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Theorem (Parimala and Suresh 2007)
Let K be a p-adic field, p = char(F) 6= 2. Let F be a function field in one variable

over K. A quadratic form in n > 8 variables over F has a nontrivial zero.

n > 8 best possible

natural conjecture by analogy with K = F((t))

There is also a natural conjecture for function fields in s variables over K.

History, up to April 2009

Before 1987 : not even known if isotropy for n > n0

n > 26 Merkurjev preprint 1997 (use of Merkurjev 1982 and Saltman 1997)
n > 22 Hoffmann and van Geel 1998 (use of Merkurjev 1982 and Saltman 1997)
n > 10 Parimala and Suresh 1998 (use of Kato’s results in higher class field theory)
n > 8 Parimala and Suresh preprint 2007 (use of recent results by Saltman on algebras

of prime index)

Other methods giving n > 8

T. Wooley. New circle method, announced 2007 ; should also say something for n ≥ 5 ;
should give results for (diagonal) forms of arbitrary degree.

D. Harbater, J. Hartmann, D. Krashen preprint 2008 (patching techniques) ; CT, Pa-
rimala, Suresh preprint 2008 (builds upon HHK ; new results for n ≤ 8). Method gives
results for certain classes of homogeneous spaces of connected, rational linear algebraic
groups

D. Leep April 2009. Use of results by Heath-Brown ; gives results for quadrics over
higher dimensional function fields over a p-adic field K and for any prime p (also p = 2).
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I. The cohomological method

Merkurjev
Hoffmann-van Geel
Parimala-Suresh 1
Parimala-Suresh 2

Let k be a field, char(k) 6= 2. In 1934, E. Witt put the isomorphy classes of all
(nondegenerate) quadratic forms over k into a single abelian group W (k), actually a ring.
The class of a diagonal form a1x

2
1 + · · · + anx

2
n is denoted < a1, . . . , an >. The class

H =< 1,−1 > is trivial.
Two quadratic forms of the same rank are isomorphic if and only if they have the

same class in W (k) (Witt’s cancellation theorem).
In particular : if a quadratic form q of rank n has the same Witt class as a quadratic

form of rank m < n, then q has a nontrivial zero.
There is a “fundamental ideal” Ik ⊂ Wk of forms of even rank. We have Wk/Ik =

Z/2, then Ik/I2k = k∗/k∗2 = H1(k,Z/2). The quotients Ink/In+1k and their relation to
the Galois cohomology groups Hn(k,Z/2) have been the object of much study (Pfister,
Arason, Merkurjev, Rost, Voevodsky).

The general idea here is : start with a form q. There is a quadratic form q1 of rank
at most 2 with discriminant ±a such that q ⊥ −q1 has even rank and trivial signed
discriminant, hence belongs to I2k.

There is a map (Clifford, Hasse, Witt) I2k → Br(k)[2] = H2(k,Z/2).
There is a map (Arason) I3k → H3(k,Z/2).

Suppose
(B2) There exist an integer N2 = N2(k) such that any class in Br(k)[2] can be repre-

sented by a quadratic form in I2k of rank at most N2.
We then get a form q2 of rank at most N2 such that q ⊥ −q1 ⊥ −q2 is in I2k and has

trivial image in Br(k)[2].
Merkurjev 1982 proved the deep theorem that the kernel of the map I2k → Br(k)[2]

is the ideal I3k.

Suppose
(cd3) The 2-cohomological dimension of k is at most 3.
A result of Arason-Elman-Jacob 1986 then ensures I4k = 0 and that I3k → H3(k,Z/2)

is an isomorphism.

Then suppose
(B3) There exist an integer N3 = N3(k) such that any class in H3(k,Z/2) can be

represented by a quadratic form in I3k of rank at most N3.
Then we find a quadratic form q3 of rank at most N3 such that

q ⊥ −q0 ⊥ −q1 ⊥ −q2 ⊥ −q3

is trivial in W (k). By Witt simplification, this implies that if the rank of q is at least
3 +N2 +N3, then the quadratic form q is isotropic.

We thus get a universal upper bound for the dimension of an isotropic quadratic form
over k.
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Using the fact that a Pfister form < 1,−a1 > ⊗ · · ·⊗ < 1,−an > is sent to the
cup-product (a1) ∪ · · · ∪ (an) ∈ Hn(k,Z/2), to prove statements B2 and B3 it is enough
to establish that elements in H2(k,Z/2) and in H3(k,Z/2) are expressible as sums of a
bounded number of symbols (a1) ∪ · · · ∪ (an).

This is where the arithmetic of function fields in one variable over a p-adic field comes
in.

First of all, it is a classical result that a function field F in one variable over a p-adic
field has cohomological dimension 3.

What about B2 and B3 ?

A key result here is :

Theorem (D. Saltman, 1997)
Let l 6= p be prime numbers. Let K be a p-adic field which contains the l-th roots

of 1. Let F be a function field in one variable over K. Given a finite set of central simple
algebras each of exponent l in the Brauer group of F , there exist two rational functions
f, g ∈ F such that the field extension F (f 1/l, g1/l) splits each of these algebras.

This leads to : for p 6= 2, any element in H2(F,Z/2) is the sum of two symbols, and
one may take the rough bound N2 = 8.

The idea of Saltman’s paper is to kill off the ramification of an algebra of exponent l by
extracting l-th roots (Motto : ramification gobbles up ramification) then use the classical
theorem

Theorem (Lichtenbaum 1969, building on Tate ; Grothendieck 1969, using M. Artin).
Let A be the ring of integers of a p-adic field K. Let Y/A be a regular, flat, proper

relative curve over A. Then the Brauer group of Y is trivial.

As for B3 for H3(F,Z/2) and F as above, Merkurjev and Hoffmann-van Geel proved
that any element is the sum of at most 4 elementary symbols. This immediately leads to
the rough bound N3 = 32.

Using precise, purely algebraic information on quadratic forms over an arbitrary field,
Hoffman and van Geel actually show that any quadratic form over F in at least 23 variables
is isotropic.

The paper Parimala-Suresh 1998 uses H3
nr(F,Z/2) = 0 for F as above (with p 6= 2)

(Kato 1986, analogue for H3 of the Tate-Lichtenbaum result for H2) to show that for
such an F any class in H3(F,Z/2) is represented by just one symbol. Hence B3 holds
with N3 = 8. Combined with the previous arguments, this leads to : any quadratic form
over F in n > 12 variables is isotropic.

With more care and the same algebraic and arithmetic tools, Parimala and Suresh
show (1998) show that this holds for n > 10.

Building upon elaborate work of Saltman 2007 on the ramification pattern of central
simple algebras of prime index over F , in 2007 they reached the optimal result that any
quadratic form over F in n > 8 variables is isotropic.
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II. The patching method

(D. Harbater)
D. Harbater and J. Hartmann
D. Harbater, J. Hartmann and D. Krashen (HHK)
CT-Parimala-Suresh (CTPS) (builds heavily upon HHK)

Here A is a complete discrete valuation ring, K its field of fractions, k its residue field
(arbitrary).

F = K(X) the function field of a smooth, projective, geometrically connected curve
over K. We let Ω be the set of all discrete rank one valuations on F ; such valuations
either are trivial on K or induce (a multiple of) the given valuation on K. To each place
v ∈ Ω one associates the completion Fv.

Theorem (CTPS 2008) Assume char(k) 6= 2. Let q(x1, . . . , xn) be a quadratic form in
n ≥ 3 variables over F . If it has a nontrivial zero in each Fv, then it has a nontrivial zero
in F .

Let k be a finite field, i.e. let K be a p-adic field.
For n > 8 the local conditions are always fulfilled. One then recovers the Parimala-

Suresh result (already recovered in HHK).
For n = 2 the theorem does not hold. An element in F may be a square in all Fv but

not in F .
For n = 3, 4 it is enough to impose solutions in the Fv for v trivial on K. Consequence

of Lichtenbaum’s theorem.
For n = 6, 7, 8 consideration of the valuations trivial on K in general is not enough.

Idea of proof.

We first argue as in the paper by HHK. There exists a connected, regular, flat, projec-
tive model X/A of X/K, such that q =< a1, . . . , an > with the ai ∈ F ∗ and such that the
components of the special fibre Xs and the components of the divisors of the ai’s define a
strict normal crossings divisor ∆ on X .

One then produces a finite set S of closed points of Xs which contains all singular
points of ∆, and there is a “nice” morphism from f : X → P1

A such that S is the inverse
image of the ∞-point on P1

k.
Then the support of Xs \ S is a finite union of smooth connected curves U/k.
For each U one lets RU ⊂ F be the ring of functions which are regular on U . One may

arrange that U ⊂ Spec RU is defined by one equation sU ∈ RU .
One then lets R̂U be the completion of RU with respect to the ideal (sU) (or πR). This

has a residue ring k[U ], a Dedekind domain. One lets FU be the fraction field of R̂U .
For P ∈ S, one lets R̂P = ÔX ,P . This is a local ring of dimension 2.

One lets FP be the fraction field of R̂P .

We then use the HHK Theorem (Harbater, Hartmann, Krashen)
For a system {U}, S as above (with n ≥ 3), if q = 0 has nontrivial solutions in all FU

and FP then it has a nontrivial solution in F .
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It then remains to show :
If q = 0 has nontrivial solutions in all completions Fv for v ∈ Ω, then it has solutions

in the FU ’s and the FP ’s.

Proof for the fields FU

We have
q '< b1, . . . , bn, su.c1, . . . , su.cm >

with all bi and ci ∈ R∗U .
The hypothesis that there is a point in the DVR Rv of F associated to the generic

point of U and a known theorem of Springer together imply that one of < b1, . . . , bn > or
< c1, . . . , cm > has a solution in the residue field of Rv, which is the fraction field of k[U ].
Using the fact that the bi, ci are units in RU , and the fact that k[U ] is Dedekind, and a
variant of Hensel’s lemma, one gets that q has a nontrivial solution in RU , hence in FU .

Proof for the fields FP

Here one looks at the local ring of X at a point P of S. The normal crossing divisors
assumption implies that q may be written as q = q1 ⊥ xq2 ⊥ yq3 ⊥ xyq4 where x, y
span the maximal ideal of RP and the qj are regular quadratic forms over RP . One then
uses Springer’s theorem and Hensel’s lemma. The DVR involved are those attached to
the components of ∆ passing through S. Ultimately one shows that one of the qi has a
nontrivial zero over the residue field at P , hence over the complete local ring, hence over
its fraction field FP .

Remark : the theorem holds if one replaces Ω by the set of rank one discrete valuations
associated to points of codimension 1 on arbitrary connected, regular, flat, proper models
X/A of X/K.

For X/A and a system {U}, S as above, the HHK theorem more generally establishes
that Z(F ) 6= ∅ as soon as all Z(FU) and Z(FM) are not empty, if Z is a homogeneous
space of a connected linear algebraic group G/F such that :

(a) The underlying F -variety of G is F -rational, i.e. birational to affine space. [Very un-
likely that one can dispense with some condition of that kind ; interesting open problem.]
The group SO(q) is F -rational.

(b) For any overfield L/F , the action of G(L) on Z(L) is transitive.

There are two basic examples for (b) :
(b1) The variety Z/F is projective (as the quadrics considered above)
(b2) Z is a principal homogeneous space of G.

Under the two assumptions :
(a) the F -group G is connected and split,
(b2) Z is a principal homogeneous space of G,

a local-global theorem with respect to places of Ω is given in [CTPS].

When applied to G = PGLn, this implies
The natural map Br F →

∏
v∈Ω Br Fv is injective.

If k is a finite field, this is closely related to Lichtenbaum’s theorem ; in that case one
may then restrict attention to valuations on F which are trivial on K.
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A few words on the papers HH and HHK

The “nice” map X → P1
A enables one to reduce the patching problem to the very

special case where X = P1
A, the set S consists of the ∞-point on P1

k and there is just one
U , namely U = A1

k the complement of ∞ in P1
k.

We have already seen the fields FU and FP .
There is a third character. This is the field of fractions of the completion of the DVR

defined by the U on the completion of the local ring of P1
A at P .

There are inclusions FU ⊂ FP,U and FP ⊂ FP,U .

To prove the HHK theorem, one uses two basic facts :

(1) One has
F = FP ∩ FU ⊂ FP,U .

(2) Under the assumption that G is a connected F -rational group,

G(FP,U) = G(FU).G(FP ).

We are given a point MP ∈ Z(FP ) and a point MU ∈ Z(FU). By hypothesis (b) there
exists an element g ∈ G(FP,U) such that g.MP = MU ∈ Z(FP,U).

One then writes g = gU .gP with gP ∈ G(FP ) and gU ∈ G(FU) then one finds gP .MP =
g−1

U .MU ∈ Z(FP ) ∩ Z(FU) = Z(F ), hence Z(F ) 6= ∅.

Consider the very special case A = k[[t]]. For G an F -rational group, the fundamental
equality

G(FP,U) = G(FU).G(FP )

is related to the equality

k((x))[[t]] = k[1/x][[t]] + k[[x, t]].
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III. The revival of Ci-fields

(long history)
Heath-Brown
Leep

Let i ≥ 0 be an integer. A field k is called a Ci–field if for each degree d every
homogeneous form over k of degree d > 0 in n > di variables has a nontrivial zero.

This implies (Lang, Nagata) : for each degree d and each integer r every system of r
forms of degree d in n > r.di variables has a nontrivial zero. (Proof involves introducing
various other degrees.)

Definition : for a fixed integer d, a field k is called Ci(d) if for each integer r every
system of r forms of degree d in n > r.di variables has a nontrivial zero over k.

A field is C0 if and only if is algebraically closed.

A finite field is C1 (Chevalley)

A function field in s variables over a Ci(d) field is Ci+s(d) (Tsen, Lang, Nagata for Ci ;
proof for Ci(d) similar (Pfister, Leep).

(Proof by discussing finite degree extensions and purely transcendental extension in
one variable)

If K is Ci then K((t)) is Ci+1 (Greenberg)
If F is a finite field, a function field in s variables over the local field F((t)) is a

C2+s-field.

This raises the question : does the same hold for a function field in s variables over a
p-adic field ?

NO, even for s = 0.
A p-adic field of characteristic zero is not a C2 field, it is not even a Cn field for any

n (Terjanian, ...)

One solution : Look for substitutes. Replace rational points by zero-cycles of degree 1.

Definition. A field k is Ci(d) for zero-cycles of degree 1, in short C0
i (d), if for each

integer r and each system of r forms of degree d in n > r.di variables there are solutions
to the system in finite field extensions of k of coprime degree as a whole.

A field k is Ci for zero-cycles of degree 1, in short C0
i , if for every d it is C0

i (d). For this
it is enough that for each degree d any form of degree d in n > di variables has solutions
in finite field extensions of k of coprime degree as a whole.

For simplicity, assume char.k = 0. The field k is C0
i (d) if and only if the the fixed field

of each pro-Sylow sugroup of Gal(k/k) is Ci(d) (for rational solutions).
There is a stability property à la Lang-Nagata.

Proposition. If a field k is C0
i (d), then a function field in s variables over k is C0

i+s(d).

(Proof : reduce to Ci(d) for fixed fields of Sylow subgroups.)

Conjecture (Kato–Kuzumaki 1986) : A p-adic field is C0
2 .

(Special case of a more general conjecture on stability of C0
i -property for complete

DVR’s)
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Some evidence for the KK conjecture

Theorem. Let H(x0, . . . , Xn) be a homogeneous form of degree d in n+1 ≥ d2 variables
over a p-adic field K. If the degree of H is prime, then H = 0 has a nontrivial zero in
finite extensions of K of coprime degrees.

Proofs.
Implicit : T. A. Springer (1955) ; Birch and Lewis (1958/59)
Explicit : Kato and Kuzumaki (1986).
The (module theoretic) first and third proofs yield existence of a point in an extension

of K of degree < d.

Using Kollár’s 2006 result that PAC fields of characteristic zero are C1 (Ax’s conjec-
ture), one proves :

Theorem (CT 2008) Let A be a discrete valuation ring with residue field k of charac-
teristic zero. Let K be the fraction field of A. Let X/A be a regular, proper, flat connected
scheme over A. Assume the generic fibre is a smooth hypersurface over K defined by a
form of degree d in n > d2 variables. Then the special fibre X ×A k has a component of
multiplicity one which is geometrically integral over k.

Would that theorem also hold when the residue field k of A is a finite field, then an
application of the Lang-Weil estimates would (nearly) yield that p-adic fields are C0

2 .

Observation (CT-Parimala-Suresh 2008) If p-adic fields are C0
2 , then over a function

field F in s variables over a p-adic field K, any quadratic form in more than 4.2s variables
has a nontrivial zero.

Indeed, such a field F would be C0
2+s. Thus a quadratic form in n > 4.2s variables over

F would have a point in an extension of odd degree of F . But another theorem of T.A.
Springer (1952) (conjectured by Witt 1937) then implies that the form has a zero over F .

Independent observation (D. Leep 2009) If p-adic fields are C0
2(2), then over a function

field F in s variables over a p-adic field K, any quadratic form in more than 4.2s variables
has a nontrivial zero.

Theorem (Heath-Brown 27th April 2009)
A system of r quadratic forms in more than 4r variables over a p-adic field K has a

rational solution if the residue field has order at least (2r)r.

Consideration of unramified extensions of K of arbitrary high degree yields that p-adic
fields are C0

2(2).

Combination of the previous arguments gives

Theorem (Leep 2009)
A quadratic form in more than 4.2s variables over a function field in s variables over

a p-adic field has a nontrivial zero.
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