Proof. Let us consider the function ho : Ŝ ! [0;+1[ de�ned by ho(1) = 0 and forall x 2 S

ho(x) = 11 + �(o; x) :For x and y 2 S let us de�ne �o by �o(x; y) := ho(x)ho(y)�(x; y) if x and y2 S, �o(x;1) = �o(1; x) = ho(x) and �o(1;1) = 0. If x and y 2 Ŝ we de�ne�̂o(x; y) = inff�k�1i=0 �o(xi; xi+1)g where the in�mum is taken over all sequences of
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points x0; :::xk in Ŝ with x0 = x and xk = y. The reader can easily check that thelemma is a consequence of the following inequalities
(4.1) 14�o(x; y) � �̂o(x; y) � �o(x; y)
. �

The next proposition is one key point in the proof of the theorem 1.5. Roughlyspeaking it says that the limit set �(G) of a convex cocompact group G of a CAT(-1) space has a selfsimilarity property. More precisely this means that (�(G); d) isquasi-M�obius homeomorphic to (Ŝ; �̂o) for any weak tangent (S; �; o) of (�(G); d).
Proposition 4.5. Let G be a convex cocompact group acting on a CAT(-1) space,(�(G); d) the limit set of G endowed with the metric de�ned in 1.1. If (S; �; o) is a
weak tangent of (�(G); d) then (Ŝ; �̂o) is quasi-M�obius homeomorphic to (�(G); d).
Proof. Let us consider a weak tangent (S; �; o) = lim�k!1(�(G); �kd; pk) of (�(G); d).In order to simplify the notations we will denote Z the limit set �(G) and �kZthe metric space (�(G); �kd). For an arbitrary metric space (M;d) we will writeBM (p; r) the ball of radius r centered at p 2M .Let ~Dk � BS(o; k) [resp. Dk � B�kZ(pk; k) ] be maximal 1k separated subsetssuch that o 2 ~Dk and pk 2 Dk and bijections fk : ~Dk ! Dk such that
(4.2) j�kd(fk(x); fk(y))� �(x; y)j � 1kfor any x, y in S.Such sets ~Dk, Dk and maps fk exist since (S; �; o) is the limit of (Z; �kd).It follows from 4.1 and the 1k maximal separation of the sets ~Dk and Dk that
(4.3) 12�(x; y) � �kd(fk(x); fk(y)) � 2�(x; y)
thus the sequence of maps fk is uniformly bilipschitz.Now we can assume that ~Dk � S contains a �xed triple of distinct points y0; y1; y2in S. Let us denote xki = fk(yi), i = 0; 1; 2.As G is convex cocompact, its action on the set Tri(Z) of triples of distinctpoints in Z = �(G) is cocompact. Therefore there exist a sequence 
k 2 G and apositive number � such that
(4.4) d(
kxki ; 
kxkj ) � �

and
(4.5) �(yi; yj) � �
for i; j 2 f0; 1; 2g.Let us de�ne hk : ( ~Dk; �) � (S; �) ! (D0k; d) � (Z; d) de�ned by hk := 
k � fkwhere D0k = 
k(Dk). As G is convex cocompact it acts uniformly quasi-M�obius on(�(G); d) thus there exist an increasing homeomorphism � : [0;+1[! [0;+1[ suchthat the action of each element 
k 2 G on (�(G); d) is �-quasi-M�obius. Therefore,by (4.3) we get that hk = 
k � fk is 16�-quasi-M�obius. By the lemma 4.4, the mapshk can be considered as 16�-quasi-M�obius maps hk : ( ~Dk; �) � (Ŝ; �̂o)! (D0k; d) �(Z; d).
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Claim 1: The sequence hk : ( ~Dk; �) � (Ŝ; �̂o)! (D0k; d) � (Z; d) is equicontin-uous.Let us prove the claim. We shall prove the existence of a function � : [0;1[![0;1[ satisfying limr!0 �(r) = 0 and such that for any x; y 2 ~Dk, �̂o(x; y) = r,then d(hk(x); hk(y)) � �(r).Let us consider the points yi and xki , i = 0; 1; 2, such that (4.4) and (4.5) hold,and denote zki = hk(yi) = 
k(xki ). We can normalize d such that � = 1 in (4.4) and(4.5), therefore we have

(4.6) d(zki ; zkj ) � 1
and

(4.7) �̂o(yi; yj) � 1
for i; j 2 f0; 1; 2g.Let x; y 2 ~Dk, �̂o(x; y) = r. There are three cases:1) �̂o(x; y) = r � 1=4 and �̂o(y1; x) � 1=22) �̂o(x; y) = r � 1=4 and �̂o(y1; x) > 1=23) �̂o(x; y) > 1=4.Case 1). We have �̂o(x; y2) � 1=2, �̂o(x; y3) � 1=2, �̂o(y; y2) � 1=4 and�̂o(y; y3) � 1=4.>From these inequalities and the fact that [hk(x); hk(y2); hk(y); hk(y3)] � �([x; y2; y; y3])we easily get
(4.8) d(hk(x); hk(y)) � (diam(Z))2�(8diam(Ŝ)�̂o(x; y)):

Case 2). As �̂o(y2; y3) � 1 there exist i 2 f2; 3g such that �̂o(y; yi) � 1=2. >Fromthis and the fact that [hk(x); hk(yi); hk(y); hk(y1)] � �([x; yi; y; y1]) we get
(4.9) d(hk(x); hk(y)) � (diam(Z))2�(4diam(Ŝ)�̂o(x; y)):

Case 3). We have �̂o(x; y) � 1=4, therefore
(4.10) d(hk(x); hk(y)) � 4diam(Z)4 � 4diam(Z)�̂o(x; y):

>From (4.8), (4.9) and (4.10) we obtain the equicontinuity of the hk's taking�(r) = inff(diam(Z))2�(4diam(Ŝ)r); (diam(Z))2�(4diam(Ŝ)r); 4diam(Z)rg. Thisends the proof of the claim 1.Moreover the Hausdor� distance distH( ~Dk; Ŝ) between ( ~Dk; �̂o) and (Ŝ; �̂o) sat-is�es limk!1 distH( ~Dk; Ŝ) = 0.Claim 2 : The Hausdor� distance dH(hk( ~Dk); Z) between hk( ~Dk) and Z satis-�es limk!1 dH(hk( ~Dk); Z) = 0.Let us prove the claim 2.Let us recall that hk : ( ~Dk; �̂o) � (Ŝ; �̂o) ! (D0k; d) � (Z; d) is de�ned byhk := 
k � fk where D0k = 
k(Dk). We have chosen a �xed triple of distinct pointsy0; y1; y2 in ~Dk � S with �(yi; yj) � � and such that xki = fk(yi), i = 0; 1; 2satis�es C�1�k � d(xki ; xkj ) � C�k . The 
k's have been chosen such that d(zki ; zkj ) � �where zki = 
k(xki ). Let us also recall that ~Dk is 1k -dense in BS(o; k) and Dk is1k -dense in B�kZ(p; k). Let us write Rk = k�k , �k = 1k2 , �k = C�1k , �k = Ck . Withthese notations, Dk is �kRk-dense in BZ(p;Rk). Note that xki 2 BZ(p; �kRk),d(xki ; xkj ) � �kRk and that �k�2k is bounded.
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Let us now take z 2 Z. The point z can be written z = 
kxk. There are twocases.Case 1: xk 2 B(p;Rk).In that case, there exist yk 2 Dk \B(p;Rk) such that d(xk; yk) � �kRk. Let usshow now that d(
kyk; 
kxk) = d(
kyk; z) ! 0 when k ! 1. This will prove theclaim 2 because 
kyk 2 D0k. Since d(xki ; xkj ) � �kRk for i 6= j then we have for, sayxk1 and xk2 , the following estimates d(yk; xk1) � �kRk2 and d(xk; xk2) � �kRk2 . By thefact that the 
k's act uniformly quasi-M�obius

[
kxk; 
kxk1 ; 
kyk; 
kxk2 ] � �([xk; xk1 ; yk; xk2 ])and one can easily deduce from all this that
d(
kyk; 
kxk) � (diam(Z))2�kRk ��4�k�k�2k

�
therefore d(
kyk; 
kxk) = d(
kyk; z)! 0, which proves the claim 2 in the case 1.Case 2: xk =2 B(p;Rk).As (Z; d) is uniformly perfect and Dk is �kRk-dense in BZ(p;Rk), there exista point yk in Dk \ BZ(p;Rk) so that d(yk;p)Rk � C0 for a positive constant C0independant of k. We can assume that �k < C0=2 because �k tends to 0 when ktends to in�nity. The 
k's act uniformly quasi-M�obius thus we have

[
kxk; 
kxk1 ; 
kyk; 
kxk2 ] � �([xk; xk1 ; yk; xk2 ]):In our situation we get from triangle inequalityd(xk1 ; yk) � Rk(C0 � �k),d(xk2 ; xk) � d(xk; p)� �kRkd(xk; yk) � 2d(xk; p) andd(xk1 ; xk2) � 2�kRk,therefore, we get �([xk; xk1 ; yk; xk2 ]) � � � 4�kd(xk;p)(d(xk;p)��kRk)(C0��k)
�, thus

[
kxk; 
kxk1 ; 
kyk; 
kxk2 ] � ��16�kC0
� :

One then easily deduce
d(
kxk; 
kyk) � (diam(Z))2 � � 16�kC0

�
�which proves that d(z; 
kyk) = d(
kxk; 
kyk) tends to 0 when k tends to in�nityand �nishes the proof of the claim 2.Let us summarize what we have obtained so far. We have an equicontinuous se-quence of maps hk : ( ~Dk; �̂)o) � (Ŝ; �̂o)! (D0k; d) � (Z; d) such that the Hausdor�distance dH(hk( ~Dk); Z) between hk( ~Dk) and Z satis�es limk!1 dH(hk( ~Dk); Z) =0. Moreover as ~Dk is 1k -dense in (S; �) it is easy to check that the Hausdor�distance distH( ~Dk; Ŝ) tends to 0 when k tends to 1 using the relation (4.1)between � and �̂o. By an argument similar to the Ascoli's theorem, one canthen show that a subsequence hkn uniformly converges to a quasi-M�obius maph : (Ŝ; �̂o) ! (Z; d), i.e. limn!1 dist(hkn ; hj ~Dkn
) = 0, where dist(hkn ; hj ~Dkn

) =supfd(hknx); h(x)) j x 2 ~Dkng. The same arguments also hold for the sequenceh�1kn : (D0k; d) � (Z; d)! ( ~Dk; �̂o) � (Ŝ; �̂o) which therefore uniformly subconverge
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to a quasi-M�obius map f : (Z; d) ! (Ŝ; �̂o). Clearly one has f � h = IdŜ andh � f = IdZ which concludes the proof of the proposition 4.5. �

5. Topological dimension and regular maps
In this section Sn , Rn will denote the standard n-dimensional sphere and eu-clidean space endowed with their natural distances dSn , dRn and (Z; d), (S; �) com-pact metric spaces. Let us recall that if fand g are to continuous maps from Z toSn, the distance dist(f; g) between f and g is de�ned by

dist(f; g) = supfdSn(f(x); g(x)) j x 2 Zg:
De�nition 5.1. Let f : Z ! Sn be a continuous map. A point y 2 Imf � Sn
is called a stable value of f if there exist � > 0 such that for each continuous mapg : Z ! Sn satisfying dist(f; g) � � we have y 2 Img.
Example: Let f(x) = x2 de�ned on R, then 0 is not a stable value and anyy > 0 is a stable value.Let us summarize in the following lemma two properties concerning stable values.

Lemma 5.2. (i) The set of stable values of a continuous map f : Z ! Sn is an
open subset of Sn.

(ii) If f : Z ! Rn is a continuous map, then y 2 Rn is a stable value if and
only if y is a stable value of the restriction fjf�1(W ) of f to f�1(W ) for any open
neighborhood W of y.
Proof. (i) Let y 2 Imf be a stable value of f and � coming from the stability of f .For any y0 2 Sn so that dSn(y; y0) � � we pick up a small rotation � of Sn suchthat �(y0) = y. It is possible to choose � such that dist(�; IdSn) � �, thereforewe have dist(� � f; f) � � so that there exist x 2 Z with � � f(x) = y and thusf(x) = y0.(ii) Let us assume that y 2 Rn is not a stable value of fjU where U = f�1(W )and W is some open neighborhood of y. For � > 0 such that �B(y; �) � W letus denote V = f�1(Rn � �B(y; �)) and (�1; �2) a partition of unity subordinateto the open cover (U; V ) of Rn. By our assumption for any � > 0 there exist acontinuous map gU : U ! Rn such that d(f; gU ) � inf(�; �) and y =2 Im(gU ). Themap g = �1gU + �2f is a continuous map such that d(g; f) � � and y =2 Im(g)contradicting the stability of y for f .

�

De�nition 5.3. A metric space Z has topological dimension � n if there exist a
Lipschitz map f : Z ! Sn which has a stable value.

There is another equivalent de�nition of the topological dimension obtained byconsidering open covers. Let us recall that the order of an open cover U = fUi ji 2Ig is the supremum of all numbers #I 0, where I 0 � I, for which \i2I0Ui 6= ;.
De�nition 5.4. A metric space Z has topological dimension � n if and only if
every open cover of Z has an open re�nement of order at most n+ 1.

Regular maps and maps of bounded multiplicity are playing an important rolein the proof of the theorem 1.5. Let us de�ne it now.
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De�nition 5.5. A map g : (S; �)! Rn is regular if it is Lipshitz and if there existN 2 N such that for any R > 0 the inverse image g�1(B(R)) of any ball of radiusR in Rn can be covered by at most N balls of radius R in S.
De�nition 5.6. A map g : (S; �) ! Rn has bounded multiplicity if there existN 2 N such that for any y 2 Rn we have #g�1(y) � N .

Remark: If g : (S; �)! Rn is regular, it has bounded multiplicity.The following statement describe the regular maps f : (Z; d) ! Rn between acompact metric space (Z; d) all of whose open subsets have topological dimension� n and Rn. Such maps are almost covering maps. As a corollary we get thatsuch compact metric spaces which admit regular maps into Rn have weak tangentbilipschitz homeomorphic to Rn.
Proposition 5.7. Let (Z; d) be a compact metric space such that every non empty
subset has topological dimension � n, f : Z ! Rn a regular map. Then there exist
an open subset V � Imf with �V = Imf such that U := f�1(V ) is dense in Z andf jU : U ! V is a covering locally bilipschitz map.

Corollary 5.8. Let (Z; d) be a compact metric space such that every non empty
subset has topological dimension � n. Let us suppose that there exist a regular mapf : Z ! Rn. Then (Z; d) has a weak tangent bilipschitz homeomorphic to Rn.
Before sketching the proof of this proposition, we need some preliminaries aboutstability.Let (Z; d) be a compact metric space of topological dimension n and f : (Z; d)!Rn a continuous map. Without further assumption the map f may have no stablevalue (for example a constant map). But when f is regular then f possesses stablevalues.
Lemma 5.9. Let (Z; d) be a compact metric space of topological dimension at leastn and f : (Z; d)! Rn a regular map. Then f has stable values.

Proof. By regularity the preimage of all points of Rn is �nite so that for any y 2 Rnand any � > 0 there exist ry > 0 such that f�1(B(y; ry)) is a �nite disjoint unionof open subsets of diameter less than � (located in disjoint neighbourhoods of thepoints of f�1(y)). Let us consider an open cover U = fUi j i 2 Ig of Rn such thateach Ui 2 U whose intersection with the image Im(f) of f in nonempty is a subsetof some B(y; ry) and such that the order of U is equal to n+1, (for example U canbe chosen as the open star cover associated to a �ne enough triangulation of Rn).By construction for any Ui 2 U the open subset f�1(Ui) is a �nite disjoint unionof open subsets of diameter less than � in Z. These open subsets of small diameteryield an open covering V = fVj j j 2 Jg of Z. By construction, for j 2 J , thesubset Vj is appearing in the �nite decomposition of f�1(U�(j)) for some U�(j) in U .This de�nes a map � : I ! J . If �(j) = �(j0) for distinct j; j0 2 J , then Vj\Vj0 = ;since Vj and Vj0 are distinct parts of the decomposition of f�1(U�(j)) = f�1(U�(j0))therefore � induces a simplicial map � : Ner(V)! Ner(U) which sends k-simplexto k-simplex. In particular the order of V is less than or equal to n + 1. Weconsider now a partition of unity � = f�i j i 2 Ig of Rn subordinate to U andthe partition of unity � = f�j j j 2 Jg of Z de�ned by �j := �j :(��(j) � f)subordinate to V where �j is the characteristic function of Vj . Considering �i and�j as barycentric coordinates of Rn and Z in U and V respectively, we get continuous
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maps � : Rn ! Ner(U) and � : Z ! Ner(V) such that � � � = � � f . Thereforef = ��1 � � � � because � is clearly an homeomorphism. As � is a simplicial map,it is easy to see that if there exist a stable value � of � in the interior of somen-simplex of Ner(V), then ��1 ��(�) is a stable value of f . We conclude the proofof the lemma by proving that � posseses such a stable value �. Namely let usassume by contradiction that it is not true. Then there is a collection S of pointsin the interior of each n-simplex of Ner(V) which are not stable values of �. It istherefore possible to perturb � on a neighbourhood of S to get a map �0 such thatIm(�0) \ S = ;. We may then compose �0 by the \radial projection" from S ontothe (n� 1)-skeleton of Ner(V) to get a map �00 whose barycentric coordinates stillare subordiante to V. We then pull back the open star cover of Ner(V) and get are�nement of V of order les than or equal to n which contradicts the assumptionon the topological dimension of Z. �

The proof of the proposition 5.7 is based on the stable points of f that wedescribe now.
De�nition 5.10. Let f : Z ! Rn be a continuous map between a topological spaceZ and Rn. A point x 2 Z is called a stable point of f if f(x) is a stable value of
the restriction fU of f to U for any open neighborhood U of x.

A map f possesses stable points when it has bounded multiplicity:
Lemma 5.11. If (Z; d) is a compact metric space and f : Z ! Rn a regular map,
then the preimage of a stable value contains a stable point.

Proof. We just sketch the proof. Since f is a regular map it is of bounded multi-plicity. Let us denote f�1(y) = fx1; :::; xkg. Assume the lemma is not true, thenthere exist open disjoint balls B(xi; ri) such that for each i = 1; ::; k, y is not a sta-ble value of fjB(xi;ri). For � > 0 small enough, we have f�1(B(y; �)) = [i=1;::;kUiwhere the Ui's are open subsets of B(xi; ri) and then y is not a stable value offjf�1(B(y;�)), which contradict the lemma 5.2 (ii).
�

The stable multiplicity function is the function � : Rn ! N de�ned by �(y) =the number of stable points in f�1(y).
Lemma 5.12. Let (Z; d) be a compact metric space such that the topological di-
mension of all nonempty open subsets of Z is � n and f : (Z; d) ! Rn a regular
map. Let V � Rn be the subset of points y 2 Rn where the stable multiplicity � is
locally maximal and U := f�1(V ). Then,

(i) V is an open dense subset of Im(f) on which the multiplicity function � is
locally constant.

(ii) The restriction fjU of f to U is a local homeomorphism.

Proof. The proof is a consequence of the two following claims.Claim 1: Let us consider y 2 Im(f) and � > 0, then there exist � > 0 suchthat for all y0 2 B(y; �) and all stable points x 2 f�1(y), there is a stable point inf�1(y0) \B(x; �).Claim 2: Let y 2 Im(f) such that � is locally maximal at y. Then everyx 2 f�1(y) is a stable point.Since f is of bounded multiplicity and � takes integer values then V is clearly adense subset of Im(f). By the claim 1, V is an open subset of Rn and � is locally
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constant on V . This proves (i). By the claim 2, the map y ! #f�1(y) is locallyconstant on V and by claim 1 f is therefore locally injective on U which proves (ii).Let us prove the two claims.Claim 1: Let x be a stable point in f�1(y). For all � > 0, y is a stable value offj �B(x;�), and since the set of stable values is an open set there exist a �(x) > 0 suchthat all y0 2 B(y; �(x)) are regular values of fj �B(x;�). The lemma 5.11 provides astable point x0 2 f�1(y0)\ �B(x; �) and by regularity there is �nitely many (stable)point in f�1(y) so that we can choose � = inf(�(x)).Claim 2: Let W be a relatively compact open neighborhood of y such that �(y)is maximal on �W . Assume the claim is not true. There exist x 2 f�1(y) such thatx =2 fx1; :::; xkg where fx1; :::; xkg denotes the set of stable points of f�1(y) and� > 0 such that B(x; �); B(x1; �); ::; B(xk; �) are disjoint. By lemma 5.9 there exista stable value y0 2 K := �W \ �B(y; �) of fj �B(x;�)\f�1(K) where � = �(y; �) comesfrom the claim 1. Therefore by claim 1 and lemma 5.11 respectively there are stablepoints of f�1(y0) in each of the balls B(x1; �); ::; B(xk; �) and B(x; �), contradictingour assumption.

�

We now can end the proof of the proposition 5.7: let f : Z ! Rn a regular mapwhere (Z; d) be a compact metric space such that the topological dimension of allnonempty open subsets of Z is � n and V � Rn be the subset of points y 2 Rnwhere the stable multiplicity � is locally maximal, then according to the lemma5.12 it remains to prove that U := f�1(V ) is dense in Z and that f is locallybilipschitz. We �rst prove the density of U : let us consider a nonempty open set Oin Z. By the lemma 5.9 f(O) has nonempty interior and since V is dense in Im(f),f(O) \ V 6= ; therefore O meets U := f�1(V ) which proves the density of U in Z.Let us now prove that g =: fjU is locally bilipschitz. Since g is Lipschitz we haveto prove that the inverse of g is Lipschitz. We can argue locally and restrict U sothat U � f�1(B) where B is an open ball in Rn. We have to prove the existence of aconstant C such that for all x 6= y 2 U , d(x; y) � Cjf(x)�f(y)j. Let us consider theeuclidean ball B0(f(x); R) centered at f(x) where R := 2jf(x) � f(y)j and denote� the euclidean segment joining f(x) and f(y). Then, S := g�1(�) is a compactconnected subset of U containing x, y and such that S � f�1(B0(f(x); R)). Byregularity of f , we see that S is covered by N open balls of radius R of Z. We thenget easily that d(x; y) � diam(S) � 2NR � 4N jf(x)� f(y)j. This proves that fjUis bilipschitz and ends the proof of the proposition 5.7.
6. Topological dimension and Hausdorff dimension

Let (X; d) be a compact metric space whose topological and Hausdor� dimensioncoincide. Let us write n this dimension. We also will assume that the space (X; d)is n-Ahlfors regular. This means that there exist a constant C > 0 such that
C�1rn � Hn(B(x; r)) � Crn;

for any ball B(x; r) of (X; d), where Hn stands for the Hausdor� measure of (X; d).In general a topological space of topological dimension n may not contain anysubset homeomorphic to an open subset of Rn. We will see however that if (X; d)be a compact n-Ahlfors regular metric space of topological dimension n then onecan �nd a weak tangent of (X; d) which is bilipschitz homeomorphic to Rn.
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Proposition 6.1. Let (X; d) be a compact n-Ahlfors regular metric space whose
topological dimension is equal to n, then (X; d) has a weak tangent bilipschitz home-
omorphic to Rn.
Proof. The proof boils down in proving the existence of a weak tangent (S; �) of(X; d) and a regular map g : (S; �) ! Rn. The corollary 5.8 then implies theexistence of a weak tangent (T; �) of (S; �) which is bilipschitz homeomorphic toRn. Since weak tangent of a weak tangent of a space (X; d) is a weak tangent of(X; d), this ends the proof of the proposition. Let us prove now the existence of aweak tangent (S; �) of (X; d) and a regular map g : (S; �)! Rn.Let f : (X; d)! Sn be a Lipschitz map with a regular value. Such a map actuallyexist because of the assumption on the topological dimension of X. We will �nd theregular map g among the \weak tangents" of the map f . Let us de�ne what a weaktangent of the map f is. We consider weak tangent (S; �; o) = limk!1(X;�kd; p)and (Rn; eucl; 0) = limk!1(Sn; �kcan; p0) of (X; d) and (Sn; can; p0) respectively,where (Rn; eucl; 0) and (Sn; can; p0) are the standard euclidean space and the stan-dard sphere. We recall that all weak tangent of the standard sphere are isometricto the euclidean space. By de�nition there exist sequences of maps 	k : (S; �; o)!(X;�kd; p), �k : (X;�kd; p) ! (S; �; o), �	k : (Rn; eucl; 0) ! (Sn; �kcan; p0), and��k : (Sn; �kcan; p0)! (Rn; eucl; 0) which are \almost isometries" on balls of radiusR for all �xedR. A map g : (S; �; o)! (Rn; eucl; 0) such that g = limk!1 ��k�f�	kis called a weak tangent of f : (X; d)! Sn. Note that weak tangents of a Lipschitzmap always exist for any choice of �xed marked points p and p0. Here we wantto �nd such a weak tangent which is regular. For that purpose we will have tochoose p in an appropriate way. More precisely we want to show the existence ofan N 2 N such that for each ball BRn(R) of radius R in Rn, g�1(BRn(R)) can becovered by N balls of radius CR in (S; �) where C is a constant independant of R.By approximation this is equivalent to saying that for each ball B�kSn(R) of radiusR of (Sn; �kcan), f�1(B�kSn(R)) can be covered by N balls of �kX of radius CR,where �kX the space X endowed with the homothetic metric �kd. Equivalentlythis means that for each ball BSn( R�k ) in (Sn; can), f�1(BSn( R�k )) can be coveredby N balls of radius C R�k in (X; d). The end of the proof of the proposition wouldbe very easy under the following assumption:(?) for any r > 0, HnX(f�1(BSn(r))) � C 0rn for some constant C 0.Namely, let us choose fxigi2I a maximal set of points in f�1(BSn(r)) such thatB(xi; r) \ B(xj ; r) = ; for all i 6= j in I. Then by Ahlfors regularity we haveHnX([BX(xi; r) � CjIjrn for some constant C, where jIj is the cardinal of I.On the other hand if L denotes the Lipschitz constant of f , then BX(xi; rL+1 ) �f�1(BSn(2r)), therefore HnX([BX(xi; rL+1 ) � HnX(f�1(BSn(2r))) � 2nC 0rn thusjIj � 2nC0C .Unfortunalely the assumption (?) does not a priori hold, thus we have to lookat bad points. For � > 0 and � > 0 let us de�ne L�(x) = Sup0�t�� Hn

X(f�1(B(x;t)))tnand E�;� = fx 2 Sn j L�(x) � �g.We claim that one can choose � small enough and � large enough such thatHnSn(E�;�) � � for an arbitrary small number �.Let us assume the claim and �nish the proof of the proposition. Let us denoteU = X � f�1(E�;�) so that f(U) = f(X) � E�;�. Since f has a regular value,f(X) contains an open subset of Sn therefore HnSn(f(X)) > 0. By the claim we



CRITICAL EXPONENTS AND RIGIDITY IN NEGATIVE CURVATURE 19
can choose � and � such that f(U) = f(X)� E�;� has positive Hausdor� measureHnSn(f(U)) > 0. Since f is Lipschitz , we then get that HnX(U) > 0.We choose a point of density p of U and a weak tangent g : (S; �; o)! (Rn; eucl; 0)of f : (X; d; p)! (Sn; can; p0) where (S; �; o) = limk!1(X;�kd; p) and (Rn; eucl; 0) =limk!1(Sn; �kcan; p0).Let us prove the regularity of g. We have to prove the existence of N 2 N suchthat for any R > 0, n 2 N and any ball BSn( R�k ) of radius R�k centered at anarbitrary point, the set Ak =: f�1(BSn( R�k ))\B(p; nR�k ) can be covered by N ballsof radius C R�k in (X; d).Since p is a point of density of U we have lim�k!1 �nkHnX(B(p; R�k ) � U) = 0and therefore by Ahlfors regularity of (X; d) we easily get the existence of a pointxk 2 U such that dist(xk; f�1(BSn( 2R�k ))\B(p; nR�k )) � R�kL where L is the Lipschitzconstant of f . Setting A0k = f�1(BSn( 2R�k )) \B(p; nR�k ) we therefore get

A0k � f�1�BSn�f(xk); 5R�k
�� \B(p; nR�k ):Since xk 2 U , then f(xk) =2 E�;� hence

HnX(f�1(BSn(f(xk); 5R�k ))) � (5CR�k )n
and therefore HnX(A0k) � (5CR�k )n:
>From this we can argue like in the case when the assumption (?) holds and con-clude.We now prove the claim.Let us denote L the function de�ned on Im(f) � Sn by

L(x) = lim supt!0t�nHnX(f�1(B(x; t))):The family E�;� is a decreasing family of measurable subsets when � tends to0 and \�>0E�;� = fx 2 Im(f) j L(x) > �g, therefore lim�!0HnSn(E�;�) =HnSn(fx j L(x) > �g.The claim will then follow from the estimate:
HnSn(fx j L(x) > �g) � C� ;for some constant C.Let us prove this estimate. Let us denote E� = fx 2 Im(f) j L(x) > �g. Foreach x 2 E�, there exist t, 0 < t < �, such that HnX(f�1(B(x; t))) � �tn. Thisde�nes a set B of ball of radii less than or equal to � which cover E�. By a Vitali'scovering lemma one can �nd a sequence Bj of balls of B of radii rj tending to 0such that the Bj are pairwise disjoint, E� � [Bj(5rj), where Bj(5rj) is the ballwith same center as Bj of radius 5rj . The construction of this sequence Bj goesas follows. Let R1 be the supremum of the radii of the balls in B. We �rst takea maximal set of disjoint balls of B of radii r such that R1=2 � r � R1. Then wecontinue the same way with the supremum R2 of the radii of balls in B which aredisjoint of the ones already chosen. It is then easy to check that E� is covered by[Bj(5rj) and that the radii of the Bj 's tends to zero because (Sn; can) is Ahlforsregular.
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By construction we have

�jrnj � ��1HnSn([Bj) � ��1Hn(Sn):
Therefore, we get

HnSn(E�) � �j(diam(Bj(5rj))n � (10)n��1Hn(Sn);
which proves the estimate.This ends the proof of the proposition.

�
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