McKay correspondence

Gérard Gonzalez-Sprinberg

This course is an introduction to some geometrical aspects of the McKay correspondence mainly on the case of dimension two, relating the representation theory of a finite subgroup G of $SL(2, \mathbb{C})$ and the minimal resolution of the quotient singularity \mathbb{C}^2/G .

It will be presented the principal ingredients in this case, such as the regular polyhedra, the associated rotation and binary polyhedral groups, finite subgroups of $SL(2, \mathbb{C})$, the rational double points also called Klein or DuVal singularities, desingularizations, dual graphs of exceptional divisors, fundamental cycles. Followed by a description of a geometric construction of the correspondence and some generalizations.

The prerequisites are basic algebraic geometry and classical representation theory of finite groups.

Bibliography

M. Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129-136.

P. DuVal, On isolated singularities which do not affect the condition of adjunction, Proc. Cambridge Phil. Soc. 30 (1934), 453-459.

G. G-S, J. L. Verdier, *Construction géométrique de la correspondance de McKay*, Ann. scient. Ec. Norm. Sup. 16 (1983), 409-449.

F. Klein, *The icosahedron and the fifth degree equation*, (1884) Dover reprint 1956.

J. McKay, *Graphs, singularities and finite groups*, Proc. Symposia Pure Math. 37 (1980), 183-186.

H. Pinkham, *Singularités de Klein*, in Séminaire sur les singularités de surfaces, Springer LNM 777, 1980.

Further Reading

T. Bridgeland, A. King, M. Reid, *The McKay correspondence as an equivalence of derived categories*, J. Amer. Math. Soc. 14 (2001), 535-554.

Y. Ito, H. Nakajima, *McKay correspondence and Hilbert schemes in dimension three*, Topology 39 (2000) 1155-1191.