
THE COX RING OF M0,6

ANA-MARIA CASTRAVET

Abstract. We prove that the Cox ring of the moduli space M0,6, of stable
rational curves with 6 marked points, is finitely generated by sections cor-

responding to the boundary divisors and divisors which are pull-backs of the
hyperelliptic locus in M3 via morphisms ρ : M0,6 → M3 that send a 6-pointed
rational curve to a curve with 3 nodes by identifying 3 pairs of points. In par-

ticular this gives a self-contained proof of Hassett and Tschinkel’s result about
the effective cone of M0,6 being generated by the above mentioned divisors.

1. Introduction

A question of Fulton about the moduli space M0,n, of stable, n-pointed, rational

curves, is whether the cone NE
k
(M0,n) of effective cycles of codimension k in M0,n

is generated by k-strata, i.e., loci in M0,n corresponding to reducible curves with at
least k nodes. While the case when k = n − 4 (i.e., the cone of effective curves) is
completely open (and an affirmative result would imply, by results of Gibney, Keel
and Morrison [GKM], the similar statement for the moduli space Mg,n, of stable,

n-pointed, genus g curves, thus determining the ample cone of Mg,n) the case
when k = 1 (i.e., the cone of effective divisors) was settled independently by Keel
(unpublished, a refference to this may be found in [GKM], p.277) and Vermeire [V]:
Fulton’s question has a negative answer when n = 6 (and therefore for any n ≥ 6).
Hassett and Tschinkel prove in [HT] that the Keel-Vermeire divisors (pull-backs of
the locus of hyperelliptic curves in the moduli space M3, via morphisms M0,6 → M3

sending a 6-pointed rational curve to a curve with 3 nodes by identifying 3 pairs
of points) together with the 2-strata (the boundary) generate the cone of effective
divisors in M0,6. The proof in [HT] is based on a computer check. In this paper we
give a proof of Hassett and Tschinkel’s result, by proving a stronger statement: we
show that the sections corresponding to the above divisors generate the Cox ring
of M0,6.

Recall that if X is a smooth projective variety with Picard group freely generated
by divisors D1, . . . ,Dr, then the Cox ring (or total coordinate ring) of X is the
multi-graded ring:

Cox(X) =
⊕

(m1,...,mr)∈Zr

H0(X,m1D1 + . . . + mrDr).

The Cox ring being finitely generated has strong implications for the birational
geometry of X (X is a so-called Mori Dream Space): the effective cone and the nef
cone are both polyhedral and there are finitely many small modifications of X (i.e.,
varieties X ′ isomorphic in codimension one to X) such that any moving divisor on
X (i.e., a divisor whose base locus has codimension at least 2) is nef on one of the
varieties X ′ (see [HK] for the precise statements). It has been conjectured by Hu
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and Keel [HK] that any log-Fano variety has a finitely generated Cox ring. This
has been recently proved in the groundbreaking paper [BCHM]. In [HK] Hu and
Keel ask the following question:

Question 1.1. Is the Cox ring of M0,n finitely generated?

As pointed out in [KM], the moduli space M0,n is log-Fano only for n ≤ 6.

We answer Question 1.1 for n = 6 by finding explicit generators. Our hope is that
our method for finding generators, that proved to be useful in other circumstances
(see [CT]), will eventually help answer Question 1.1 for larger n as well.

Consider the Kapranov description of the moduli space M = M0,6. If p1, . . . , p5

are points in linearly general position in P
3, then M is the iterated blow-up of P

3

along p1, . . . , p5 and along the proper transforms of the lines lij = pipj for all i 6= j.
If p is a general point in P

3, there is a unique twisted cubic C in P
3 that contains

the points p1, . . . , p5, p. Then (C, p1, . . . , p5, p) is a 6-pointed rational curve, hence
an element of M0,6. The point p corresponds to the 6’th marking (the so-called
moving point).

Denote by H the hyperplane class on M and by Ei and Eij the exceptional

divisors in M corresponding to the points pi and the lines lij .

Notation 1.2. Let Λijk be the class of the proper transform of the plane pipjpk:

Λijk = H − Ei − Ej − Ek − Eij − Eik − Ejk.

If S ⊂ {1, . . . , 6} and |S| = 2, or 3, let ∆S be the boundary divisor in M with
general element a curve with two irreducible components with the partition of the
markings given by S ∪ Sc. In the Kapranov description, the boundary divisors ∆S

have the following classes:

∆i6 = Ei, ∆ij6 = Eij , i, j = 1, . . . , 5,

∆ij = Λabc, if {i, j, a, b, c} = {1, . . . , 5}.

Notation 1.3. Let Q(ij)(kl) be the class of the proper transform of the unique
quadric that contains all the points p1, . . . , p5 and the lines lik, lil, ljk, ljl:

Q(ij)(kl) = 2H −
∑

i

Ei − Eik − Eil − Ejk − Ejl.

The divisor classes Q(ij)(kl) are exactly the divisors considered by Keel and Ver-

meire: for example, if one considers the map M0,6 → M3 given by identifying the
pairs of points (12)(34)(56), then the class of the pull-back of the hyperelliptic locus
in M3 is computed in [HT] to be the class of Q(12)(34). We call the divisors Q(ij)(kl)

the Keel-Vermeire divisors. We prove the following:

Theorem 1.4. The Cox ring of M0,6 is generated by the sections (unique up to
scaling) corresponding to the boundary divisors (i.e., Λijk and the exceptional divi-
sors Ei and Eij) and the Keel-Vermeire divisors Q(ij)(kl).

The paper is divided as follows: Section 2 explains the strategy of proof, there
are two main cases, the details of each are given in Section 3, respectively Section
4. The remaining sections contain auxiliary results needed in the proof. Section 5
contains proofs for some basic inequalities, while Section 6 contains some general
multiplicity estimates needed for Case II. Section 7 contains the proof of Lemma
2.21 (needed for Case II) that states that the Cox ring of the blow-up of P

2 in seven
(non-general) points is generated by sections corresponding to −1 and −2 curves.
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Section 8 gives necessary and sufficient conditions for a divisor on X, the iterated
blow-up of P

3 in four general points and lines through them, to have sections.
Finally, in Section 9 we compute the restrictions of an arbitrary divisor D to all
the boundary divisors and Keel-Vermeire divisors on M . Moreover, we derive some
necessary conditions for these restrictions to be effective (an assumption in our
main proof).
Acknowledgements. I thank Jenia Tevelev and Sean Keel for useful comments.

2. Plan of Proof

Consider an arbitrary divisor class on M :

D = dH −
∑

i

miEi −
∑

i,j

mijEij .

In all that follows we assume H0(M,D) 6= 0.

Notation 2.1. Let l be the class of the proper transform in M of a general line
in P

3. Let ei be the class of a general line in Ei. Let C be the class of the proper
transform of a general cubic that passes through p1, . . . , p5:

C = 3l − e1 − . . . − e5.

The curves with class C cover a dense set of M ; hence, D.C ≥ 0 for any effective
divisor D.

Definition 2.2. Let xi, xij , xijk, x(ij)(kl) be the sections (unique up to scalar) cor-
responding to the divisors:

Ei, Eij ,Λijk, Q(ij)(kl). (2.1)

Definition 2.3. We call a section s ∈ H0(M,D) a distinguished section if

s = xni

i x
nij

ij x
nijk

ijk x
n(ij)(kl)

(ij)(kl) ,

where ni, nij , nijk, n(ij)(kl) are non-negative integers.

To show that H0(M,D) is generated by distinguished sections, we do an induc-
tion on D.C. Note that we may assume that D contains none of the divisors (2.1)
in its base locus, i.e., equivalently, if for E any of the divisors in (2.1), one has
H0(E,D|E) 6= 0. To see this, note that if E is an effective divisor, say E is the zero

locus of a section xE ∈ H0(M,E), then there is an exact sequence:

0 → H0(M,D − E) → H0(M,D) → H0(E,D|E).

If H0(E,D|E) = 0 then any s ∈ H0(M,D) is of the form xEt, where t ∈

H0(M,D − E). If in addition E is a divisor in (2.1) then we may replace D with
D − E and s with t. (Clearly, if t is generated by distinguished sections, then s is
too.) Therefore, we may assume:

Assumption 2.4. H0(E,D|E) 6= 0 for all divisors E in (2.1).

Denote by rE the restriction to E:

rE : H0(M,D) → H0(E,D|E).

To prove Theorem 1.4 it is enough to prove the following:

Main Claim. Let D be a divisor on M :

D = dH −
∑

i

miEi −
∑

i,j

mijEij ,



4 ANA-MARIA CASTRAVET

such that H0(M,D) 6= 0 and that satisfies Assumption 2.4. Up to a renumbering,
we may assume that m5 ≤ mi, for i = 1, . . . , 4. If mi = m5 for all i = 1, . . . , 4, then
we may assume that the maximum of the mij ’s for all i, j ∈ {1, . . . , 5} is attained

for mi5 for some i = 1, . . . , 4. Let E = E5. Then for any s ∈ H0(DM,D), there is
s′ ∈ H0(M,D), generated by distinguished sections, such that rE(s) = rE(s′).

To see how the Main Claim implies Theorem 1.4, note that the kernel of the
restriction rE is H0(M,D − E) and the map H0(M,D − E) → H0(M,D) is given
by multiplication with xE . If rE(s) = rE(s′), then s − s′ = xEt, where t ∈
H0(M,D − E). If s′ is generated by distinguished sections, then to show that s
is generated by distinguished sections it is enough to show that H0(M,D − E) is
generated by distinguished sections. We may replace D with D − E, and continue
the procedure. Since E is always among the Ei’s, note that (D −E).C < D.C and
H0(M,D − E) is generated by distinguished sections by induction. The process
has to stop as D.C ≥ 0 for any effective divisor D. (In particular, note that D.C
decreases also when we substract from D any of the divisors E in (2.1) for which
H0(E,D|E) = 0.)

Notation 2.5. Given any divisor D on M we denote by D the restriction D|E5
of

D to E5. By (9.3) one has:

D = m5H −

4∑

i=1

mi5Ei.

Let ρ5 : P
3

99K P
2 be the projection from p5. Let qi = ρ5(pi) (i ∈ {1, . . . , 4}).

The divisor E5 is isomorphic to the blow-up of P
2 along the points q1, . . . , q4 (as

qi determines the direction of the line li5). The divisors H, respectively Ei, are
the hyperplane class, respectively the exceptional divisors on E5 (see also Section
9.1.) The map ρ5 is resolved by the morphism π5 : M → M0,5 that forgets the 5’th

marking (which is also a retract for the inclusion E5 ⊂ M).

Notation 2.6. Let lij be the line qiqj in P
2. Denote:

x = l13 ∩ l24, y = l14 ∩ l23, z = l12 ∩ l34.

Notation 2.7. Let Lx be the proper transform in M of the unique line in P
3

that passes through p5 and intersects the skew lines l13 and l24. Similarly, let Ly

(respectively Lz) be the unique line that passes through p5 and intersects the skew
lines l14 and l23 (respectively l12 and l34).

Remark that x = ρ5(Lx), y = ρ5(Ly), z = ρ5(Lz).

In order to prove the Main Claim, we distinguish two cases.

Case I: Assume that D.Lx ≥ 0, D.Ly ≥ 0, D.Lz ≥ 0.

Notation 2.8. Denote by sij the section on E5 corresponding to the proper trans-

form of the line lij in P
2. Let si (i = 1, . . . , 4) be the sections corresponding to the

exceptional divisors Ei.

Definition 2.9. We call a section s ∈ H0(E5,D) a distinguished section on E5 if s
can be written as a monomial in the sections sij and si.

Since E5
∼= M0,5 is the blow-up of P

2 along q1, . . . , q4, by Lemma 7.3 the Cox
ring Cox(E5) of E5 is generated by distinguished sections. The Main Claim follows
from the following:
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Proposition 2.10. Under the assumptions of the Main Claim and the assumptions
in Case I, the restriction map

rE5
: H0(M,D) → H0(E5,D),

is surjective and one may lift any distinguished section (hence, any section) in
H0(E5,D) to a section generated by distinguished sections in H0(M,D).

The following is the main observation needed to prove Proposition 2.10:

Main Observation – Case I. Distinguished sections on E5 may be lifted to
distinguished sections on M using the following rules:

xij5|E5
= sij , xi5|E5

= si. (2.2)

This is because Λij5|E5
= lij , Ei5|E5

= Ei (see Section 9, formula (9.3)).

Sketch of Proof of Proposition 2.10. We lift a distinguished section s ∈
H0(E5,D) using the rules (2.2). Hence, there is a section t′ belonging to some

H0(M,D′), where D
′
= D and rE5

(t′) = s.

Notation 2.11. Let ∆ = D − D′.

Notation 2.12. Denote by X the iterated blow-up of P
3 in p1, . . . , p4 and proper

transforms of lines lij (i, j ∈ {1, . . . , 4}).

Since D and D′ have the same restriction to E5, it follows from (9.3) that the
divisor ∆ is a divisor on X. Note, X is a toric variety. The following is a standard
result:

Lemma 2.13. The Cox ring of X is generated by sections xi,xij, xijk correspond-
ing to the exceptional divisors Ei,Eij and proper transforms of hyperplanes Λijk

(i, j, k ∈ {1, . . . 4}).

Proposition 2.10 is now immediate if H0(∆) 6= 0: Since the points p1, . . . , p5 are
general, the restriction to E5 of any distinguished section in Cox(X) is non-zero. In
particular, if t′′ is any non-zero section in H0(∆), then t′′|E5

∈ H0(E5,O) is non-zero.

Therefore, the section s = t′t′′ is a section in H0(M,D) that restricts to (a non-zero
multiple of) s in H0(E5,D). Since t′′ is a distinguished section, it follows that t is
generated by distinguished sections.

Definition 2.14. We call a distinguished section s on E5 a section with straight-
forward lifting to D if after lifting using the rules (2.2) we end up with a divisor D′

for which ∆ = D − D′ has H0(∆) 6= 0.

The following Claim (proof in Section 3) finishes the proof of Proposition 2.10.

Claim 2.15. Under the assumptions of Proposition 2.10, any distinguished section
s ∈ H0(E5,D) is a linear combination of distinguished sections with straightforward
lifting to D.

Case II: Assume one of D.Lx,D.Ly,D.Lz is negative.

Definition 2.16. Let:

mx = max {0,−D.Lx}, my = max {0,−D.Ly}, mz = max {0,−D.Lz}.

Notation 2.17. Denote by Y the blow-up of P
2 along q1, q2, q3, q4, x, y, z. Let

Ei,Ex,Ey,Ez be the corresponding exceptional divisors. For a given divisor D on

M we consider the following divisor D
Y

on Y :

D
Y

= D − mxEx − myEy − mzEz.
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Clearly, the linear system H0(Y,D
Y

) is a subspace of the linear system H0(E5,D).

Claim 2.18. The restriction map rE5
factors through H0(Y,D

Y
).

Proof. Clearly, Claim 2.18 is non-trivial only when one of mx,my,mz is positive.
Take for example the case when mx > 0 (the other cases are identical). By Propo-
sition 6.1, the line Lx is contained in D with multiplicity m ≥ mx > 0. It follows
that for any s ∈ H0(M,D) the section rE5

(s) vanishes at x with multiplicity ≥ m;

hence, rE5
(s) lies in the subspace H0(Y,D

Y
). �

In Case II we follow the exact same steps as in Case I, with the only difference
that we work on Y instead of E5.

Notation 2.19. Denote by s′ij the section corresponding to the proper transform

in Y of the line lij . Similarly, let sxy, sxz, syz be the sections corresponding to the
proper transforms of the lines xy, xz, yz. Let si, sx, sy, sz be the sections corre-
sponding to the exceptional divisors Ei, Ex, Ey, Ez.

Note:
x ∈ l13, l24, y ∈ l14, l23, z ∈ l12, l34.

Hence, for example s′13 is a section of the divisor H −E1−E3−Ex and the section
s13 (Notation 2.8) is given by s13 = s′13sx. Moreover, if we let:

rY : H0(M,D) → H0(Y,D
Y

),

be the morphism of Claim 2.18, then rE5
(s) = rY (s)smx

x s
my
y smz

z .

Definition 2.20. We call a section s ∈ H0(Y,D
Y

) a distinguished section on Y if
s can be written as a monomial in the sections s′ij ,sxy,sxz,syz, si,sx,sy,sz.

In Section 7 we prove the following:

Lemma 2.21. The Cox ring Cox(Y ) of Y is generated by distinguished sections.

Note, by Lemma 2.21, the generators of Cox(Y ) are given by the sections (unique
up to scalar multiplication) corresponding to the (−1) and (−2) curves on Y . The
Main Claim follows from:

Proposition 2.22. Under the assumptions of the Main Claim, the restriction map:

rY : H0(M,D) → H0(Y,D
′
),

is surjective and one may lift any distinguished section (hence, any section) in

H0(Y,D
Y

) to a section generated by distinguished sections in H0(M,D).

The following is the main observation needed to prove Proposition 2.22:

Main Observation – Case II. Distinguished sections on Y may be lifted to
distinguished sections on M using the following rules:

rY (xij5) = s′ij , rY (xi5) = si, (2.3)

rY (x(13)(24)) = syz, rY (x(14)(23)) = sxz, rY (x(12)(34)) = sxy. (2.4)

This is because when D = Λij5 one has:

D
Y

= H − Ei − Ej − Eα,

where α = x if ij ∈ {13, 24}, α = y if ij ∈ {14, 23}, α = z if ij ∈ {12, 34}. Similarly:

Q
Y

(13)(24) = H − Ey − Ez, Q
Y

(14)(23) = H − Ex − Ez, Q
Y

(12)(34) = H − Ex − Ey.

Sketch of Proof of Proposition 2.22. We lift a distinguished section s ∈
H0(E5,D) using the rules (2.3) and (2.4). Hence, there is a section t′ in some
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H0(M,D′) and rY (t′) = s. As in Case I, we let ∆ = D − D′. The divisor ∆ is a
divisor on X (Notation 2.12). As in Case I, Proposition 2.22 follows from Lemma
2.13 if H0(∆) 6= 0.

Definition 2.23. We call a distinguished section s on Y a section with straight-
forward lifting to D if lifting using the rules (2.3) and (2.4) results in a divisor D′

for which ∆ = D − D′ has H0(∆) 6= 0.

The following Claim (proof in Section 4) finishes the proof of Proposition 2.22.

Claim 2.24. Under the assumptions of the Main Claim, any distinguished section

s ∈ H0(Y,D
Y

) is a linear combination of distinguished sections with straightforward
lifting to D.

3. Proof of Claim 2.15

The idea is that any distinguished section on E5 can be rewritten, using the re-
lations in Cox(E5), as a linear combination of distinguished sections with straight-
forward lifting. To check that H0(∆) 6= 0 we use Lemma 8.2. Assumption 2.4 is
equivalent to inequalities (9.4), (9.6), (9.7), (9.8) (for all permutations of indices).

We use the notation from Section 8. Recall that eij is the class of a fiber of the

P
1-bundle Eij → lij . One has D.l = d, D.ei = mi, D.eij = mij (see for example

(9.1), (9.5)). The inequalities defining Case I are equivalent to:

D.(l − e5 − eij − ekl) ≥ 0, {i, j, k, l} = {1, 2, 3, 4}. (3.1)

Lemma 3.1. Let s be a distinguished section on E5:

s =
∏

i,j

s
aij

ij

∏

i

sli
i , (3.2)

where aij , li ≥ 0. If s is a section H0(E5,D) then s has straightforward lifting to D
if and only if for all {i, j, k, l} = {1, 2, 3, 4} one has:

aij ≤ D.(Ck;l − e5), (3.3)

where Ck;l = 2l − eki − ekj − el.

Remark 3.2. By (9.8) one has D.(Ck;l − e5) ≥ 0 for all k, l ∈ {1, 2, 3, 4}.

Remark 3.3. The condition that s is in H0(D) is equivalent to:
∑

aij = D.e5, aij + aik + ail − li = D.ei5, (3.4)

(the coefficients of H and Ei in D). It follows from (3.4) that:

akl − aij − lk − ll = D.(ek5 + el5 − e5), (3.5)

4∑

i=1

li = D.(2e5 −
∑

i6=5

ei5), (3.6)

ajk + ajl + akl + li = D.(e5 − ei5). (3.7)

Proof of Lemma 3.1. If D = 0, s = 1 (i.e., aij = 0, li = 0) then the lift D′ is 0.

Hence, ∆ = D − D′ = D. Since H0(D) 6= 0, there is nothing to prove in this case.
Assume now D 6= 0. Recall that E5 ⊂ M has a retract π : M → E5

∼= M0,5

given by the morphism that forgets the 5-th marking. One has:

π∗lij = Λij5 + Eij , π∗Ei = Ei5 + Ei (3.8)

(This is a general fact about the forgetful morphisms πi : M0,n → M0,n−1 that

forget a marking i. If ∆S is a boundary divisor in M0,n−1, corresponding to the
partition S ∪ Sc, then π∗∆S = ∆S + ∆S∪{i}.)
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Since we lift D to D′ by lifting lij to Λij5 and Ei to Ei5, it follows that:

D′ = π∗D − ∆0,

where ∆0 is the effective divisor on X given by:

∆0 =
∑

i,j∈{1,...,4}

aijEij +
∑

i∈{1,...,4}

liEi.

Then ∆ = D − D′ = D − π∗D + ∆0.

Observation 3.4. If (D− π∗D).C ≥ 0 for some nef curve C on X, then ∆.C ≥ 0.

Below we show that (D − π∗D).C ≥ 0 for all the nef curves C in Lemma 8.2
giving inequalities (1)–(4). Hence, by Observation 3.4, ∆.C ≥ 0. For the remaining
nef curves C in general it will not be true that (D−π∗D).C ≥ 0, but we show that
we still have ∆.C ≥ 0 for the nef curves C giving inequalities (5), (7), (8), (9) and
that for C = Ck;l (inequality (6)) ∆.C ≥ 0 is equivalent to (3.3). Note:

(π∗D).l = D.e5, (π∗D).ei = D.ei5, (π∗D).eij = 0 (i, j 6= 5) (3.9)

(It is enough to check this when D = H,Ei, Eij . For this, use the formulas (3.8).)
We check one by one the inequalities (1) − (9) in Lemma 8.2:

(1) (D − π∗D).l = D.(l − e5) ≥ 0,

as l − e5 is a nef curve on M . Similarly:

(2) (D − π∗D).(l − ei) = D.(l − ei − e5 + ei5) ≥ 0 by (9.6),

(3) (D − π∗D).(l − eij) = D.(l − e5 − eij) ≥ 0 by (9.7),

(4) (D − π∗D).(l − eij − ekl) = D.(l − e5 − eij − ekl) ≥ 0 by (3.1).

For inequality (5) (recall Cij = 2l − eij − ek − el):

(D − π∗D).Cij = D.(Cij − 2e5 + ek5 + el5),

∆0.Cij = aij + lk + ll,

∆.Cij = D.(Cij − e5) + D.(ek5 + el5 − e5) + aij + lk + ll.

By (3.5), ∆.Cij = D.(Cij − e5) + akl. From (9.7) (and akl ≥ 0), ∆.Cij ≥ 0.
For inequality (7) (recall Ci = 2l − eij − eik − eil):

(D − π∗D).Ci = D.(Ci − 2e5).

and ∆0.Ci = aij + aik + ail. Using (3.4), ∆0.Ci = D.ei5 + li. Therefore:

∆.Ci = D.(Ci − 2e5 + ei5) + li = 2D.(l − ei − e5 + ei5) + D.(2ei −
∑

u6=i

eiu) + li.

It follows from (9.4) and (9.6) that ∆.Ci ≥ 0.

For inequality (8) (recall B = 3l −
∑4

i=1 ei):

(D − π∗D).B = D.(B − 3e5 +
4∑

i=1

ei5),

and ∆0.B =
∑4

i=1 li. It follows from (3.6) that ∆.B = D.(3l −
∑5

i=1 ei) ≥ 0.
For inequality (9) (recall Bi = 3l − 2ei − ejk − ejl − ekl):

(D − π∗D).Bi = D.(Bi − 3e5 + 2ei5),

and ∆0.Bi = ajk + ajl + akl + 2li. From (3.7) one has ∆0.Bi = D.(e5 − ei5) + li,

∆.Bi = D.(Bi − 2e5 + ei5) = 2D.(l − ei − e5 + ei5) + D.(l − ejk − ejl − ekl − ei5).
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It follows by (9.6) and (9.7) that D.Bi ≥ 0.
There is at least one strict inequality in (4): assume ∆.(l− eij − ekl) = 0, for all

{i, j, k, l} = {1, 2, 3, 4}. From the computation above for case (4) we have:

(D − π∗D).(l − eij − ekl) = D.(l − e5 − eij − ekl) ≥ 0.

As ∆0.(l − eij − ekl) = 0 (l − eij − ekl) is a nef curve) it follows that:

(D − π∗D).(l − eij − ekl) = ∆0.(l − eij − ekl) = 0.

Since ∆0.(l − eij − ekl) = aij + akl it follows that aij = 0 for all i, j. By (3.4),

D.e5 = 0 and D.ei5 = 0,li = 0 for all i 6= 5. Hence, D = 0, s = 1, which contradicts
our assumption.

We show now that inequality (6) is equivalent to (3.3). One has:

(D − π∗D).Ci;j = D.(Ci;j − 2e5 + ej5),

and ∆0.Ci;j = aik + ail + lj . From (3.7), ∆0.Ci;j = D.(e5 − ej5) − akl. Therefore:

∆.Ci;j = D.(Ci;j − e5) − akl.

Hence, inequality (6) is equivalent to (3.3). �

3.1. Proof of Claim 2.15. Let s be a distinguished section in H0(E5,D) as in
(3.2). If aij ≤ D.(Ck;l − e5) for all {i, j, k, l} = {1, 2, 3, 4} then by Lemma 3.1 s has
straightforward lifting to D. Assume now that aij > D.(Ck;l − e5) for some choice
of i, j, k, l. Without loss of generality, we may assume a12 > D.(C3;4 − e5). Note
that by Remark 3.2 it follows that a12 > 0.

Claim 3.5. If a12 > D.(C3;4 − e5) then either a34 > 0 or l1 + l2 > 0.

Proof. By (3.5) one has:

a12 − a34 − l1 − l2 = D.(e15 + e25 − e5). (3.10)

Assume a34 = l1 = l2 = 0. It follows from (3.10) and a12 > D.(C3;4 − e5) that

a12 = D.(e15 + e25 − e5) > D.(C3;4 − e5).

This is a contradiction, as by (9.8) one has:

D.(C3;4 − e5) − D.(e15 + e25 − e5) = D.(2l − e4 − e13 − e23 − e15 − e25) ≥ 0.

�

3.2. Algorithm for replacing s. We now give an algorithm for replacing s with
another distinguished section s′ for which a12−D.(C3;4−e5) is strictly smaller than
for s and moreover, for all i, j for which aij −D.(Ck;l−e5) increases by this change,
the section s′ (still) satisfies aij − D.(Ck;l − e5) ≤ 0. We repeat the following two
steps until a12 ≤ D.(C3;4 − e5) (as by Claim 3.5 one of the two situations must
happen if a12 > D.(C3;4 − e5)). The same argument works for any aij .

Step 1: If l1 + l2 > 0: We may assume without loss of generality that l1 > 0.

Consider the following sections in the linear system |H − E2|:

s12s1, s23s3, s24s4.

The linear system |H − E2| is 1-dimensional and any two of the above sections
are linearly independent. Since a12 > 0, l1 > 0, we may replace s12s1 in s with a
linear combination of s23s3 and s24s4. The effect on the coefficients aij and li (of
the corresponding two distinguished sections) is as follows: a12 and l1 both decrease
by 1, while either a23, l3 increase by 1, or a24, l4 increase by 1 (everything else stays
the same). But by Lemma 3.6 one has:

a2j < D.(Ck;l − e5), for all j ∈ {3, 4}, {j, k, l} = {1, 3, 4}.
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Therefore, after increasing a23 or a24 by 1 one still has a2j ≤ D.(Ck;l − e5).

Step 2: If a34 > 0: Consider the following sections in the linear system |2H −

E1 − . . . − E4|:

s12s34, s13s24, s14s23.

The linear system |2H−E1− . . .−E4| is 1-dimensional and any two of the above
sections are linearly independent. Since a12 > 0, a34 > 0, we may replace s12s34 in
s with a linear combination of s13s24 and s14s23. The effect on the coefficients aij

is: a12 and a34 both decrease by 1, while either a13, a24 increase by 1, or a14, a23

increase by 1. By Lemma 3.6 one has:

aij < D.(Ck;l − e5), for all i ∈ {1, 2}, j ∈ {3, 4}, {i, j, k, l} = {1, 2, 3, 4}.

Therefore after increasing a13, a14, a23, a24 by 1, each of them still satisfies its
corresponding inequalities.

Lemma 3.6. If aij > D.(Ck;l − e5) then aiu < D.(Cv;w − e5) for all {u, v, w} =
{j, k, l} such that u ∈ {k, l}.

Proof. Assume the contrary. Then aij + aiu > D.(Ck;l − e5) + D.(Cv;w − e5). But
by (3.7) aij + aiu ≤ D.(e5 − eu′5), where {u′, u} = {k, l}. This is a contradiction
with Claim 3.7. �

Claim 3.7. D.(Ck;l +Cv;w−2e5) ≥ D.(e5−eu′5) for all v, w, u′ such that {u′, u} =
{k, l} and {v, w, u} = {j, k, l} for some u ∈ {k, l}.

Proof. There are four cases:
Case (i): v = j, w = l (u = k,u′ = l). Using (9.6) and (9.7) one has:

D.(Ck;l + Cj;l − 2e5) − D.(e5 − el5) =

= 2D.(l − e5 − el + el5) + D.(l − eij − eik − ejk − el5) + D.(l − e5 − ejk) ≥ 0.

Case (ii): v = l, w = j (u = k,u′ = l). Using (9.6) and (9.7) one has:

D.(Ck;l + Cl;j − 2e5) − D.(e5 − el5) = D.(l − e5 − el + el5)+

D.(l − e5 − ej + ej5) + D.(l − eiu − eil − eul − ej5) + D.(l − e5 − ejk) ≥ 0.

Case (iii): v = j, w = k (u = l,u′ = k). This is symmetric to Case (ii).
Case (iv): v = k,w = j (u = l,u′ = k). Using (9.4), (9.6) and (9.7) one has:

D.(Ck;l + Ck;j − 2e5) − D.(e5 − el5) =

= 2D.(l − e5 − ek + ek5) + D.(2l − e5 − ej − el − eik) + D.(2ek −
∑

α6=k

ekα) ≥ 0.

�

4. Proof of Claim 2.24

As in Section 3, we show that any distinguished section on Y can be rewritten,
using the relations in Cox(Y ), as a linear combination of distinguished sections with
straightforward lifting. Assumption 2.4 is equivalent to the inequalities (9.4), (9.6),
(9.7), (9.8) (for all permutations of indices). We use the notation from Section 8.

Notation 4.1. Let χ : {12, 13, 14, 23, 24, 34} → {x, y, z} be the function

χ(13) = χ(24) = x, χ(14) = χ(23) = y, χ(12) = χ(34) = z.

Note, one has:

Lχ(ij) = l − e5 − eij − ekl, for all {i, j, k, l} = {1, 2, 3, 4}.
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Remark 4.2. By Definition 2.16 one has mα +D.Lα ≥ 0 for all α ∈ {x, y, z}, with
equality if and only if D.Lα ≤ 0.

Lemma 4.3. Let s be a distinguished section on Y :

s =
∏

i,j

s′
aij

ij

∏

i

sli
i scz

xyscy
xzs

cx
yzs

lx
x sly

y slz
z , (4.1)

where aij , li, cx, cy, cz, lx, ly, lz ≥ 0. If s is a section H0(Y,D
Y

) then s has straight-
forward lifting to D if and only if for all {i, j, k, l} = {1, 2, 3, 4} and α ∈ {x, y, z}:

cχ(ij) − aij ≤ D.(l − e5 − eij), (i)

cα − lα ≤ mα + D.Lα, (ii)

cχ(ij) − aij ≤ D.(Ckl − e5), (iii)

aij +
∑

α6=χ(ij)

cα ≤ D.(Ck;l − e5), (iv)

cx + cy + cz ≤ D.C, (v)

where Ckl = 2l − ei − ej − ekl, Ck;l = 2l − eki − ekj − el, C = 3l −
∑5

i=1 ei.

Remark 4.4. Note that the right sides of the inequalities in Lemma 4.3 are non-
negative due to (9.7) (for (i)), (iii)), (9.8) (for (iv)), Remark 4.2 (for (ii)) and
because C is a nef curve on M (for (v)).

Remark 4.5. The condition that s is in H0(Y,D
Y

) is equivalent to:
∑

aij + (cx + cy + cz) = D.e5, (4.2)

aij + aik + ail − li = D.ei5, (4.3)

(the coefficients of H and Ei in D
Y

)

aij + akl +
∑

α6=χ(ij)

cα − lχ(ij) = mχ(ij), (4.4)

(the coefficient of Eα in D
Y

for α ∈ {x, y, z}). From (4.2), (4.3) and (4.4) one has:
∑

li + 2(cx + cy + cz) = D.(2e5 −
∑

i6=5

ei5), (4.5)

ajk + ajl + akl + (cx + cy + cz) + li = D.(e5 − ei5), (4.6)

(cx + cy + cz) − (lx + ly + lz) = (mx + my + mz) − D.e5. (4.7)

Proof of Lemma 4.3. We lift s using the rules (2.3) and (2.4) (see also Remark 4.6)
to a section of the divisor:

D′ =
∑

aijΛij5 +
∑

liEi5 + cxQ(13)(24) + cyQ(14)(23) + czQ(12)(34) =

= (
∑

aij + 2
∑

cα)H −
∑

i6=5

(aij + aik + ail +
∑

cα)Ei − (
∑

aij +
∑

cα)E5−

−
∑

i,j 6=5

(aij +
∑

α6=χ(ij)

cα)Eij −
∑

i6=5

(aij + aik + ail − li)Ei5.

Using (4.2) and (4.3) one has:

D′ = (D.e5 +
∑

cα)H −
∑

i6=5

(D.ei5 + li +
∑

cα)Ei − (D.e5)E5−

−
∑

i,j 6=5

(aij +
∑

α6=χ(ij)

cα)Eij −
∑

i6=5

(D.ei5)Ei5.
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Then ∆ = D − D′ is given by the following formula:

∆ = (D.(l − e5) −
∑

cα)H −
4∑

i=1

(D.(ei − ei5) − li −
∑

cα)Ei−

−
∑

i,j 6=5

(D.eij − aij −
∑

α6=χ(ij)

cα)Eij .

We show that ∆.C ≥ 0 for the nef curves C giving the inequalities (1), (2), (7), (9)
in Lemma 8.2 and that for the nef curves C giving the remaining inequalities,
∆.C ≥ 0 is equivalent to (i),(ii),(iii),(iv),(v).

For inequality (1):

∆.l = D.(l − e5) −
∑

cα.

By (4.6), one has
∑

cα ≤ D.(e5 − ei5). By the assumption in the Main Claim
D.e5 ≤ D.ei. Then ∆.l ≥ D.(l − e5 − ei + ei5). It follows from (9.6) that ∆.l ≥ 0.

For inequality (2):

∆.(l − ei) = D.(l − e5 − ei + ei5) + li.

It follows from (9.6) that ∆.(l − ei) ≥ 0.

Inequality (3) is equivalent to (i) as one has:

∆.(l − eij) = cz − a12 ≤ D.(l − e5 − eij) + aij − cχ(ij).

For inequality (4):

∆.(l − eij − ekl) = D.(l − e5 − eij − ekl) + aij + akl +
∑

α6=χ(ij)

−cχ(ij).

By using (4.4) to substitute aij + akl +
∑

α6=χ(ij) one has that ∆.(l − eij − ekl) ≥ 0

is equivalent to (ii). Note that in Lemma 8.2 we require that at least one of the
inequalities is strict. As Lemma 4.7 shows, this is automatically satisfied in this
case.

For inequality (5):

∆.Ckl = D.(Ckl − 2e5 + ei5 + ej5) + akl + li + lj − cχ(kl).

Using (4.3) (to substitute li, lj) and (4.2) ∆.Ckl ≥ 0 is equivalent to (iii).

For inequality (6):

∆.Ck;l = D.(Ck;l − 2e5 + el5) + aik + ajk + ll + cχ(ij).

By using (4.6) to substitute aik + ajk + ll + cχ(ij), ∆.Ck;l ≥ 0 is equivalent to (iv).

For inequality (7) (recall that Ci = 2l − eij − eik − eil):

∆.Ci = D.(Ci − 2e5) + aij + aik + ail.

By using (4.3) to substitute aij + aik + ail, ∆.Ci = D.(Ci − 2e5 + Ei5) + li. But:

D.(Ci − 2e5 + Ei5) = 2D.(l − ei − e5 + mi5) + D.(2ei −
∑

j 6=i

eij).

From (9.6) and (9.4) it follows that ∆.Ci ≥ 0.
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For inequality (8) (recall that B = 3l −
∑4

i=1 ei):

∆.B = D.(B − 3e5 +
∑

i6=5

ei5) +
∑

li +
∑

cα.

By using (4.5) to substitute
∑

li + 2
∑

cα, ∆.B ≥ 0 is equivalent to (v).

For inequality (9) (recall that B = 3l − 2ei − ejk − ejl − ekl):

∆.Bi = D.(Bi − 3e5 + 2ei5) + ajk + ajl + akl + 2li +
∑

cα.

By using (4.6) to substitute ajk + ajl + akl + li +
∑

cα, ∆.Bi = D.(Bi − 2e5 + ei5).
But one has:

D.(Bi − 2e5 + ei5) = 2D.(l − ei − e5 + ei5) + D.(l − ejk − ejl − ekl − ei5).

It follows from (9.6) and (9.7) that ∆.Bi ≥ 0. �

Remark 4.6. In order to lift s ∈ H0(Y,D
Y

) we need to group s′ij with sχ(ij), such

that we may lift sij = s′ijsχ(ij) to xij5, etc (so in fact we lift ssmx
x s

my
y smz

z ). For this
we need to have enough sections sx,sy,sz. Take the case of sx: one needs exactly
a13 + a24 + cy + cz of them (to be distributed to s13,s24,sy,sz). Since the image of

the restriction map rY in H0(E5,D) is

H0(Y,D
′
)smx

x smy
y smz

z ,

the number of sx’s appearing in ssmx
x s

my
y smz

z is mx + lx and by (4.4) one has:

mx + lx = a13 + a24 + cy + cz.

Lemma 4.7. It is not possible to have cα − lα ≥ mα + D.Lα for all α ∈ {x, y, z}.

Proof. Assume the contrary and add up the three inequalities. Then one has:
∑

cα −
∑

lα ≥
∑

mα +
∑

D.Lα.

By (4.7), this is equivalent to
∑

D.Lα ≤ −D.e5, which contradicts Lemma 5.3. �

4.1. Proof of Claim 2.24. Let s be a distinguished section in H0(Y,D
Y

) as in
(4.1). If inequalities (i)-(v) in Lemma 4.3 are satisfied, then by Lemma 4.3 s has
straightforward lifting to D. Assume now that one of the inequalities (i)-(v) fails.
We first show that we can keep replacing the section s with a linear combination
of distinguished sections until we are in one of the following cases:

(A) cx = cy = cz = 0,

(B) lx = ly = lz = 0, cx + cy + cz > 0,

(C) cx = cy = lx = ly = 0, cz > 0, lz > 0 (up to a permutation of x, y, z).

This follows from:

Claim 4.8. If lα > 0 and cβ > 0 for α, β ∈ {x, y, z}, β 6= α, then we may replace
s with a sum of distinguished sections s′ for which both cx + cy + cz and lx + ly + lz
decreased.

Proof. We may assume without loss of generality that lx > 0, cz > 0. Consider the
following sections in the linear system |H − Ey|:

sxysx, s′14s1s4, s′23s2s3.

The linear system |H−Ey| is 1-dimensional and any two of the above sections are
linearly independent. Hence, we may replace sxysx with a linear combination of the
sections s′14s1s4, s

′
23s2s3. The effect is: cz, lx decrease by 1 and either a14, l1, l4 or
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a23, l2, l3 increase by 1. Note that cx, cy, ly, lz stay the same. Hence, both cx+cy+cz

and lx + ly + lz decreased by 1. �

Note that while doing replacements as in Claim 4.8 we ignore how the changes
affect inequalities in Lemma 4.3.

4.2. Case (A): cx = cy = cz = 0. This case is very similar to Case I.

Lemma 4.9. If cx = cy = cz = 0 then s has straightforward lifting to D if and
only if for all {i, j, k, l} = {1, 2, 3, 4} one has:

aij ≤ D.(Ck;l − e5).

Proof. One may immediately see (use for example Remark 4.4) that the inequalities
(i),(iii),(v) in Lemma 4.3 are satisfied. The inequality (ii) is satisfied (see Remark
4.2). Condition (iv) in Lemma 4.3 becomes aij ≤ D.(Ck;l − e5) in Case (A). �

Algorithm for replacing s – Case (A). If for all {i, j, k, l} = {1, 2, 3, 4, } one has
aij ≤ D.(Ck;l−e5) and by Lemma 4.9 s has straightforward lifting to D. if for some
i, j, k, l one has aij > D.(Ck;l − e5) we will replace s with a sum of distinguished
sections such that all the inequalities improve, while leaving cx = cy = cz = 0. We
do this in exactly the same way as we did in Case I, as Lemma 3.6, Claim 3.5, as
well as the Algorithm 3.2 all apply word by word.

4.3. Case (B): lx = ly = lz = 0, cx + cy + cz > 0. This is impossible because of

(4.7) and Lemma 5.3.

4.4. Case (C): cx = cy = lx = ly = 0, cz > 0, lz > 0.

Remark 4.10. Under the assumptions of Case (C) the relations in Remark 4.5
become:

∑
aij + cz = D.e5, (4.8)

a13 + a24 + cz = mx, a14 + a23 + cz = my, (4.9)

a12 + a34 − lz = mz, (4.10)

cz − lz = mx + my + mz − D.e5. (4.11)

From (4.9) one has:

0 < cz ≤ min {mx,my}. (4.12)

From the definitions of mx,my it follows that mx = −D.Lx,my = −D.Ly. From
(4.10) and (4.11) one has:

a12 + a34 − cz = m5 − mx − my = D.(2l − e5 − e13 − e14 − e23 − e24). (4.13)

Lemma 4.11. Under the assumptions of Case (C) s has straightforward lifting to
D if and only if:

aij ≤ D.(Cij − e5) + D.(2l − e5 − e13 − e14 − e23 − e24), (iii’)

aij ≤ D.(Ck;l − e5), (iv’)

whenever either ij = 12, kl = 34 or ij = 34, kl = 12.

Remark 4.12. By (9.7) and (9.8) the right hand sides of (iii’), (iv’) are ≥ 0.

Proof of Lemma 4.11. We claim that in Lemma 4.3 the inequalities (i),(ii) and (v)
are satisfied and that (iii), respectively (iv) are equivalent to (iii’) and (iv’).

Inequality (i): by Remark 4.4 the inequalities involving cx, cy are automatic.
We claim that cz ≤ D.(l − e5 − eij) whenever ij = 12 or 34: by (4.12) one has
cz ≤ mx,my, hence cz ≤ (mx + my)/2 and the claim follows from Lemma 5.2.
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Inequality (ii): this is clearly satisfied for lx − cx = 0, ly − cy = 0. From (4.11)
and Lemma 5.3 it follows that cz − lz ≤ 0 and we are done by Remark 4.12.

Inequality (iii): the inequalities involving cx and cy are automatically satisfied.
The inequalities (iii) involving cz are of the form (here ij = 12 or 34):

cz − aij ≤ D.(Ckl − e5). (4.14)

Using (4.13) to substitute cz − aij in (4.14), one obtains (iii’):

akl ≤ D.(Ckl − e5) + D.(2l − e5 − e13 − e14 − e23 − e24).

Inequality (iv): We claim that the inequalities involving a13, a14, a23, a24 are
satisfied: this is because by (4.9) aij + cz ≤ mx whenever ij 6= 12, 34. By Lemma
5.1 mx ≥ D.(Ck;l − e5) and we are done. The inequalities (iv) involving a12, a34

are exactly the inequalities (iv’).
Inequality (v): this follows from (4.12) and Lemma 5.2. �

4.5. Algorithm for replacing s in Case (C). If the inequalities in Lemma 4.11
are satisfied, then s has straightforward lifting to D. Assume one of (iii’) or (iv’) is
not satisfied, say for a12 (the same argument applies for a34). Then by Remark 4.12
one has a12 > 0. Then we make replacements to decrease a12 as follows: Consider
the following sections in the linear system |2H − E1 − E2 − Ex − Ey|:

s′12sxysz, s′13s23s
2
3, s′14s24s

2
4.

The linear system is 1 dimensional and any two of the above sections are linearly
independent. Since a12, cz, lz > 0, we may replace s′12sxysz in s with a linear
combination of s′13s

′
23s

2
3, s

′
14s

′
24s

2
4. The effect is: a12, cz, lz decrease by 1, while either

a13, a23 increase by 1, or a14, a24 increase by 1. Note that besides the above changes
and the changes affecting the li’s (which we ignore, since they do not appear in (iii’),
(iv’) no other changes occur. In particular, we still have cx = cy = lx = ly = 0.

The inequalities involving a12 were improved (while the ones involving a34 re-
mained the same). If after the replacement cz = 0 or lz = 0, we are in Case (A)
or Case (B), we apply the procedure described for those cases. If after the replace-
ment we still have cz > 0 and lz > 0, then we are in Case (C) and therefore all
inequalities are satisfied, except perhaps (iii’), (iv’) for a12 or a34.

5. Inequalities involving mx,my,mz

The assumptions in this section are the same as in the Main Claim. Recall:

Lχ(ij) = Lχ(kl) = l − e5 − eij − ekl.

Lemma 5.1. For any {i, j, k, l} = {1, 2, 3, 4} one has:

−D.Lχ(kl) ≤ D.(Ck;l − e5),

where Ck;l = 2l − el − eik − ejk.

Proof. One has:

D.(Ck;l − e5) + D.Lχ(kl) = D.(l − eik − ejk − eij − el5)+

+D.(l − e5 − el + el5) + D.(l − e5 − ekl) ≥ 0.

It follows from (9.6) and (9.7) that D.(Ck;l − e5) + D.Lχ(kl) ≥ 0. �

Lemma 5.2. For any i, j ∈ {1, 2, 3, 4} one has:

−
1

2
D.(

∑

α6=χ(ij)

Lα) ≤ min {d − m5 − mij , 3d −
5∑

i=1

mi}

.
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Proof. Without loss of generality, we may assume ij = 12. One has:

2D.(l − e5 − e12) + D.(Lx + Ly) =

= 2D(l − e5 − e12) + D.(2l − 2e5 − e13 − e14 − e23 − e24) =

= D.(l − e12 − e13 − e23 − e45) + (l − e12 − e14 − e24 − e35)+

+D.(l − e5 − e3 + e35) + D.(l − e5 − e4 + e45) + D.(e3 + e4 − 2e5).

The first inequality follows from (9.7) and the assumption D.e5 ≤ D.ei. Moreover:

2D(3l −
5∑

i=1

ei) + D.(Lx + Ly) =

2(3l −

5∑

i=1

ei) + D.(2l − 2e5 − e13 − e14 − e23 − e24) =

D.(2l − e1 − e3 − e5 − e24) + D.(2l − e1 − e4 − e5 − e23)+

D.(2l − e2 − e3 − e5 − e14) + D.(2l − e2 − e4 − e5 − e13).

The second inequality now follows from (9.7). �

Lemma 5.3. One has (mx + my + mz) ≤ D.e5,−D.(Lx + Ly + Lz) < D.e5.

Proof. Note, by definition of mx if mx > 0, then mx = −D.Lx (similarly for y, z).
If mx = my = mz = 0. The Claim follows from (9.4).

Case 1) Assume just one of mx,my,mz is > 0, say mx > 0,my = mz = 0:

D.e5 − (mx + my + mz) = D.(l − e13 − e24).

But D.(l − e13 − e24) ≥ 0 (see Lemma 8.2). The other cases are similar.
Case 2) Assume two of mx,my,mz is > 0, say mx,my > 0,mz = 0:

D.e5 − (mx + my + mz) = D.(2l − e5 − e13 − e14 − e23 − e24).

By (9.8) D.e5 − (mx + my + mz) ≥ 0. The other cases are similar.
Case 3) Assume mx,my,mz > 0:

D.e5 − (mx + my + mz) = D.(Lx + Ly + Lz + e5) = D.(3l − 2e5 −
∑

i,j=1,...4

eij) =

= D.(2ei −
∑

j 6=i

eij) + 2D(l − e5 − ei + ei5) + D.(l − ejk − ekl − ejl − ei5),

for any {i, j, k, l} = {1, 2, 3, 4}. By (9.4),(9.6),(9.7) D.e5 − (mx + my + mz) ≥ 0.

If −D.(Lx + Ly + Lz) = D.e5, by the above computation one has (here for
simplicity, we let d = D.l,mi = D.ei,mij = D.eij):

2mi −
∑

j 6=i

mij = 0, d − m5 − mi + mi5 = 0, mjk + mkl + mjl + mi5 = d.

It follows that:
mij + mik + mil = d − m5 + mi, (5.1)

mjk + mkl + mjl = 2d − m5 − mi. (5.2)

Adding up all relations (5.1) and (5.2), one has:

2
∑

i,j=1,...4

mij = 4d − 4m5 +
4∑

i=1

mi, 2
∑

i,j=1,...4

mij = 8d − 4m5 −
4∑

i=1

mi.

It follows that
∑4

i=1 mi = 2d. But by assumption mi ≥ m5 for all i, hence
m5 ≤ d/2. As 0 ≤ mi5 = mi + m5 − d it follows that mi ≥ d − m5 ≥ d/2. Since∑4

i=1 mi = 2d it follows that mi = d/2, mi5 = 0. Moreover, mij + mik + mil = d.
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As d > 0 it follows that mij > 0 for some i, j ∈ {1, . . . , 4}. This contradicts the
assumption in the Main Claim. �

6. Multiplicity estimates

Let l be the unique line in P
3 that passes through p5 and intersecting lines l13

and l24 (the other cases are similar). Let L be the proper transform of l in M .

Proposition 6.1. Let D = dH −
∑

miEi − mijEij be an effective divisor on M .
Let m be the multiplicity of D along L. Then

m ≥ m5 + m13 + m24 − d.

Proof. Let ρ : X → M be the blow-up of M along L and let E be the exceptional
divisor. Let D̃ be the proper transform of D. Then ρ∗D = D̃ + mE. Restricting
to E, one has:

(ρ∗D)|E = D̃|E + mE|E . (6.1)

Let N be the normal bundle of L in M . Let Nl|P3 be the normal bundle of l in

P
3. If l′ is the proper transform of l in the blow-up X of P

3 along p1, . . . , p5, let N ′

be the normal bundle of l′ in M . One has:

Nl|P3 = O(−1) ⊕O(−1), N ′ = π∗Nl|P3(−E5) = O ⊕O. (6.2)

It is easy to see that deg(N) = deg(N ′) − 2 = −2. In fact we have the following:

Claim 6.2. N = O(−1) ⊕O(−1).

Proof. Note that one could obtain M by blowing up P
3 first along the points

p1, . . . , p4, then the proper transforms of the lines l13 and l24, then the point p5

and the proper transforms of the lines lij , for all ij 6= 13, 24. Let Λ be the plane

in P
2 spanned by the line l and l13. Then the proper transform Λ̃ of Λ in M is

the blow-up of Λ ∼= P
2 along p1, p3, p5, q, where q = l24 ∩ Λ. If NL|Λ̃ is the normal

bundle of L in Λ̃ and NΛ̃|M is the normal bundle of Λ̃ in M , one has an exact
sequence:

0 → NL|Λ̃ → N → (NΛ̃|M )|L → 0. (6.3)

It is easy to see that NL|Λ̃ = O(−1). Since deg(N) = −2 and O(−1) is a subbundle

of N (the quotient is a line bundle), it follows that N = O(−1) ⊕O(−1). �

Then E = P(N) ∼= P
1 × P

1. Let p : E → l = P
1 be the restriction of ρ to E. Let

q : P
1 × P

1 → P
1 be the other projection. Then

E|E = OE(−1) = q∗O(−1) ⊗ p∗O(−1).

Note that (ρ∗D)|E = p∗(D|L) and D|L = O(a), where we let a = D.L. One has:

H.L = E5.L = E13.L = E24.L = 1, Ei.L = Eij .L = 0, for all other indices i, j.

It follows that a = d − m5 − m13 − m24. From (6.1) one has:

D̃|E = p∗O(a + m) ⊗ q∗O(m).

Since D̃|E is effective, it follows that m ≥ −a = m5 + m13 + m24 − d. �
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Figure 1. The configuration of the points q1, q2, q3, q4, x, y, z

7. Proof of Lemma 2.21

Recall that Y is the blow-up of P
2 along q1, . . . , q4, x, y, z.

Let

D = dH −

4∑

i=1

miEi − mxEx − myEy − mzEz,

be a divisor on Y . Assume D is effective and let s be a section in H0(Y,D).
We show that s is generated by distinguished sections on Y by induction on

d. Let l
′

ij (respectively lxy,lyz,lxz) be the proper transforms in Y of the lines lij
(respectively xy, yz,xz). We may assume D.C ≥ 0 for C among the classes:

l
′

ij , lxy, lxz, lyz, Ei, Ex, Ey, Ez.

This is because if D.C < 0 then s = xCs′, where s′ ∈ H0(Y,D − C) and xC is a
generator of H0(Y,C), and s′ is generated by distinguished sections by induction.
Hence, we assume:

d ≥ mi + mj + mχ(ij), d ≥ mx + my, d ≥ mx + mz, d ≥ my + mz, (∗)

d ≥ mi ≥ 0, d ≥ mx ≥ 0, d ≥ my ≥ 0, d ≥ mz ≥ 0.

If d = 0 then it follows by (∗) D = 0. Assume d > 0. We may assume without
loss of generality that

m4 ≤ m1 ≤ m2 ≤ m3.

Consider the restriction map:

r : H0(Y,D) → H0(E4,D|E4
) = H0(P1,O(m4)).

It is enough to show that we may lift any t ∈ H0(P1,O(m4)) to a section in
H0(Y,D) generated by distinguished sections on Y . This is because by the same
argument as in Section 2, if s, s′ are sections in H0(Y,D) are such that r(s) = r(s′),
then s − s′ is in H0(Y,D − E4) and we are done by induction.

Let ti be the restriction in H0(P1,O(1)) of the section si4 corresponding to

l
′

i4. Any two of t1, t2, t3 generate H0(P1,O(1)). In particular, it is enough to lift
t = t1

kt3
m4−k ( for any 0 ≤ k ≤ m4) to a combination of distinguished sections.

We lift ti to si4, hence t to sk
14s

m4−k
34 (a section of D′ = kl

′

14 + (m4 − k)l
′

34). Let:

∆ = D − D′ = (d − m4)H − (m1 − k)E1 − m2E2 − (m3 − m4 + k)E3−

−mxEx − (my − k)Ey − (mz − m4 + k)Ez.
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Claim 7.1. There is a section u ∈ H0(∆), generated by distinguished sections and
such that u|E4

∈ H0(E4,O) is non-zero.

Assuming Claim 7.1, we lift t to usk
14s

m4−k
24 and we are done.

Proof of Claim 7.1. Let

∆′ = ∆ − (m1 − k)l
′

12 = (d − m4 − m1 + k)H − (m2 − m1 + k)E2−

−(m3 − m4 + k)E3 − mxEx − (my − k)Ey − (mz − m1 − m4 + 2k)Ez.

Note that since k ≤ m4 ≤ m1 and since a section corresponding to l
′

12 has non-zero
restriction to E4, it is enough to show that there is a section u′ ∈ H0(∆′), generated
by distinguished sections and such that u′

|E4
∈ H0(E4,O) is non-zero.

Case when my − k < 0. Let

∆′′ = ∆ + (my − k)Ey = (d − m4 − m1 + k)H − (m2 − m1 + k)E2−

−(m3 − m4 + k)E3 − mxEx − (mz − m1 − m4 + 2k)Ez.

It is enough to show that there is a section u′′ ∈ H0(∆′′), generated by distinguished
sections and such that u′′

|E4
∈ H0(E4,O) is non-zero. Since ∆′′ is a divisor on the

blow-up of P
2 along the points q2, q3, x, z, it follows from Lemma 7.3 (a direct check

shows that all inequalities (7.1) hold; use k ≤ m4 ≤ mi and (∗)) and Lemma 7.4
applied to the lines q2, x and q3, z, that there is a section u′′ ∈ H0(∆′′), generated
by distinguished sections and not containing q4 in its zero-locus.

Case when my − k ≥ 0. Denote

N1 = m1 + m4 + mx + my − d − 2k,

N2 = 2d − m2 − m3 − mx − mz − 2k.

Claim 7.2. N1 ≤ N2, 0 ≤ N2, N1 ≤ my − k.

Proof of Claim 7.2. We have

N2 − N1 = (d − m1 − m2 − mz) + (d − m3 − m4 − mx) + (d − mx − my) ≥ 0,

using (∗) and m4 ≤ mi. Similarly, as 0 ≤ k ≤ m4, we have N2 ≥ 0 and N1 ≤ my−k
(using (∗) and m4 ≤ mi). �

By Claim 7.2, we may choose α, β ≥ 0 be integers such that α+β = my −k and
N1 ≤ α ≤ N2. Let

∆′′ = ∆ − αlxy − βl
′

23 = (d − m1 − m4 − my + 2k)H − (m2 − m1 + k − β)E2−

−(m3 − m4 + k − β)E3 − (mx − α)Ex − (mz − m1 − m4 + 2k)Ez.

Since lxy and l
′

23 have non-zero restriction to E4, it is enough to find u ∈ H0(∆′′)
such that u|E4

6= 0. As before, since ∆′′ is a divisor on the blow-up of P
2 along the

points q2, q3, x, z, it follows from Lemma 7.3 and Lemma 7.4 applied to the lines q2, x
and q3, z, that there is a section u′′ ∈ H0(∆′′), generated by distinguished sections
and not containing q4 in its zero-locus. All inequalities follow in a straightforward
way from (∗) and m4 ≤ mi, except for:

• ∆′′.(H − Ex) ≥ 0, (equivalent to α ≥ N1)
• ∆′′.(H − E3) ≥ 0 (use that m1 ≤ m2)
• ∆′′.(2H − E2 − E3 − Ex − Ez) ≥ 0 (equivalent to α ≤ N2)

�
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Lemma 7.3. Let Z be the blow-up of P
2 along points q1, . . . , q4 (no three collinear).

One has H0(D) 6= 0 for a divisor D = dH −
∑4

i=1 miEi if and only if:

d ≥ 0, d − mi ≥ 0 2d −

4∑

i=1

mi ≥ 0. (7.1)

The Cox ring Cox(Z) is generated by sections corresponding to the lines lij and the

exceptional divisors Ei.

Proof. It is a well known result that the Cox ring Cox(Z) is generated by sections
corresponding to the lines lij and the exceptional divisors Ei, see for example [BP].

If D is an effective divisor, then clearly, the inequalities (7.1) hold. Conversely,
assume (7.1) hold. We write D as an effective combination of the classes of the
lines lij = H − Ei − Ej and the exceptional divisors Ei. Consider the table with

2 rows and d columns filled with Ei’s in the following way. Start in the upper left
corner and write m1 E1’s in the first row. Then write m2 E2’s passing to the second
row if necessary, and so on. Fill the remaining entries with zeros. For example, if
D = 5H − 3E1 − 3E2 − 2E3 − E4:

E1 E1 E1 E2 E2,
E2 E3 E3 E4 0.

Our conditions guarantee that all entries of a given column are different. Therefore
D is the sum of classes H − (Ei + Ej), one for each column, where Ei, Ej are the
entries of the column. In the example above:

D = (H −E1 −E2)+(H −E1 −E3)+(H −E1 −E3)+(H −E2 −E4)+(H −E2).

�

Lemma 7.4. In the notations of Lemma 7.3, let D be a divisor such that H0(D) 6=
0. Let q be the intersection point of the lines q1q2 and q3q4. The linear system |D|
does not contain q as a base point if and only if

D.(H − E1 − E2) ≥ 0, D.(H − E3 − E4) ≥ 0.

Proof. The conditions are clearly necessary. It is enough to show that D can be
written as an effective combination of lines lij (lij 6= l12, l34) and the exceptional

divisors Ei. Let

D =
∑

kij lij +
∑

kiEi, kij , ki ≥ 0.

Assume k12 > 0. Note that the only generators E of Cox(Z) with the property
that E.l12 > 0 are l34, E1, E2. Since D.l12 ≥ 0, it follows that one of k34, k1, k2 > 0.
If k1 > 0 we may replace l12 + E1 with a divisor in the pencil |H − E2| that does
not contain l12 (for example l23 + E3). The case k2 > 0 is similar. If k34 > 0, we
replace l12 + l34 with, for example, l13 + l24. The case when k34 > 0 is similar. At
the end of this process, we have k12 = k34 = 0. �

8. Inequalities for the effective cone of X

Let X be the iterated blow-up of P
3 in points p1, . . . , p4 (in linearly general

position) and proper transforms of lines lij (i, j = 1, . . . 4, i 6= j). Let Ei, Eij be the
exceptional divisors. Let l be the class on X of the proper transform of a general
line in P

3. Let ei be the class of (the proper transform of) a general line in Ei. Let
eij be the class of a fiber of the P

1-bundle Eij → lij .

Notation 8.1. For {i, j, k, l} = {1, 2, 3, 4} let:

Cij = 2l − eij − ek − el,

Ci;j = 2l − eik − eil − ej ,
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Ci = 2l − eij − eik − eil,

B = 3l −

4∑

i=1

ei,

Bi = 3l − 2ei − ejk − ejl − ekl.

Lemma 8.2. Let D be a divisor on X. Then D is an effective sum (with integer,
non-negative coefficients) of boundary divisors Λijk, Eij , Ei (in particular, H0(D) 6=
0) if D.C ≥ 0 for all C in the list below (for all {i, j, k, l} = {1, 2, 3, 4}): (1) l; (2)
l − ei; (3) l − eij; (4) l − eij − ekl; (5) Cij; (6) Ci;j; (7) Ci; (8) B; (9) Bi, and
moreover, if one has D.(l − eij − ekl) > 0 for some i, j, k, l.

It is easy to see that each of the classes C in (1)-(9) in Lemma 8.2 cover a dense
set of X; hence, for any effective divisor D one has D.C ≥ 0, i.e., C is a nef curve.

Remark 8.3. It is a standard fact that the divisor D is in the convex hull of
the effective divisors Λijk, Eij , Ei (where Λijk is the proper transform of the plane
pipjpk) if and only if inequalities (1)-(9) hold. However, the extra condition of

having at least one strict inequality in (4) is necessary for H0(D) 6= 0, as the
following example shows: if D = 2H−

∑
i6=j Eij then it is easy to see that H0(D) = 0

(H0(2D) 6= 0) and D satisfies all of (1)-(9).

Observation 8.4. If

D = dH −
∑

miEi −
∑

mijEij ,

is such that d ≥ 0, d ≥ mi,mij (for all i, j) and there is an i such that mi ≤ 0 and
mij ≤ 0 for all j 6= i, then D is an effective sum of boundary, as one has:

D = dΛjkl +
∑

j 6=i

(d − mj)Ej +
∑

u,v 6=i

(d − muv)Euv + (−mi)Ei +
∑

j 6=i

(−mij)Eij .

Proof of Lemma 8.2. Let D = dH −
∑

miEi −
∑

mijEij . One has:

d = D.l, mi = D.ei, mij = D.eij .

We do an induction on d. If d = 0 then from (2) and (3) mi,mij ≤ 0 and we are
done by Observation 8.4. Assume d > 0. We show that there are i, j, k such that
D′ = D − Λijk also satisfies (1)-(9) and hence, we are done by induction.

Note that D′ = D − Λijk (for any i, j, k) always satisfies (1),(4),(5),(8),(9).
Moreover, one has at least one strict inequality in (4). Inequality (2) fails for D′

if and only if ml = d, where l 6= i, j, k, and (3) fails for D′ if and only if one of
mil,mjl,mkl equal d. Inequality (6) fails for D′ if and only if one has:

2d = mli + mlj + mk,

(or the similar inequalities for a permutation of indices i, j, k). Inequality (7) fails
for D′ if and only if mil + mjl + mkl ∈ {2d − 1, 2d}.

Case I: mij = d for some i, j. We may assume d = m12. From (4), m34 ≤ 0.

Case 1: mi = d for i ∈ {3, 4}. We may assume m4 = d. Then by (5) one has that

m3 ≤ 0 and by (6) one has m13,m23 ≤ 0 and we are done by Observation 8.4.

Case 2: Assume m3 < d,m4 < d.
We may assume that m13 is the largest among m13,m14,m23,m24.

Claim 8.5. One has m14,m24 < d.
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Proof. Assume mi4 = d for i = {1, 2}. Since by assumption mi4 ≤ m13 and m13 ≤ d
one has m13 = d. If m14 = d, since m12 = d, one has a contradiction with (7). If
m24 = d one contradicts (4). �

Claim 8.6. The divisor D′ = D − Λ123 satisfies (1)-(9).

Proof. Inequality (2) holds, as m4 < d. Since by Claim 8.5 m14,m24 < d and since
m34 ≤ 0, inequality (3) holds. If (7) is not satisfied, i.e., m14 + m24 + m34 = 2d− 1
or 2d, one has a contradiction, as m34 ≤ 0 and (by Claim 8.5) m14,m24 < d. If (6)
is not satisfied for D′ then one has:

2d = mi4 + mj4 + mk, (8.1)

for some {i, j, k} = {1, 2, 3}. If k = 3: by (6) one has 2d ≥ m12 + m24 + m3. Since
m12 = d one has d ≥ m24 + m3 and hence, by (8.1), m14 = d. This contradicts
Claim 8.5. If k ∈ {1, 2} (say i = 3): one has 2d = m34 + mj4 + mk. Since m34 ≤ 0,
mj4 < d (Claim 8.5) and mk ≤ d, this is a contradiction. �

Case II: mi = d for some i, mij < d for all i, j. We may assume that d = m4. We

may also assume that d ≥ m3 ≥ m2 ≥ m1. By (9) and (5) one has:

m12 + m13 + m23 ≤ d, (8.2)

mij + mk ≤ d, (8.3)

where {i, j, k} = {1, 2, 3}.
Case 1: m23 > 0. By (8.2) one has:

m12 + m13 < d. (8.4)

Claim 8.7. The divisor D′ = D − Λ234 satisfies (1)-(9).

Proof. Inequality (3) is satisfied by the assumption mij < d. Inequality (2) is not
satisfied if and only if one has m1 = d. If m1 = d, it follows from the assumptions
that m2 = m3 = d. As m4 = d, one has a contradiction with (8). If (7) is not
satisfied, i.e., m12 +m13 +m14 = {2d−1, 2d}, one has a contradiction with m14 < d
and m12 + m13 < d (8.4). If (6) is not satisfied then one has:

2d = m1i + m1j + mk, (8.5)

for some {i, j, k} = {2, 3, 4}. If k = 4: since m4 = d one has from (8.5) d =
m12 + m13 which contradicts (8.4). If k ∈ {2, 3} (say i = 4) one has 2d = m14 +
m1j + mk for {k, j} = {2, 3}. But m14 < d and mj1 + mk ≤ d (8.3). This is a
contradiction. �

Case 2: m23 ≤ 0. If m2 = d then it follows from the assumptions that m3 = d. As
m4 = d, one has from (8) that m1 ≤ 0. It follows from (5) that m1i ≤ 0 for all
i = 2, 3, 4. Then we are done by Observation 8.4. Hence, we may assume m2 < d.

Claim 8.8. The divisor D′ = D − Λ134 satisfies (1)-(9).

Proof. Inequality (2) is satisfied as m2 < d. Inequality (3) is satisfied by assump-
tion. If (7) is not satisfied, i.e., m12 + m23 + m24 ∈ {2d − 1, 2d}, one has a contra-
diction with m24 < d and m12 + m23 ≤ m12 < d. If (6) is not satisfied then:

2d = m2i + m2j + mk, (8.6)

for some {i, j, k} = {1, 3, 4}. If k = 4: since m4 = d one has from (8.6) d =
m12 + m23. But m12 < d and m23 ≤ 0. This is a contradiction. If k ∈ {1, 3}
(say i = 4) one has 2d = m24 + mj2 + mk for {k, j} = {1, 3}. But m24 < d and
mj2 + mk ≤ d (8.3). This is a contradiction. �
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Case III: mi < d, mij < d for all i, j.

By Claim 8.10 we may assume D.Ci;j > 0 for i = 1, 2, 3, and all j 6= i.

Claim 8.9. One of D1 = D − Λ234, D2 = D − Λ134, D3 = D − Λ124 satisfies all
the inequalities (1) − (9).

Proof. Inequalities (2),(3) follow from the assumptions. If (6) is not satisfied for
Di then D.Ci;j , for some j 6= i, which we assume does not happen. Hence, (6) is
satisfied for all Di. If (7) fails for all Di, then one has for all i ∈ {1, 2, 3}:

mij + mik + mil ≥ 2d − 1. (8.7)

Adding up (8.7) for i = 1 and i = 2 one has:

2m12 + (m13 + m24) + (m14 + m23) ≥ 4d − 2. (8.8)

From (4) d ≥ mij + mkl. As m12 < d, it follows from (8.8) that m13 + m24 =
m14+m23 = d. Similarly, by adding (8.8) for i = 1 and i = 3 one has m12+m34 = d.
This contradicts our assumption that one of the inequalities in (4) is strict. �

Claim 8.10. There are at least three indices i ∈ {1, 2, 3, 4} such that D.Ci;j > 0
for all j 6= i.

Proof. Assume D.Ci;j = 0, for some i, j. We may assume without loss of generality
that D.C1;2 = 0.

2d = m13 + m14 + m2.

We claim that for all i ∈ {2, 3, 4} one has D.Ci;j > 0 for all j 6= i. This follows
from D.(C1;2 + Ci;j) > 0 for all i ∈ {2, 3, 4}, j 6= i. This is because:

D.(C1;2 + C3;j) = D.C3k + D.(l − e23 − e14) + D.e13 ({j, k} = {1, 4}).

It follows from (5), (4) and m13 < d that D.(C1;2 + C3;j) > 0. Similarly:

D.(C1;2 + C3;2) = D.B2 + D.e13.

By (9) and m13 < d, D.(C1;2 + C3;2) > 0. By symmetry, D.C4;j > 0, for all j 6= 4.
If {j, k} = {3, 4}, one has:

D.(C1;2 + C2;j) = D.C1k + D.(l − e1j − e2k) + D.e12.

From (5), (4) and m12 < d one has D.(C1;2 + C2;j) > 0. Similarly:

D.(C1;2 + C2;1) = D.(2l − e1 − e2) + D.(l − e13 − e24) + D.(l − e14 − e23).

From (4) and m1,m2 < d one has D.(C1;2 + C2;1) > 0.
�

�

9. Restrictions to generators

Let π′ : M
′
→ P

3 be the blow-up along p1, . . . , p5 and let E′
i be the corresponding

exceptional divisors. Let π : M → M
′

be the blow-up of the proper transforms
of the lines lij . In what follows, we compute the classes of the restrictions of an

arbitrary divisor D on M to the divisors Ei, Eij ,Λijk, Q(ij)(kl).
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9.1. Restrictions to Ei. The divisor Ei is the inverse image π−1(E′
i). By Fact

9.1 the divisor Ei is the blow-up of E′
i
∼= P

2 along the 4 points corresponding to the
directions of the lines lij , for j 6= i. Denote by Ej the corresponding exceptional

divisors. Denote by H the hyperplane class on Ei. One may easily see the following:

H|Ei
= 0, Ei|Ei

= −H, Ej |Ei
= 0 Eij |Ei

= Ej , Ejk|Ei
= 0, (9.1)

where j, k 6= i, j 6= k. This is clear from Fact 9.1.

Fact 9.1. [EH, Prop. IV.21,p.167] Let Y and Z be closed subschemes in a scheme

X and let X̃ be the blow-up of X along Z. Let E be the exceptional divisor. The
proper transform Ỹ of Y is the blow-up of Y along the scheme theoretic intersection
Y ∩ Z and the exceptional divisor is Ỹ ∩ E. In particular, if Z is contained in Y ,
the scheme Ỹ is the blow-up of Y along Z.

Consider an arbitrary divisor D on M :

D = dH −
∑

i

miEi −
∑

i,j

mijEij , where d,mi,mij ∈ Z. (9.2)

It follows from (9.1) that the restriction of D to Ei is given by:

D|Ei
= miH −

∑

j 6=i

mijEj . (9.3)

Lemma 9.2. The divisor D|Ei
is an effective divisor if and only if

mi ≥ 0, mi ≥ mij (j 6= i), 2mi ≥
∑

j 6=i

mij . (9.4)

Proof. This is Lemma 7.3 applied to (9.3). �

9.2. Restrictions to Eij. The normal bundle N of the proper transform of the

line lij in M
′
is given by:

N = (π∗Nlij |P3)(−Ei − Ej) = O(−1) ⊕O(−1).

The divisor Eij = P(N) is isomorphic to P(O⊕O) = P
1×P

1. Let p1 : P
1×P

1 →
P

1 be the projection map given by the blow-up map Eij → lij = P
1 and let p2 be

the other projection. Since O(Eij)|Eij
= OP(N)|P1(−1) and

OP(N)|P1(−1) ∼= OP(O⊕O)|P1(−1) ⊗ p∗1O(−1),

it follows that:

Eij |Eij
= p∗1O(−1) ⊗ p∗2O(−1).

Moreover, one may easily see, for all distinct i, j, k, l:

H|Eij
= Ei|Eij

= p∗1O(1), Ek|Eij
= 0, Ekl|Eij

= Eik|Eij
= 0. (9.5)

It follows from (9.5) that the restriction of D in (9.2) to Eij is given by:

D|Eij
= p∗1O(d − mi − mj + mij) ⊗ p∗2O(mij).

Clearly, the divisor D|Eij
is an effective divisor if and only if

mij ≥ 0, d − mi − mj + mij ≥ 0. (9.6)
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9.3. Restrictions to Λijk. Take the case of Λ123 (the other cases are similar). Let

Λ be the plane p1p2p3. Then Λ123 is the proper transform Λ̃ of Λ in M
′
. Denote

by Λ′ the proper transform of Λ in M
′
. Let q be the point l45 ∩ Λ. Note that

by Fact 9.1, Λ′ is the blow-up Λ = P
2 along p1, p2, p3 and Λ̃ is isomorphic to the

blow-up of Λ′ in q, i.e., Λ̃ is isomorphic to the blow-up of P
2 along p1, p2, p3, q. Let

E1, E2, E3, Eq be the exceptional divisors and H the hyperplane class. One may
easily see that:

H|Λ̃ = H, Ei|Λ̃ = 0 (i = 4, 5), Eij |Λ̃ = 0 (ij 6= 12, 13, 23, 45).

Using Fact 9.1, one has that:

Ei|Λ̃ = Ei (i = 1, 2, 3), E45|Λ̃ = Eq, Eij |Λ̃ = H−Ei−Ej (ij ∈ {12, 13, 23}).

It follows that the restriction of D in (9.2) to Λ123 is given by:

D|Λ123
= (d − m12 − m13 − m23)H −

∑

{i,j,k}={1,2,3}

(mi − mij − mik)Ei − m45Eq.

By permuting indices and applying Lemma 7.3, one has the following:

Lemma 9.3. If the divisor D|Λijk
is effective and {i, j, k, u, v} = {1, 2, 3, 4, 5} then

d ≥ mi + mjk, d ≥ mij + mik + mjk + muv, 2d ≥ mi + mj + mj + muv. (9.7)

9.4. Restrictions to the Keel-Vermeire divisors Q(ij)(kl). Take the case of

Q(12)(34). There is a unique (smooth) quadric Q in P
3 that contains the points

p1, . . . , p5 and the lines l13, l14, l23, l24. Since Q(12)(34) has class:

Q(12)(34) = 2H −
∑

i

Ei − E13 − E14 − E23 − E24,

it follows that Q(12)(34) is the proper transform Q̃ of Q in M . Denote by Q′ the

proper transform of Q in M
′
. By Fact 9.1 it follows that Q′ is the blow-up of

Q ∼= P
1 × P

1 along the points p1, . . . , p5. Moreover Q̃ ∼= Q′.
Let F1, respectively F2, be the class of the lines in the ruling of P

1 × P
1 that

contains l13 and l24, respectively l14 and l23. Let E1, . . . E5 be the exceptional
divisors on Q̃, considered as a blow-up of P

1 × P
1 along p1, . . . , p5. By Fact 9.1:

H|Q̃ = F1 + F2, Ei|Q̃ = Ei,

Eij |Q̃ = F1 − Ei − Ej (ij = 13, 24), Eij |Q̃ = F2 − Ei − Ej (ij = 14, 23),

Eij |Q̃ = 0 for all other cases.

It follows that restriction D|Q̃ of the divisor D in (9.2) to Q̃ is given by:

D|Q̃ = (d − m13 − m24)F1 + (d − m14 − m23)F2 − (m1 − m13 − m14)E1−

−(m2 − m23 − m24)E2 − (m3 − m13 − m23)E3 − (m4 − m14 − m24)E4 − m5E5.

Alternative description of Q̃. Let ρ : P
3 \ {p5} → P

2 be the projection from p5

and let qi = ρ(pi) (i = 1, . . . , 4). Let l1 (respectively l2) be the unique line through
p5 in the ruling of F1 (respectively F2).

Let y (respectively x) be the image l1 (respectively l2). The blow-up of Q =

P
1 × P

1 in p5 is isomorphic to the blow-up of P
2 in x, y. Hence, Q̃ is isomorphic

to the blow-up of P
2 along p1, . . . , p4, x, y. Denote by E

′

1, . . . E
′

4, Ex, Ey be the

exceptional divisors corresponding to the points p1, . . . , p4, x, y and let H be the
hyperplane class. One may immediately see:

H = ρ∗O(1) = F1 + F2 − E5.
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Note that lines in the ruling F2 (respectively F1) intersect l1 (respectively l2),
therefore their images in P

2 all pass through y (respectively x). In particular,
the lines q1q3 and q2q4 intersect in x, while the lines q1q4 and q2q3 intersect in y.
Moreover, one has:

F1 = H − Ex, F2 = H − Ey.

It follows that:

E5 = H − Ex − Ey, Ei = E
′

i (i = 1, . . . , 4).

Hence, the restriction D|Q̃ of the divisor D in (9.2) to Q̃ is given by:

D|Q̃ = (2d − m5 − m13 − m14 − m23 − m24)H − (m1 − m13 − m14)E1−

−(m2 − m23 − m24)E2 − (m3 − m13 − m23)E3 − (m4 − m14 − m24)E4−

−(d − m5 − m13 − m24)Ex − (d − m5 − m14 − m23)Ey.

Lemma 9.4. If the divisor D|Q̃ is effective then

2d ≥ m5 + m13 + m14 + m23 + m24, 2d ≥ m1 + m5 + m23 + m24. (9.8)

Proof. This follows from Lemma 7.3. �
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