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Theorem (Parimala and Suresh 2007)
Let K be a p-adic field, p = char(F) # 2. Let F be a function field in one variable
over K. A quadratic form in n > 8 variables over F has a nontrivial zero.

n > 8 best possible
natural conjecture by analogy with K = F((t))

There is also a natural conjecture for function fields in s variables over K.

History, up to April 2009

Before 1987 : not even known if isotropy for n > ng

n > 26 Merkurjev preprint 1997 (use of Merkurjev 1982 and Saltman 1997)

n > 22 Hoffmann and van Geel 1998 (use of Merkurjev 1982 and Saltman 1997)

n > 10 Parimala and Suresh 1998 (use of Kato’s results in higher class field theory)

n > 8 Parimala and Suresh preprint 2007 (use of recent results by Saltman on algebras
of prime index)

Other methods giving n > 8

T. Wooley. New circle method, announced 2007 ; should also say something for n > 5;
should give results for (diagonal) forms of arbitrary degree.

D. Harbater, J. Hartmann, D. Krashen preprint 2008 (patching techniques); CT, Pa-
rimala, Suresh preprint 2008 (builds upon HHK ; new results for n < 8). Method gives
results for certain classes of homogeneous spaces of connected, rational linear algebraic
groups

D. Leep April 2009. Use of results by Heath-Brown ; gives results for quadrics over
higher dimensional function fields over a p-adic field K and for any prime p (also p = 2).



I. The cohomological method

Merkurjev
Hoffmann-van Geel
Parimala-Suresh 1
Parimala-Suresh 2

Let k be a field, char(k) # 2. In 1934, E. Witt put the isomorphy classes of all
(nondegenerate) quadratic forms over k into a single abelian group W (k), actually a ring.
The class of a diagonal form alx% + -+ an:c,% is denoted < aq,...,a, >. The class
H =<1,—1 > is trivial.

Two quadratic forms of the same rank are isomorphic if and only if they have the
same class in W (k) (Witt’s cancellation theorem).

In particular : if a quadratic form ¢ of rank n has the same Witt class as a quadratic
form of rank m < n, then ¢ has a nontrivial zero.

There is a “fundamental ideal” Ik C Wk of forms of even rank. We have Wk/Ik =
Z/2, then Ik/I*k = k*/k** = H'(k,Z/2). The quotients I"k/I"1k and their relation to
the Galois cohomology groups H"(k,Z/2) have been the object of much study (Pfister,
Arason, Merkurjev, Rost, Voevodsky).

The general idea here is : start with a form ¢. There is a quadratic form ¢; of rank
at most 2 with discriminant +a such that ¢ 1 —q; has even rank and trivial signed
discriminant, hence belongs to I°k.

There is a map (Clifford, Hasse, Witt) I?k — Br(k)[2] = H*(k,Z/2).

There is a map (Arason) I’k — H3(k,Z/2).

Suppose

(Bg) There exist an integer Ny = No(k) such that any class in Br(k)[2] can be repre-
sented by a quadratic form in I*k of rank at most Ns.

We then get a form ¢, of rank at most Ny such that ¢ L —q; L —qy is in I?k and has
trivial image in Br(k)[2].

Merkurjev 1982 proved the deep theorem that the kernel of the map Ik — Br(k)[2]
is the ideal I3k.

Suppose
(c¢d3) The 2-cohomological dimension of k is at most 3.

A result of Arason-Elman-Jacob 1986 then ensures I*k = 0 and that I3k — H?(k,Z/2)
is an isomorphism.

Then suppose

(Bs) There exist an integer N3 = N3(k) such that any class in H>(k,Z/2) can be
represented by a quadratic form in I’k of rank at most Ns.

Then we find a quadratic form g3 of rank at most N3 such that

gLl —q L —-—q L —q¢pl—g

is trivial in W (k). By Witt simplification, this implies that if the rank of ¢ is at least
3 4+ Ny + N3, then the quadratic form ¢ is isotropic.

We thus get a universal upper bound for the dimension of an isotropic quadratic form
over k.



Using the fact that a Pfister form < 1,—a; > ®---® < 1,—a, > is sent to the
cup-product (a;) U ---U (a,) € H"(k,Z/2), to prove statements By and Bj it is enough
to establish that elements in H?(k,Z/2) and in H?(k,Z/2) are expressible as sums of a
bounded number of symbols (a;) U--- U (ay).

This is where the arithmetic of function fields in one variable over a p-adic field comes
in.

First of all, it is a classical result that a function field F' in one variable over a p-adic
field has cohomological dimension 3.

What about By and B3 ?
A key result here is :

Theorem (D. Saltman, 1997)

Let | # p be prime numbers. Let K be a p-adic field which contains the [-th roots
of 1. Let F be a function field in one variable over K. Given a finite set of central simple
algebras each of exponent | in the Brauer group of I, there exist two rational functions
f, g € F such that the field extension F(fY/!, g*/") splits each of these algebras.

This leads to : for p # 2, any element in H?(F,Z/2) is the sum of two symbols, and
one may take the rough bound N, = 8.

The idea of Saltman’s paper is to kill off the ramification of an algebra of exponent [ by
extracting [-th roots (Motto : ramification gobbles up ramification) then use the classical
theorem

Theorem (Lichtenbaum 1969, building on Tate ; Grothendieck 1969, using M. Artin).
Let A be the ring of integers of a p-adic field K. Let Y/A be a regular, flat, proper
relative curve over A. Then the Brauer group of Y 1is trivial.

As for Bz for H*(F,Z/2) and F' as above, Merkurjev and Hoffmann-van Geel proved
that any element is the sum of at most 4 elementary symbols. This immediately leads to
the rough bound N3 = 32.

Using precise, purely algebraic information on quadratic forms over an arbitrary field,
Hoffman and van Geel actually show that any quadratic form over F in at least 23 variables
is isotropic.

The paper Parimala-Suresh 1998 uses H3 (F,Z/2) = 0 for I as above (with p # 2)
(Kato 1986, analogue for H?® of the Tate-Lichtenbaum result for H?) to show that for
such an F any class in H3(F,Z/2) is represented by just one symbol. Hence Bj holds
with N3 = 8. Combined with the previous arguments, this leads to : any quadratic form
over F'in n > 12 variables is isotropic.

With more care and the same algebraic and arithmetic tools, Parimala and Suresh
show (1998) show that this holds for n > 10.

Building upon elaborate work of Saltman 2007 on the ramification pattern of central
simple algebras of prime index over F', in 2007 they reached the optimal result that any
quadratic form over F'in n > 8 variables is isotropic.



II. The patching method

(D. Harbater)

D. Harbater and J. Hartmann

D. Harbater, J. Hartmann and D. Krashen (HHK)
CT-Parimala-Suresh (CTPS) (builds heavily upon HHK)

Here A is a complete discrete valuation ring, K its field of fractions, k its residue field
(arbitrary).

F = K(X) the function field of a smooth, projective, geometrically connected curve
over K. We let €2 be the set of all discrete rank one valuations on F'; such valuations
either are trivial on K or induce (a multiple of) the given valuation on K. To each place
v € ) one associates the completion F,.

Theorem (CTPS 2008) Assume char(k) # 2. Let q(xy,...,x,) be a quadratic form in
n > 3 variables over F'. If it has a nontrivial zero in each F,, then it has a nontrivial zero
in F.

Let k be a finite field, i.e. let K be a p-adic field.

For n > 8 the local conditions are always fulfilled. One then recovers the Parimala-
Suresh result (already recovered in HHK).

For n = 2 the theorem does not hold. An element in F' may be a square in all F, but
not in F.

For n = 3,4 it is enough to impose solutions in the F}, for v trivial on K. Consequence
of Lichtenbaum’s theorem.

For n = 6, 7,8 consideration of the valuations trivial on K in general is not enough.

Idea of proof.

We first argue as in the paper by HHK. There exists a connected, regular, flat, projec-
tive model X' /A of X/K, such that ¢ =< ay, ..., a, > with the a; € F* and such that the
components of the special fibre X; and the components of the divisors of the a;’s define a
strict normal crossings divisor A on X.

One then produces a finite set S of closed points of X, which contains all singular
points of A, and there is a “nice” morphism from f : X — P such that S is the inverse
image of the oco-point on Pj.

Then the support of X; \ S is a finite union of smooth connected curves U/k.

For each U one lets Ry C F' be the ring of functions which are regular on U. One may
arrange that U C Spec Ry is defined by one equation sy € Ry.

One then lets Ry be the completion of Ry with respect to the ideal (sy) (or 7z). This
has a residue ring k[U], a Dedekind domain. One lets Fy; be the fraction field of Ry .

For P € S, one lets Rp = OAXVP. This is a local ring of dimension 2.

One lets Fp be the fraction field of }?p.

We then use the HHK Theorem (Harbater, Hartmann, Krashen)
For a system {U}, S as above (withn > 3), if ¢ = 0 has nontrivial solutions in all Fy
and Fp then it has a nontrivial solution in F'.



It then remains to show :
If ¢ = 0 has nontrivial solutions in all completions F,, for v € ), then it has solutions
in the Fy’s and the Fp’s.

Proof for the fields Fy
We have

q=<bi,...,by,8,.Cly. .., Su.Cpp >

with all b; and ¢; € Ry;.

The hypothesis that there is a point in the DVR R, of F' associated to the generic
point of U and a known theorem of Springer together imply that one of < by,...,b, > or
< €1,...,Cn > has a solution in the residue field of R,, which is the fraction field of k[U].
Using the fact that the b;, ¢; are units in Ry, and the fact that k[U] is Dedekind, and a
variant of Hensel’s lemma, one gets that ¢ has a nontrivial solution in Ry, hence in Fy.

Proof for the fields Fp

Here one looks at the local ring of X at a point P of S. The normal crossing divisors
assumption implies that ¢ may be written as ¢ = ¢1 L xq2 L yq3 L xyqs where z,y
span the maximal ideal of Rp and the g; are regular quadratic forms over Rp. One then
uses Springer’s theorem and Hensel’s lemma. The DVR involved are those attached to
the components of A passing through S. Ultimately one shows that one of the ¢; has a
nontrivial zero over the residue field at P, hence over the complete local ring, hence over
its fraction field Flp.

Remark : the theorem holds if one replaces {2 by the set of rank one discrete valuations

associated to points of codimension 1 on arbitrary connected, regular, flat, proper models
X /A of X/K.

For X /A and a system {U}, S as above, the HHK theorem more generally establishes
that Z(F) # 0 as soon as all Z(Fy) and Z(F)) are not empty, if Z is a homogeneous
space of a connected linear algebraic group G/F such that :

(a) The underlying F-variety of G is F-rational, i.e. birational to affine space. [Very un-
likely that one can dispense with some condition of that kind ; interesting open problem.]
The group SO(q) is F-rational.

(b) For any overfield L/F, the action of G(L) on Z(L) is transitive.

There are two basic examples for (b) :
(bl) The variety Z/F is projective (as the quadrics considered above)
(b2) Z is a principal homogeneous space of G.

Under the two assumptions :
(a) the F-group G is connected and split,
(b2) Z is a principal homogeneous space of G,
a local-global theorem with respect to places of € is given in [CTPS].

When applied to G = PGL,,, this implies

The natural map Br F' — [] .o Br F, is injective.

If k is a finite field, this is closely related to Lichtenbaum’s theorem ; in that case one
may then restrict attention to valuations on F' which are trivial on K.



A few words on the papers HH and HHK

The “nice” map X — P enables one to reduce the patching problem to the very
special case where X = P, the set S consists of the co-point on P}, and there is just one
U, namely U = A} the complement of oo in Pj.

We have already seen the fields Fy; and Fp.

There is a third character. This is the field of fractions of the completion of the DVR
defined by the U on the completion of the local ring of P at P.

There are inclusions Fyy C Fpy and Fp C Fpy.

To prove the HHK theorem, one uses two basic facts :

(1) One has
F=FpNkyC FP,U-

(2) Under the assumption that GG is a connected F-rational group,

G(Fpy) = G(Fy).G(Fp).

We are given a point Mp € Z(Fp) and a point My € Z(Fy). By hypothesis (b) there
exists an element g € G(Fpy) such that g. Mp = My € Z(Fpy).

One then writes g = gy.gp with gp € G(Fp) and gy € G(Fy) then one finds gp. Mp =
gy My € Z(Fp) N Z(Fy) = Z(F), hence Z(F) # (.

Consider the very special case A = k[[t]]. For G an F-rational group, the fundamental
equality
G(Fpu) = G(Fy).G(Fp)

is related to the equality

k()] = K[L/2][[] + Kl 1]



III. The revival of C;-fields

(long history)
Heath-Brown
Leep

Let i« > 0 be an integer. A field k is called a C;field if for each degree d every
homogeneous form over k of degree d > 0 in n > d* variables has a nontrivial zero.

This implies (Lang, Nagata) : for each degree d and each integer r every system of r
forms of degree d in n > r.d’ variables has a nontrivial zero. (Proof involves introducing
various other degrees.)

Definition : for a fixed integer d, a field k is called C;(d) if for each integer r every
system of r forms of degree d in n > r.d* variables has a nontrivial zero over k.

A field is Cy if and only if is algebraically closed.
A finite field is € (Chevalley)

A function field in s variables over a C;(d) field is C;;5(d) (Tsen, Lang, Nagata for C;;
proof for C;(d) similar (Pfister, Leep).

(Proof by discussing finite degree extensions and purely transcendental extension in
one variable)

If K is C; then K((t)) is Ci11 (Greenberg)

If F is a finite field, a function field in s variables over the local field F((t)) is a
Co s-field.

This raises the question : does the same hold for a function field in s variables over a
p-adic field 7

NO, even for s = 0.

A p-adic field of characteristic zero is not a Cy field, it is not even a C), field for any
n (Terjanian, ...)

One solution : Look for substitutes. Replace rational points by zero-cycles of degree 1.

Definition. A field k is C;(d) for zero-cycles of degree 1, in short C?(d), if for each
integer 7 and each system of r forms of degree d in n > r.d’ variables there are solutions
to the system in finite field extensions of k£ of coprime degree as a whole.

A field k is C; for zero-cycles of degree 1, in short C?, if for every d it is C?(d). For this
it is enough that for each degree d any form of degree d in n > d' variables has solutions
in finite field extensions of k of coprime degree as a whole.

For simplicity, assume char.k = 0. The field k is C?(d) if and only if the the fixed field
of each pro-Sylow sugroup of Gal(k/k) is C;i(d) (for rational solutions).

There is a stability property a la Lang-Nagata.

Proposition. If a field k is CP(d), then a function field in s variables over k is C?, (d).
(Proof : reduce to C;(d) for fixed fields of Sylow subgroups.)

Conjecture (Kato-Kuzumaki 1986) : A p-adic field is CY.

(Special case of a more general conjecture on stability of C?-property for complete
DVR’s)



Some evidence for the KK conjecture

Theorem. Let H(zo, ..., X,) be a homogeneous form of degree d in n+1 > d* variables
over a p-adic field K. If the degree of H is prime, then H = 0 has a nontrivial zero in
finite extensions of K of coprime degrees.

Proofs.

Implicit : T. A. Springer (1955) ; Birch and Lewis (1958/59)

Explicit : Kato and Kuzumaki (1986).

The (module theoretic) first and third proofs yield existence of a point in an extension
of K of degree < d.

Using Kollar’s 2006 result that PAC fields of characteristic zero are C; (Ax’s conjec-
ture), one proves :

Theorem (CT 2008) Let A be a discrete valuation ring with residue field k of charac-
teristic zero. Let K be the fraction field of A. Let X/A be a regular, proper, flat connected
scheme over A. Assume the generic fibre is a smooth hypersurface over K defined by a
form of degree d in n > d* variables. Then the special fibre X x 4 k has a component of
multiplicity one which s geometrically integral over k.

Would that theorem also hold when the residue field k of A is a finite field, then an
application of the Lang-Weil estimates would (nearly) yield that p-adic fields are C9.

Observation (CT-Parimala-Suresh 2008) If p-adic fields are C3, then over a function
field F' in s variables over a p-adic field K, any quadratic form in more than 4.2° variables
has a nontrivial zero.

Indeed, such a field F would be C3, .. Thus a quadratic form in n > 4.2° variables over

F would have a point in an extension of odd degree of F. But another theorem of T.A.
Springer (1952) (conjectured by Witt 1937) then implies that the form has a zero over F'.

Independent observation (D. Leep 2009) If p-adic fields are C3(2), then over a function
field F in s variables over a p-adic field K, any quadratic form in more than 4.2° variables
has a nontrivial zero.

Theorem (Heath-Brown 27th April 2009)
A system of r quadratic forms in more than 4r variables over a p-adic field K has a
rational solution if the residue field has order at least (2r)".

Consideration of unramified extensions of K of arbitrary high degree yields that p-adic
fields are C3(2).

Combination of the previous arguments gives

Theorem (Leep 2009)
A quadratic form in more than 4.2° variables over a function field in s variables over
a p-adic field has a nontrivial zero.
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