THE COX RING OF Mg
ANA-MARIA CASTRAVET

ABSTRACT. We prove that the Cox ring of the moduli space Mo,a, of stable
rational curves with 6 marked points, is finitely generated by sections cor-
responding to the boundary divisors and divisors which are pull-backs of the
hyperelliptic locus in M3 via morphisms p : Wo,g — M3 that send a 6-pointed
rational curve to a curve with 3 nodes by identifying 3 pairs of points. In par-
ticular this gives a self-contained proof of Hassett and Tschinkel’s result about
the effective cone of Moﬁ being generated by the above mentioned divisors.

1. INTRODUCTION

A question of Fulton about the moduli space M ,, of stable, n-pointed, rational

curves, is whether the cone NE* (Moy,,) of effective cycles of codimension k in My,
is generated by k-strata, i.e., loci in Mo,n corresponding to reducible curves with at
least k nodes. While the case when k = n — 4 (i.e., the cone of effective curves) is
completely open (and an affirmative result would imply, by results of Gibney, Keel
and Morrison [GKM], the similar statement for the moduli space Mg’m of stable,
n-pointed, genus ¢ curves, thus determining the ample cone of Mgm) the case
when k =1 (i.e., the cone of effective divisors) was settled independently by Keel
(unpublished, a refference to this may be found in [GKM], p.277) and Vermeire [V]:
Fulton’s question has a negative answer when n = 6 (and therefore for any n > 6).
Hassett and Tschinkel prove in [HT] that the Keel-Vermeire divisors (pull-backs of
the locus of hyperelliptic curves in the moduli space M3, via morphisms Mg g — M3
sending a 6-pointed rational curve to a curve with 3 nodes by identifying 3 pairs
of points) together with the 2-strata (the boundary) generate the cone of effective
divisors in Mg . The proof in [HT] is based on a computer check. In this paper we
give a proof of Hassett and Tschinkel’s result, by proving a stronger statement: we
show that the sections corresponding to the above divisors generate the Cox ring
of M076.

Recall that if X is a smooth projective variety with Picard group freely generated
by divisors Dq,...,D,, then the Cox ring (or total coordinate ring) of X is the
multi-graded ring:

Cox(X)= €  H(X,miDi+...+m.D,).

(M1 ) EZT

The Cox ring being finitely generated has strong implications for the birational
geometry of X (X is a so-called Mori Dream Space): the effective cone and the nef
cone are both polyhedral and there are finitely many small modifications of X (i.e.,
varieties X’ isomorphic in codimension one to X) such that any moving divisor on
X (i.e., a divisor whose base locus has codimension at least 2) is nef on one of the
varieties X’ (see [HK] for the precise statements). It has been conjectured by Hu
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and Keel [HK] that any log-Fano variety has a finitely generated Cox ring. This
has been recently proved in the groundbreaking paper [BCHM]. In [HK] Hu and
Keel ask the following question:

Question 1.1. Is the Coz ring of M., finitely generated?

As pointed out in [KM], the moduli space M, is log-Fano only for n < 6.

We answer Question 1.1 for n = 6 by finding explicit generators. Our hope is that
our method for finding generators, that proved to be useful in other circumstances
(see [CT]), will eventually help answer Question 1.1 for larger n as well.

Consider the Kapranov description of the moduli space M = Mgg. If p1,...,ps
are points in linearly general position in P3, then M is the iterated blow-up of P3
along p1,...,ps and along the proper transforms of the lines [;; = p;p; for all ¢ # j.
If p is a general point in P2, there is a unique twisted cubic C in P? that contains
the points pq,...,ps,p. Then (C,p1,...,ps,p) is a 6-pointed rational curve, hence
an element of M. The point p corresponds to the 6'th marking (the so-called
moving point).

Denote by H the hyperplane class on M and by FE; and E;; the exceptional
divisors in M corresponding to the points p; and the lines [;;.

Notation 1.2. Let A;j; be the class of the proper transform of the plane p;p;px:

If S c{1,...,6} and |S| = 2, or 3, let Ag be the boundary divisor in M with
general element a curve with two irreducible components with the partition of the
markings given by S U S¢. In the Kapranov description, the boundary divisors Ag
have the following classes:

Nig=E;, Nije=FEij, 4,j=1,...,5,
Aij = Aabm if {i,j7a,b,c} = {]_7 . ’5}

Notation 1.3. Let Qi) be the class of the proper transform of the unique
quadric that contains all the points p1,...,ps and the lines l;x, [y, iz, L

Qjky =2H = > E; — Eip, — By — Ej — Eju.

The divisor classes Q;;)(r1) are exactly the divisors considered by Keel and Ver-
meire: for example, if one considers the map Mg — M3 given by identifying the
pairs of points (12)(34)(56), then the class of the pull-back of the hyperelliptic locus
in M3 is computed in [HT] to be the class of Q12)(34)- We call the divisors Q ;) 1)
the Keel-Vermeire divisors. We prove the following:

Theorem 1.4. The Coz ring of Mog is generated by the sections (unique up to
scaling) corresponding to the boundary divisors (i.e., Aiji and the exceptional divi-
sors E; and E;;) and the Keel-Vermeire divisors Qij) (k1) -

The paper is divided as follows: Section 2 explains the strategy of proof, there
are two main cases, the details of each are given in Section 3, respectively Section
4. The remaining sections contain auxiliary results needed in the proof. Section 5
contains proofs for some basic inequalities, while Section 6 contains some general
multiplicity estimates needed for Case II. Section 7 contains the proof of Lemma
2.21 (needed for Case II) that states that the Cox ring of the blow-up of P? in seven
(non-general) points is generated by sections corresponding to —1 and —2 curves.
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Section 8 gives necessary and sufficient conditions for a divisor on X, the iterated
blow-up of P3 in four general points and lines through them, to have sections.
Finally, in Section 9 we compute the restrictions of an arbitrary divisor D to all
the boundary divisors and Keel-Vermeire divisors on M. Moreover, we derive some
necessary conditions for these restrictions to be effective (an assumption in our
main proof).

Acknowledgements. 1 thank Jenia Tevelev and Sean Keel for useful comments.

2. PLAN OF PROOF

Consider an arbitrary divisor class on M:
D = dH — ZmZEl — Zm”E”
i ,J

In all that follows we assume H° (M, D) # 0.

Notation 2.1. Let I be the class of the proper transform in M of a general line
in P2. Let e; be the class of a general line in E;. Let C be the class of the proper
transform of a general cubic that passes through pq,...,ps:

C:3l—€1—...—€5.

The curves with class C' cover a dense set of M ; hence, D.C' > 0 for any effective
divisor D.

Definition 2.2. Let x;, z4j, Zijk, T(ij)(r1) be the sections (unique up to scalar) cor-
responding to the divisors:

Ei, Eij, Nijks Qi (kt) - (2.1)
Definition 2.3. We call a section s € H*(M, D) a distinguished section if

N g Mg Nijk T (ij)(kl)

5= Xy Wit Wik Ty (k) o

where 14, N5, Nijk, N(ij) (k1) are non-negative integers.

To show that HO(M, D) is generated by distinguished sections, we do an induc-
tion on D.C. Note that we may assume that D contains none of the divisors (2.1)
in its base locus, i.e., equivalently, if for E any of the divisors in (2.1), one has

HO(E, D,g) # 0. To see this, note that if £ is an effective divisor, say £ is the zero
locus of a section z € H’(M, E), then there is an exact sequence:

0— H°(M,D - E) - H(M,D) — H*(E, D).
If HO(E7D‘E) = 0 then any s € H°(M, D) is of the form xpt, where t €
H°(M,D — E). If in addition E is a divisor in (2.1) then we may replace D with

D — E and s with t. (Clearly, if ¢ is generated by distinguished sections, then s is
t00.) Therefore, we may assume:

Assumption 2.4. H(E, D) # 0 for all divisors E in (2.1).

Denote by rg the restriction to E:
rg: H'(M, D) — HO(E,D‘E).

To prove Theorem 1.4 it is enough to prove the following:

Main Claim. Let D be a divisor on M:

D =dH — ZmiEi — ZmijEijv
i i
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such that H°(M, D) # 0 and that satisfies Assumption 2.4. Up to a renumbering,
we may assume that ms < m;, fori =1,...,4. If m; =ms foralli=1,... 4, then
we may assume that the maximum of the m,;’s for all 4,5 € {1,...,5} is attained
for m;5 for some i = 1,...,4. Let E = F5. Then for any s € H'(DM, D), there is
s’ € HY(M, D), generated by distinguished sections, such that rp(s) = rp(s’).

To see how the Main Claim implies Theorem 1.4, note that the kernel of the
restriction 7z is H*(M, D — E) and the map H°(M, D — E) — H°(M, D) is given
by multiplication with zg. If rg(s) = rg(s’), then s — s’ = zgt, where t €
H° (M,D — E). If s’ is generated by distinguished sections, then to show that s
is generated by distinguished sections it is enough to show that H°(M, D — E) is
generated by distinguished sections. We may replace D with D — E, and continue
the procedure. Since E is always among the E;’s, note that (D — F).C < D.C and
HO(M,D — E) is generated by distinguished sections by induction. The process
has to stop as D.C' > 0 for any effective divisor D. (In particular, note that D.C
decreases also when we substract from D any of the divisors E in (2.1) for which
HY(E, D) =0.)

Notation 2.5. Given any divisor D on M we denote by D the restriction Dg, of
D to Es. By (9.3) one has:

Let ps : P2 --» P2 be the projection from ps. Let ¢; = p5(p;) (i € {1,...,4}).
The divisor Ej is isomorphic to the blow-up of P? along the points qi,...,qs (as
g; determines the direction of the line l;5). The divisors H, respectively E;, are
the hyperplane class, respectively the exceptional divisors on Fs5 (see also Section
9.1.) The map ps is resolved by the morphism 75 : M — M 5 that forgets the 5th
marking (which is also a retract for the inclusion E5 C M).

Notation 2.6. Let Zij be the line g;q; in P2. Denote:
v=1UlsNla, y=luNlys, z=IlaNlsy.

Notation 2.7. Let L, be the proper transform in M of the unique line in P3
that passes through ps and intersects the skew lines [13 and lp4. Similarly, let L,
(respectively L,) be the unique line that passes through ps and intersects the skew
lines 14 and I3 (respectively 112 and l34).

Remark that z = ps(Ly), y = p5(Ly), 2 = ps(L=).
In order to prove the Main Claim, we distinguish two cases.

Case I: Assume that D.L, >0, D.L,>0, D.L,>0.

Notation 2.8. Denote by s;; the section on E5 corresponding to the proper trans-
form of the line I;; in P2. Let s; (i =1,...,4) be the sections corresponding to the
exceptional divisors F;.

Definition 2.9. We call a section s € H(E5, D) a distinguished section on Es if s
can be written as a monomial in the sections s;; and s;.

Since E5 22 Mg 5 is the blow-up of P? along gy, ...,qs, by Lemma 7.3 the Cox
ring Cox(FEj5) of Es is generated by distinguished sections. The Main Claim follows
from the following:
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Proposition 2.10. Under the assumptions of the Main Claim and the assumptions
in Case I, the restriction map

TES : HO(M, D) — HO(E57ﬁ>7
is surjective and one may lift any distinguished section (hence, any section) in
H°(Es, D) to a section generated by distinguished sections in H*(M, D).

The following is the main observation needed to prove Proposition 2.10:

Main Observation — Case I. Distinguished sections on Es may be lifted to
distinguished sections on M using the following rules:

Tij5|\p, = Sijs  Tis|E; = Si- (2.2)

This is because Aij5 p, = lij, Eis|\m, = E; (see Section 9, formula (9.3)).
Sketch of Proof of Proposition 2.10. We lift a distinguished section s €
H(Es, D) using the rules (2.2). Hence, there is a section ¢’ belonging to some
H°(M, D), where D' =D and rg(t') =3.

Notation 2.11. Let A =D — D’.

Notation 2.12. Denote by X the iterated blow-up of P? in p1,...,ps and proper
transforms of lines I;; (¢,7 € {1,...,4}).

Since D and D’ have the same restriction to Ej, it follows from (9.3) that the
divisor A is a divisor on X. Note, X is a toric variety. The following is a standard
result:

Lemma 2.13. The Cozx ring of X is generated by sections x;,x;j, T;;i, correspond-
ing to the exceptional divisors E;,E;; and proper transforms of hyperplanes Ajju

(i,5,k € {1,...4}).

Proposition 2.10 is now immediate if HO(A) # 0: Since the points py,...,ps are
general, the restriction to E5 of any distinguished section in Cox(X) is non-zero. In
particular, if ¢ is any non-zero section in HO(A),ihen tp, € H°(Es5, ©) is non-zero.
Therefore, the section s = #'t” is a section in H°(M, D) that restricts to (a non-zero
multiple of) 5 in H°(Es, D). Since t” is a distinguished section, it follows that ¢ is
generated by distinguished sections.

Definition 2.14. We call a distinguished section s on E5 a section with straight-
forward lifting to D if after lifting using the rules (2.2) we end up with a divisor D’
for which A = D — D’ has H°(A) # 0.

The following Claim (proof in Section 3) finishes the proof of Proposition 2.10.

Claim 2.15. Under the assumptions of Proposition 2.10, any distinguished section
5 € H'(Es, D) is a linear combination of distinguished sections with straightforward
lifting to D.

Case II: Assume one of D.L,,D.L,,D.L, is negative.

Definition 2.16. Let:

mg = max {0,—D.L,}, m, =max {0,—D.L,}, m, =max {0,—D.L,}.
Notation 2.17. Denote by Y the blow-up of P2 along qi1,¢2,q3,q4,,y, 2. Let
E; E;,E, E. be the corresponding exceptional divisors. For a given divisor D on

M we consider the following divisor EY onY:

D =D-m,E, —m,E, —m.E..
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Clearly, the linear system H°(Y, 5Y) is a subspace of the linear system H°(Es, D).

Claim 2.18. The restriction map rg, factors through H°(Y, EY).

Proof. Clearly, Claim 2.18 is non-trivial only when one of m,,m,,m, is positive.
Take for example the case when m, > 0 (the other cases are identical). By Propo-
sition 6.1, the line L, is contained in D with multiplicity m > m, > 0. It follows
that for any s € H’(M, D) the section rp, (s) vanishes at 2 with multiplicity > m;

hence, 7 (s) lies in the subspace HO(Y, EY). O

In Case IT we follow the exact same steps as in Case I, with the only difference
that we work on Y instead of Fj.

Notation 2.19. Denote by sgj the section corresponding to the proper transform

in Y of the line Zij. Similarly, let sy, Sz2, Sy» be the sections corresponding to the
proper transforms of the lines Zy,zz,yz. Let s;,s;,5,,5. be the sections corre-
sponding to the exceptional divisors E;, E, By, .

Note:
T € 213,224, Y € 214,Z23, S 212,234.
Hence, for example s} is a section of the divisor H — E1 — E3 — E,, and the section
s13 (Notation 2.8) is given by s13 = s}38,. Moreover, if we let:

ry : HO(M, D) — H(Y,D"),
be the morphism of Claim 2.18, then rp, (s) = 7y (s)sT= s, s7=.

Definition 2.20. We call a section s € H(Y, D" ) a distinguished section on'Y if
s can be written as a monomial in the sections sgj,swy,smz,syz, 8i,82,5y:5z2-
In Section 7 we prove the following:

Lemma 2.21. The Cozx ring Cox(Y) of Y is generated by distinguished sections.

Note, by Lemma 2.21, the generators of Cox(Y") are given by the sections (unique
up to scalar multiplication) corresponding to the (—1) and (—2) curves on Y. The
Main Claim follows from:

Proposition 2.22. Under the assumptions of the Main Claim, the restriction map:
ry : (M, D) — H(Y, D)),

is surjective and one may lift any distinguished section (hence, any section) in

H(Y, EY) to a section generated by distinguished sections in H°(M, D).

The following is the main observation needed to prove Proposition 2.22:

Main Observation — Case II. Distinguished sections on Y may be lifted to
distinguished sections on M using the following rules:

ry (Tijs) = 835, Ty (Tis) = i,
Ty (T(13)(24)) = Syzy Ty (T(14)(23)) = Szzr Ty (T(12)(34)) = Say- (2.4)
This is because when D = A;;5 one has:
D =H-FE,~E,—Ea,
where o = zifij € {13,24}, a =y ifij € {14,23}, a = z if ij € {12, 34}. Similarly:
62/13)(24) =H -~ Ey - Ez»@?m)(%) =H-E, - Ezv@z/u)(:%) =H-E, — Ey'

Sketch of Proof of Proposition 2.22. We lift a distinguished section 5 €
H°(Es, D) using the rules (2.3) and (2.4). Hence, there is a section ' in some
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H°(M,D') and ry(t') = 3. As in Case I, we let A = D — D’. The divisor A is a
divisor on X (Notation 2.12). As in Case I, Proposition 2.22 follows from Lemma
2.13 if H(A) # 0.

Definition 2.23. We call a distinguished section 5 on Y a section with straight-
forward lifting to D if lifting using the rules (2.3) and (2.4) results in a divisor D’
for which A = D — D’ has H°(A) # 0.

The following Claim (proof in Section 4) finishes the proof of Proposition 2.22.

Claim 2.24. Under the assumptions of the Main Claim, any distinguished section
5 € HO(Y, EY) is a linear combination of distinguished sections with straightforward

lifting to D.
3. PrROOF or CrLAaIM 2.15

The idea is that any distinguished section on E5 can be rewritten, using the re-
lations in Cox(Es), as a linear combination of distinguished sections with straight-
forward lifting. To check that H°(A) # 0 we use Lemma 8.2. Assumption 2.4 is
equivalent to inequalities (9.4), (9.6), (9.7), (9.8) (for all permutations of indices).

We use the notation from Section 8. Recall that e;; is the class of a fiber of the
Pl-bundle E; — Zij. One has D.l = d, D.e; = m;, D.e;; = m;; (see for example
(9.1), (9.5)). The inequalities defining Case I are equivalent to:

D.(l—e5—e;j;—ew) >0, {5k} ={1,234} (3.1)

Lemma 3.1. Let s be a distinguished section on Fs:
- 5 li
5= H s?j] H s (3.2)
i i

where a;j,1; > 0. If 5 is a section HO(Eg,,E) then s has straightforward lifting to D
if and only if for all {i,5,k, 1} = {1,2,3,4} one has:

aij < D.(Cra — e5), (3.3)
where Cy = 21 — ey — e — €.
Remark 3.2. By (9.8) one has D.(Cyy —e5) > 0 for all k,1 € {1,2,3,4}.
Remark 3.3. The condition that 5 is in H(D) is equivalent to:

Z ajj = D.es, ai; +a;, +ay — l; = D.ejs, (34)
(the coefficients of H and E; in D). It follows from (3.4) that:
ap; — aij — Uy — I = D.(exs + €15 — e5), (3.5)
4
le = D.(265 — Zeig,), (36)
i=1 i#5
aji + aj;+ ap +1; = D.(es — eis)- (3.7

Proof of Lemma 3.1. If D = 0,5 = 1 (i.e., a;; = 0,1; = 0) then the lift D" is 0.
Hence, A = D — D' = D. Since H’(D) # 0, there is nothing to prove in this case.

Assume now D # 0. Recall that E5 C M has a retract 7 : M — E5 = MO,S
given by the morphism that forgets the 5-th marking. One has:

W*Zij = AijS + Eija ’R’*Ei = Ei5 -+ Ez (38)
(This is a general fact about the forgetful morphisms =; : Mo,n — Mo,n—l that

forget a marking i. If Ag is a boundary divisor in Mg ,_1, corresponding to the
partition S'U S¢, then 7*Ag = Ag + Agugiy-)
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Since we lift D to D’ by lifting Zij to A5 and E; to E;5, it follows that:
D, = F*E - AQ,

where Aq is the effective divisor on X given by:

Then A=D—D'=D —7*D + A,.
Observation 3.4. If (D — 7*D).C > 0 for some nef curve C' on X, then A.C' > 0.

Below we show that (D — 7*D).C’ > 0 for all the nef curves C' in Lemma 8.2
giving inequalities (1)—(4). Hence, by Observation 3.4, A.C' > 0. For the remaining
nef curves C in general it will not be true that (D —*D).C' > 0, but we show that
we still have A.C' > 0 for the nef curves C giving inequalities (5), (7), (8), (9) and
that for C' = Cy, (inequality (6)) A.C' > 0 is equivalent to (3.3). Note:

(ﬂ'*b)l = D.€5, (’/T*b).ei = D.6i5, (71'*5).61']' =0 (’L,j 7& 5) (39)
(It is enough to check this when D = H, E;, E;;. For this, use the formulas (3.8).)
We check one by one the inequalities (1) — (9) in Lemma 8.2:
(1) (D—m*D).l=D.(l—e5) >0,
as | — e is a nef curve on M. Similarly:
(2) (D—7*D).(I—e;) =D.(l—e; —e5+ei5) >0 by (9.6),

(3) (D—?T*E)(l—eu) :D.(l—€5—€ij) ZOby (97),

(4) (D—7*"D).(I—eij —exr) = D.(I —e5s — e;; — er) > 0 by (3.1).
For inequality (5) (recall C;; = 2l —e;; — ex, — €;):
(D — W*E).Cij = D(CZJ — 2e5 + eps + 615),
No.Cij = ag; + I + 1,
A.Cij = D.(Cij — 65) + D.(eks +e;5 — 65) + a;; + I, +1;.
By (3.5), A.C;; = D.(C;5 — e5) + ag. From (9.7) (and ag; > 0), A.C;; > 0.
For inequality (7) (recall C; = 21 — e;; — e, — €31):
(D - W*E)CZ = D(CZ - 265).
and Ag.C; = a;j + ai, + ay. Using (3.4), Ag.C; = D.e;5 + ;. Therefore:
AC; = D(Cl — 2e5 + €i5) +1; = 2D(l —e; —e5+ eis) + D.(Qei — Zew) + ;.
uFi
It follows from (9.4) and (9.6) that A.C; > 0.
For inequality (8) (recall B = 3] — Z?:l ei):

4
(D—7"D).B=D.(B—3es5+ Y _eis),

=1

and Ag.B = Z?Zl l;. Tt follows from (3.6) that A.B = D.(3l — Zle e;) > 0.
For inequality (9) (recall B; = 31 — 2e; — e — €j1 — €p1):

(D — W*E)Bl = D(BZ - 365 + 261’5)7
and AO-Bi = Qjk + a;l + ag; + 21, From (37) one has A()BZ = D.(€5 - 61j5) + li,
A.B; = D.(BZ- — 2e5 + ei5) =2D.(l—e;—e5+ €i5> + D.(l —€jk — €j] — € — €5)-
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It follows by (9.6) and (9.7) that D.B; > 0.
There is at least one strict inequality in (4): assume A.(I —e;; —eg) = 0, for all
{i,4,k, 1} ={1,2,3,4}. From the computation above for case (4) we have:
(D — W*E)(l — 6ij — 6kl) = D(l — €5 — eij — 6kl) Z 0.
As Ag.(I—e;j —er) =0 (I — e — exr) is a nef curve) it follows that:

(D —7"D).(l — eij — ext) = Do.(I — ei5 — exr) = 0.

Since Ag.(l — e — er) = a;j + ag it follows that a;; = 0 for all i,j. By (3.4),
D.es =0 and D.ejs = 0,0; = 0 for all i # 5. Hence, D = 0,5 = 1, which contradicts
our assumption.

We show now that inequality (6) is equivalent to (3.3). One has:

(D — W*E).Ci;j = D.(Ci;j — 265 + €j5),
and Ao.OfL‘;j = Q;k + a; + lj. From (37), AO.C’M = D.(65 — €j5) — agj. Therefore:
A.Ci;j = D.(Ci;j — 65) — agj.-
Hence, inequality (6) is equivalent to (3.3). O
3.1. Proof of Claim 2.15. Let 5 be a distinguished section in H(Es5, D) as in
(3.2). If a;; < D.(Cyy —e5) for all {4, j,k, 1} ={1,2,3,4} then by Lemma 3.1 5 has
straightforward lifting to D. Assume now that a;; > D.(Ck,; — es5) for some choice

of 4,7, k,1. Without loss of generality, we may assume ajz > D.(C3.4 — e5). Note
that by Remark 3.2 it follows that a5 > 0.

Claim 3.5. If ajo > D.(C3.4 — e5) then either azqa >0 orly + 12 > 0.
Proof. By (3.5) one has:
a12 —asq — U1 —lo = D.(e15 + ea5 — €5). (3.10)
Assume agy = l; = Iy = 0. It follows from (3.10) and a1z > D.(Cs.4 — e5) that
a12 = D.(e15 + €25 —e5) > D.(Cs.4 — €5).
This is a contradiction, as by (9.8) one has:
D.(Cs4 —e5) — D.(e15 + €25 —e5) = D.(2l — eq — €13 — €23 — €15 — e25) > 0.
O

3.2. Algorithm for replacing 5. We now give an algorithm for replacing s with
another distinguished section ' for which a13 — D.(Cs.4 —e5) is strictly smaller than
for 5 and moreover, for all ¢, j for which a;; — D.(Cj; — e5) increases by this change,
the section 3 (still) satisfies a;; — D.(Ck,y — e5) < 0. We repeat the following two
steps until a12 < D.(Cs4 — e5) (as by Claim 3.5 one of the two situations must
happen if a;o > D.(C3.4 — e5)). The same argument works for any a;;.

Step 1: If I; + 1o > 0: We may assume without loss of generality that [; > 0.

Consider the following sections in the linear system |H — Es|:

81281, 82383, S52454-

The linear system |H — FEs| is 1-dimensional and any two of the above sections
are linearly independent. Since ai2 > 0,17 > 0, we may replace s1281 in s with a
linear combination of s23s3 and ssss4. The effect on the coefficients a;; and I; (of
the corresponding two distinguished sections) is as follows: a1 and [; both decrease
by 1, while either ass, I3 increase by 1, or agq, l4 increase by 1 (everything else stays
the same). But by Lemma 3.6 one has:

az; < D.(C}c;l - 65), for all j € {3,4}7 {j,kﬁ,l} = {1,3,4}.
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Therefore, after increasing ags or ags by 1 one still has ag; < D.(Cly — e5).

Step 2: If az4 > 0: Consider the following sections in the linear system |[2H —
El — ... E4|I

512534, 513524, 514523
The linear system |2H — E; —...— Ey| is 1-dimensional and any two of the above
sections are linearly independent. Since a2 > 0,a34 > 0, we may replace s12834 in
s with a linear combination of s13524 and s14523. The effect on the coeflicients a;;
is: a12 and asq both decrease by 1, while either ai3,as4 increase by 1, or ai4, aos
increase by 1. By Lemma 3.6 one has:

a;j < D.(Cyy —e5), forallie{1,2},5€ {3,4}, {4, 4,k 1} ={1,2,3,4}.

Therefore after increasing ai3, a14, ass, azq by 1, each of them still satisfies its
corresponding inequalities.

Lemma 3.6. If a;; > D.(Cyy — e5) then a, < D.(Cyp — e5) for all {u,v,w} =
{J, k, 1} such that uw € {k,1}.

Proof. Assume the contrary. Then a;; + aj, > D.(Cry — €5) + D.(Cy.y — €5). But
by (3.7) aij + aiw < D.(e5 — ews), where {v',u} = {k,l}. This is a contradiction

with Claim 3.7. [l
Claim 3.7. D.(Cy, +Clh.y —2e5) > D.(e5 —eys) for allv,w,u’ such that {v',u} =
{k,1} and {v,w,u} = {j,k, 1} for some u € {k,1}.

Proof. There are four cases:
Case (i): v=j,w =1 (u =k, =1). Using (9.6) and (9.7) one has:
D.(Cry+ Cjy —2e5) — D.(es —ep5) =
=2D.(l—e5 —e;+ep)+D.(l—ej — e —ejr —es) + D.(l—e5 — eji) > 0.
Case (ii): v =1, w=j (u =k =1). Using (9.6) and (9.7) one has:
D.(Cry+Cij —2e5) — D.(es —ei5) = D.(l —e5 —e; + €55)+
D.(l—e5—ej+ejs)+D.(l—ep —eiy—ey—ejs)+D.(I—e5—ejr) >0.

Case (ili): v =j,w =k (u=1Il,u' = k). This is symmetric to Case (ii).
Case (iv): v=k,w=j (v =1u = k). Using (9.4), (9.6) and (9.7) one has:

D.(Cry + Chrsj — 2e5) — D.(e5 —e15) =
=2D.(l—es —ex+ews)+D.(2l —es —e; —e; —eir) + D.(2e;, — Z €ka) > 0.
a#k
O
4. PROOF OF CLAIM 2.24

As in Section 3, we show that any distinguished section on Y can be rewritten,
using the relations in Cox(Y’), as a linear combination of distinguished sections with
straightforward lifting. Assumption 2.4 is equivalent to the inequalities (9.4), (9.6),
(9.7), (9.8) (for all permutations of indices). We use the notation from Section 8.

Notation 4.1. Let x : {12,13,14,23,24,34} — {x,y, z} be the function
x(13) = x(24) =z, x(14) =x(23) =y, x(12) = x(34) = =.
Note, one has:

Lyjy =1 —es —eij —ep, forall {i,j,k, 1} ={1,2,3,4}.
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Remark 4.2. By Definition 2.16 one has m,, + D.L,, > 0 for all @ € {z,y, 2}, with
equality if and only if D.L, < 0.

Lemma 4.3. Let 5 be a distinguished section on Y :

1@ij Cy .Cy .C ly 1
5= H s H s; smzysgﬁyzsylzsz 8y 87 (4.1)

where a;j,li, Cz, Cy, C2yl, by, 1, > 0. If 5 is a section H(Y, 5Y) then S has straight-
forward lifting to D if and only if for all {i,j,k, 1} ={1,2,3,4} and o € {z,y, z}:

(i) — @i < D-(I—e5 — eij), (i)
Co —lo <mqg+ D.L,, (ii)
Cx(ig) — @ij < D.(Cr — e5), (iii)
aij+ Y Ca < D.(Cry—es), (iv)
azx(ij)
Ce+cy+c. <D.C, (v)

where Ckl = 21—6i — €5 — €k, Ok;l =2l — €k — €kj — €, C=3l- Zl 16i-

Remark 4.4. Note that the right sides of the inequalities in Lemma 4.3 are non-
negative due to (9.7) (for (i)), (iii)), (9.8) (for (iv)), Remark 4.2 (for (ii)) and
because C is a nef curve on M (for (v)).

Remark 4.5. The condition that 5 is in H(Y, 3Y) is equivalent to:

Z a;j + (cg + ¢y +¢.) = D.es, (4.2)
Q5 + ajr + a;; — l; = D.e;s, (43)

(the coefficients of H and E; in EY)
Q5 + ap + Z Co — lx(ij) = My(i5)> (4.4)

a#x(ij)
(the coefficient of E,, in D foraec {z,y,z}). From (4.2), (4.3) and (4.4) one has:
Zl +2(cz +cy+c) = 265—2615 (4.5)
i#5

ajr +aj + ar + (cz + ¢y +¢.) +1; = D.(es — e;5), (4.6)
(cz +cy+cs) — (o +1y+1) = (my +my +m;) — D.es. (4.7

Proof of Lemma 4.3. We lift 5 using the rules (2.3) and (2.4) (see also Remark 4.6)
to a section of the divisor:

D' = Z a;;Aij5 + Z LiEis + cxQ13)(24) T ¢y Q14)(23) T C2Q12)(34) =

= (Z aij =+ QZCQ)H — Z(aij =+ [ + (477 =+ ZCQ)Ei — (Z aij + an)Eg,—

i#5
= (aij+ Y ca)Eij =Y (ai + air + ai — 1) Eis.
i,j#5 azx(if) i#5

Using (4.2) and (4.3) one has:
=([Des+ Y ca)H =Y (Deeis+1i+ Y ca)E;i — (D.e5)Es—
i#5

- Z alj+ Z Ca ij Z(D.eig))EZS.

4,J7#5 a#x(ij) i#5
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Then A = D — D’ is given by the following formula:
A: l—65 ZCQH Z '—€i5)—li—ZCQ)E—
— Z D.Bij — Q45 — Z Ca)Eij-

4,575 aFx(if)
We show that A.C' > 0 for the nef curves C giving the inequalities (1), (2), (7), (9)

in Lemma 8.2 and that for the nef curves C giving the remaining inequalities,
A.C > 0 is equivalent to (i),(ii),(iii),(iv),(v).

For inequality (1):

Al=D.( —e5) an

By (4.6), one has > ¢, < D.(e5s — €;5). By the assumption in the Main Claim
D.es < D.e;. Then Al> D.(I —e5 —e; + ¢;5). It follows from (9.6) that A.l > 0.
For inequality (2):
A(l — 62') = D(Z —e5 —¢e; + €i5) -+ ll
It follows from (9.6) that A.(I —e;) > 0.

Inequality (3) is equivalent to (i) as one has:

Al —€ij) = c: —a12 < D.(I — e5 — €55) + aij — Cx(iyj)-

For inequality (4):
A(l — eij — ekl) = D(l — €5 — eij — ekl) + aij + Al + Z _Cx(ij)'
aF#x(i7)
By using (4.4) to substitute a;; + ap + Za#x(w one has that A.(I —e;; —ex) >0
is equivalent to (ii). Note that in Lemma 8.2 we require that at least one of the

inequalities is strict. As Lemma 4.7 shows, this is automatically satisfied in this
case.

For inequality (5):

A.Cy = D.(Ckl — 2e5 + ej5 + €j5) +ag; +1; + lj — Cx(kl)-
Using (4.3) (to substitute [;,1;) and (4.2) A.Cy; > 0 is equivalent to (44¢).

For inequality (6):
A.Ck;l = D.(Ck;l — 2e5 + 615) + a;r + Gk + 1+ Cx(i7)-
By using (4.6) to substitute a;x + ajr + i + ¢y (i), A.Cry > 0 is equivalent to (iv).

For inequality (7) (recall that C; = 2] — e;; — e; — €41):
A.C; = D.(C; — 2e5) + aij + aip + aq.
By using (4.3) to substitute a;; + a;x + ai, A.C; = D.(C; — 2e5 + Ej5) + ;. But:
D.(C; —2e5+ Ei5) =2D.(I —e; — e5s + my5) + D.(2e; — Zeij).
J#i
From (9.6) and (9.4) it follows that A.C; > 0.
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For inequality (8) (recall that B = 31 — Z?Zl ei):
A.B=D.(B—3e5+ 261‘5) + le + an.
i#5
By using (4.5) to substitute Y 1; + 2> o, A.B > 0 is equivalent to (v).

For inequality (9) (recall that B = 31 — 2e; — e, — €1 — ex):
A.B; = D.(B; — 3es + 2e;5) + aji + aj + aw + 20 + an.
By using (4.6) to substitute aji + aji + ap + 1+ ca, A.B; = D.(B; — 2e5 +€;5).
But one has:
D.(B;, —2e5+ei5) =2D.(l —e; —es +ei5) + D.(I — ej — €ji — e — €55).
It follows from (9.6) and (9.7) that A.B; > 0. O

. =Y .
Remark 4.6. In order to lift 5 € H*(Y, D" ) we need to group s;; With s, (4, such
that we may lift s;; = s};5,(i5) t0 2ijs, etc (so in fact we lift 557" s, s7"+). For this
we need to have enough sections s;,5,,5.. Take the case of s,: one needs exactly
a1z + ag4 + ¢y + ¢, of them (to be distributed to s13,524,54,5-). Since the image of
the restriction map ry in H(Fs, D) is
HO(Y, D')sy= s 7=,
the number of s,’s appearing in 557 sy’ s7'= is m, + I, and by (4.4) one has:
Mg + 1z = a13 + ass + ¢y +c..

Lemma 4.7. It is not possible to have co —lo > Mo + D.Ly for all o € {z,y, 2}.

Proof. Assume the contrary and add up the three inequalities. Then one has:

dca=Y la=d ma+y DL

By (4.7), this is equivalent to > D.L, < —D.e5, which contradicts Lemma 5.3. O

4.1. Proof of Claim 2.24. Let 5 be a distinguished section in HO(Y7 EY) as in
(4.1). If inequalities (i)-(v) in Lemma 4.3 are satisfied, then by Lemma 4.3 5 has
straightforward lifting to D. Assume now that one of the inequalities (i)-(v) fails.
We first show that we can keep replacing the section 5 with a linear combination
of distinguished sections until we are in one of the following cases:
(A) ¢z =c¢y=c,=0,
(B) ly=1,=1,=0,c +¢cy+c, >0,

(C) cz=cy=1=1,=0,¢, >0,I. >0 (up to a permutation of z,y, z).

This follows from:
Claim 4.8. Ifl, > 0 and cg > 0 for o, 0 € {x,y,2}, B # «, then we may replace

5 with a sum of distinguished sections s for which both c, + cy+c, andly +1y,+1,
decreased.

Proof. We may assume without loss of generality that [, > 0,c, > 0. Consider the
following sections in the linear system |H — E,|:

/ /
SpySz, 8145154, $935283.

The linear system |H —F,| is 1-dimensional and any two of the above sections are
linearly independent. Hence, we may replace s.ys, with a linear combination of the
sections $7,5184, $H38283. The effect is: ¢,,l, decrease by 1 and either a14,11,14 or
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a3, 2,13 increase by 1. Note that c,, ¢y, 1y, [, stay the same. Hence, both c; +c,+c.
and [, + [, + [, decreased by 1. [l

Note that while doing replacements as in Claim 4.8 we ignore how the changes
affect inequalities in Lemma 4.3.

4.2. Case (A): ¢; = ¢y = ¢, = 0. This case is very similar to Case L

Lemma 4.9. If ¢, = ¢y = c, = 0 then 5 has straightforward lifting to D if and
only if for all {i,7,k,1} = {1,2,3,4} one has:

aij < D.(Ciy — e5).

Proof. One may immediately see (use for example Remark 4.4) that the inequalities
(i),(iii),(v) in Lemma 4.3 are satisfied. The inequality (ii) is satisfied (see Remark
4.2). Condition (iv) in Lemma 4.3 becomes a;; < D.(Cy; — e5) in Case (A). O

Algorithm for replacing s — Case (A). If for all {7, j, k,1} = {1,2,3,4, } one has
a;j < D.(Cy; —e5) and by Lemma 4.9 5 has straightforward lifting to D. if for some
i,7,k,1 one has a;; > D.(Cy, — e5) we will replace § with a sum of distinguished
sections such that all the inequalities improve, while leaving ¢; = ¢, = c, = 0. We
do this in exactly the same way as we did in Case I, as Lemma 3.6, Claim 3.5, as
well as the Algorithm 3.2 all apply word by word.

4.3. Case (B): I, =1, =1, =0, ¢c; + ¢, + ¢, > 0. This is impossible because of
(4.7) and Lemma 5.3.

44. Case (C): ¢y =c¢cy =1l =1,=0, ¢, >0,0, >0.

Remark 4.10. Under the assumptions of Case (C) the relations in Remark 4.5
become:

Zaii + ¢, = D.es, (4.8)
13 + 24 + C; = Mg, Q14 + A23 + C; = My, (4.9)
a1z +asg — I, =my, (4.10)
c; —l; =mgy+my +m, — D.es. (4.11)
From (4.9) one has:
0 <c; < min {mg,my}. (4.12)
From the definitions of m,, m, it follows that m, = —D.L,,m, = —D.L,,. From

(4.10) and (4.11) one has:

12 +A34 — C; = M5 — My — My = D(QZ — €5 — €13 — €14 — €23 — 624). (413)
Lemma 4.11. Under the assumptions of Case (C) 5 has straightforward lifting to
D if and only if:

CLij S D(CU — 65) + D(2l — €5 — €13 — €14 — €23 — 624), (11]7)
aj < D.(Ck;l — 65), (iV’)
whenever either 1j = 12, kl = 34 or ij = 34, kl = 12.
Remark 4.12. By (9.7) and (9.8) the right hand sides of (iii’), (iv’) are > 0.

Proof of Lemma 4.11. We claim that in Lemma 4.3 the inequalities (i),(ii) and (v)
are satisfied and that (iii), respectively (iv) are equivalent to (iii’) and (iv’).

Inequality (i): by Remark 4.4 the inequalities involving ¢, ¢, are automatic.
We claim that ¢, < D.(I — e5 — e;;) whenever ij = 12 or 34: by (4.12) one has
¢. < mg,my, hence ¢, < (my +my)/2 and the claim follows from Lemma 5.2.
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Inequality (ii): this is clearly satisfied for I, — ¢, =0, I, — ¢, = 0. From (4.11)
and Lemma 5.3 it follows that ¢, — [, < 0 and we are done by Remark 4.12.

Inequality (iii): the inequalities involving ¢, and ¢, are automatically satisfied.
The inequalities (iii) involving ¢, are of the form (here ij = 12 or 34):

C; —a;; < D.(Cri — e5). (4.14)

Using (4.13) to substitute ¢, — a;; in (4.14), one obtains (iii’):

ap; < D(Ckl — 65) =+ D(QZ — €5 — €13 — €14 — €23 — 624).

Inequality (iv): We claim that the inequalities involving ais,a14,as3,ass are
satisfied: this is because by (4.9) a;; + ¢, < m, whenever ij # 12,34. By Lemma
5.1 my > D.(Ciy — e5) and we are done. The inequalities (iv) involving a2, ass
are exactly the inequalities (iv’).

Inequality (v): this follows from (4.12) and Lemma 5.2. O

4.5. Algorithm for replacing s in Case (C). If the inequalities in Lemma 4.11
are satisfied, then § has straightforward lifting to D. Assume one of (iii’) or (iv’) is
not satisfied, say for a12 (the same argument applies for as4). Then by Remark 4.12
one has ajo > 0. Then we make replacements to decrease a2 as follows: Consider
the following sections in the linear system |2H — E1 — By — E, — E,|:
S1oSpySsy  Sh3S0383, 81482457

The linear system is 1 dimensional and any two of the above sections are linearly
independent. Since aig,c.,l, > 0, we may replace sjySzys, in s with a linear
combination of s]3853532, s1,55455. The effect is: aja, c,, [, decrease by 1, while either
a13, az3 increase by 1, or ay4, asq increase by 1. Note that besides the above changes
and the changes affecting the /;’s (which we ignore, since they do not appear in (iii’),
(iv’) no other changes occur. In particular, we still have ¢, = ¢, =1, =1, = 0.

The inequalities involving a2 were improved (while the ones involving agy4 re-
mained the same). If after the replacement ¢, = 0 or [, = 0, we are in Case (A)
or Case (B), we apply the procedure described for those cases. If after the replace-
ment we still have ¢, > 0 and [, > 0, then we are in Case (C) and therefore all
inequalities are satisfied, except perhaps (iii’), (iv’) for aja or asq.

5. INEQUALITIES INVOLVING Mg, My, M,
The assumptions in this section are the same as in the Main Claim. Recall:
L) = Luey = L — €5 — €5 — €.

Lemma 5.1. For any {i,j,k,1} ={1,2,3,4} one has:

—D.Lyy < D.(Cyy — e5),
where Cy = 21 — e — e — €.
Proof. One has:

D.(Cyy —es5) + D.Lygy = D.(I — e — ejr, — €ij — e15)+
+D.(l—e5—e +e)+D.(l—e5—eg) > 0.

It follows from (9.6) and (9.7) that D.(Cr,; — e5) + D.Ly ) > 0. O

Lemma 5.2. For anyi,j € {1,2,3,4} one has:
1 5
—§D.( Z L,) < min {d—mg,—mij,?)d—z:mi}

a#x(if) i=1
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Proof. Without loss of generality, we may assume ij = 12. One has:
2D.(l—e5—e12) + D.(Ly+ Ly) =
=2D(l —e5 —e12) + D.(2l — 2e5 — €13 — €14 — €93 — €24) =
=D.(l—e12 —e13 —ea3 —eq5) + (I —e12 — €14 — €24 — €35)+
+D.(l—e5 —eg+ess)+ D.(I—e5 —eqg+eqs5) + D.(e3 + eq — 2e5).
The first inequality follows from (9.7) and the assumption D.es < D.e;. Moreover:

2D(31— > ;) + D.(La + Ly) =
1=1
5
2(3l — Z 67;) + D(Ql — 265 — €13 — €14 — €23 — 624) =
=1
D.(2l —e] —e3 —e5 — 624) + D.(Zl —e] —e4 —e5 — 623)+
D(2l — g — €3 — €5 — 6’14) + D(2l — €9 — €4 — €5 — 613).
The second inequality now follows from (9.7). O

Lemma 5.3. One has (mgy +my +m;) < D.es,—D.(Ly + L, + L) < D.es.
Proof. Note, by definition of m, if m, > 0, then m, = —D.L, (similarly for y, z).

If mz = my = m, = 0. The Claim follows from (9.4).
Case 1) Assume just one of my, my,m, is > 0, say my > 0,m, =m, = 0:
D.65 - (mx + my + mz) = D(l — €13 — 624).
But D.(I — e13 — e24) > 0 (see Lemma 8.2). The other cases are similar.
Case 2) Assume two of my, my, m, is > 0, say my, my > 0,m, = 0:
D.es — (mg +my+m;) = D.(2l —e5 — e13 — e14 — €23 — €24).
By (9.8) D.es — (mg +my + m;) > 0. The other cases are similar.
Case 3) Assume mg, my, m, > 0:

D.es — (mg+my+m.) =D.(Lo+ Ly + L. +e5) = D.(3l —2e5 — > e;) =
ij=1,...4
= D.(2€i — Z eij) + 2D(l — €5 —¢€; + 61‘5) + D(l — €jk — €kl — €51 — 62'5),
J#i
for any {i,7,k,(} = {1,2,3,4}. By (9.4),(9.6),(9.7) D.es — (mg + my +m;) > 0.

If -D.(L,+ L, + L,) = D.es, by the above computation one has (here for
SlmphClty, we let d = Dl,ml = D.ei, m;; = D.eij):

2m; —Zmij =0, d—ms—m;+my; =0, Mjk + Mg + My + mys =d.
J#i
It follows that:
Myj + My +my = d — ms + my, (5.1)
mjk + my + mj; = 2d — ms — m;. (52)
Adding up all relations (5.1) and (5.2), one has:

4 4
2 Z mij:4d—4m5+2mi, 2 Z mij:8d—4m5—2mi.
i,j=1,..4 i=1 ij=1,..4 i=1

It follows that 2?21 m; = 2d. But by assumption m; > mjs for all i, hence
ms < d/2. As 0 < my5 = m; +ms — d it follows that m; > d — ms5 > d/2. Since
Zf‘:l m; = 2d it follows that m; = d/2, m;s = 0. Moreover, m;; + m;; + m; = d.
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As d > 0 it follows that m;; > 0 for some 4,5 € {1,...,4}. This contradicts the
assumption in the Main Claim. O

6. MULTIPLICITY ESTIMATES

Let [ be the unique line in P3 that passes through ps and intersecting lines /13
and log (the other cases are similar). Let L be the proper transform of [ in M.

Proposition 6.1. Let D = dH — ) m;E; — m;; E;; be an effective divisor on M.
Let m be the multiplicity of D along L. Then

m2m5+m13+m247d.

Proof. Let p: X — M be the blow-up of M along L and let E be the exceptional
divisor. Let D be the proper transform of D. Then p*D = D + mE. Restricting
to E, one has:

(0*D)ig = Dip + mE|g. (6.1)

Let N be the normal bundle of L in M. Let Nyps be the normal bundle of [ in
P3. If I’ is the proper transform of / in the blow-up X of P3 along p1,...,ps, let N’
be the normal bundle of I’ in M. One has:

Nl|[p>3 = O(—l) @ O(—l), N/ = 7T*NI|PS(—E5) = O @ O (62)
It is easy to see that deg(N) = deg(N') — 2 = —2. In fact we have the following:
Claim 6.2. N =0O(-1)® O(-1).

Proof. Note that one could obtain M by blowing up P? first along the points
P1,...,Pa, then the proper transforms of the lines l13 and lo4, then the point ps
and the proper transforms of the lines /;;, for all ¢j # 13,24. Let A be the plane
in P? spanned by the line [ and l;5. Then the proper transform A of A in M is
the blow-up of A = P? along p1, p3, ps, q, where ¢ = log N A. If NL|/1 is the normal

bundle of L in A and N AT is the normal bundle of A in M, one has an exact
sequence:

0—=Npyi = N—= Nzar)ie — 0. (6.3)

It is easy to see that Ny 5 = O(—1). Since deg(N) = —2 and O(—1) is a subbundle
of N (the quotient is a line bundle), it follows that N = O(—1) & O(—1). O

Then E =P(N) 2 P! x PL. Let p: E — [ = P! be the restriction of p to E. Let
q:P' x P! — P! be the other projection. Then

Eip=0g(-1) =q¢"0(-1) ® p"O(-1).
Note that (p*D)|p = p*(D)z) and D, = O(a), where we let a = D.L. One has:
H.IL=FEsL=F3.L=FEyL=1E.L=E;.L=0, for all other indices i, j.
It follows that a = d — ms — my3 — may. From (6.1) one has:
Dig =p*O(a+m) @ ¢*O(m).

Since D‘E is effective, it follows that m > —a = ms5 + mi3 + Moy — d. (]
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FIGURE 1. The configuration of the points ¢1, g2, g3, g4, Z,y, 2

7. PROOF OF LEMMA 2.21

Recall that Y is the blow-up of P? along q1,...,q4, 2,9, 2.
Let

4
D=dH - Zmiﬁi —myEy —myE, —m,E.,
i=1

be a divisor on Y. Assume D is effective and let s be a section in H(Y, D).

We show that s is generated by distinguished sections on Y by induction on
d. Let Zij (respectively l;y,lyz,l2) be the proper transforms in Y of the lines I;;
(respectively Ty, Jz,7z). We may assume D.C > 0 for C among the classes:

- = — - J—

lij7 lwya l.’EZ7 lyZ7Ei7EzaEy7Ez~

This is because if D.C' < 0 then s = z¢s’, where s’ € H*(Y, D — C) and z¢ is a
generator of H(Y, ), and s’ is generated by distinguished sections by induction.
Hence, we assume:

d>mi+mj+myuj, d>mg+my, d>mg+m., d>my+m., (¥
d>m; >0, d>mz >0, d>my >0, d>m,>0.

If d = 0 then it follows by (%) D = 0. Assume d > 0. We may assume without

loss of generality that
my < mq < mg < mg3.

Consider the restriction map:

r:H(Y, D) — H*(E4, D) = H°(P', O(ma)).

It is enough to show that we may lift any ¢t € H°(P', O(my)) to a section in
HO(Y, D) generated by distinguished sections on Y. This is because by the same
argument as in Section 2, if s, s’ are sections in H°(Y, D) are such that r(s) = r(s'),
then s — &' is in H*(Y, D — E,) and we are done by induction.

Let t; be the restriction in H(P', O(1)) of the section s;4 corresponding to
724. Any two of ty,ts,t3 generate H*(P,O(1)). In particular, it is enough to lift
t = t1Ft3m+=% (for any 0 < k < my) to a combination of distinguished sections.
We lift #; to s;4, hence ¢ to sk,si ™" (a section of D' = kZ'M + (mg — k)2;4). Let:

A=D— D/ = (d — m;;)ﬁ — (m1 — k)Fl — m2E2 — (m3 — my + k’)Eg—
—myE, — (my, — k)EU —(m., —my +k)E..
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Claim 7.1. There is a section u € HO(A), generated by distinguished sections and
such that ug, € H(E4, ©) is non-zero.

Assuming Claim 7.1, we lift ¢ to us¥,s5% % and we are done.

Proof of Claim 7.1. Let
A/ =A-— (m1 7]6)7/12 = (d7m4 — ma +k)ﬁ* (m2 — ma +k)§27
—(m3 —my +k)Es —m, E, — (my — k)Fy — (m, —my —my +2k)E,
Note that since k < m4 < m; and since a section corresponding to 2/12 has non-zero

restriction to Ey, it is enough to show that there is a section u/ € H(A’), generated
by distinguished sections and such that v/ € H°(E4, O) is non-zero.

|E4
Case when m, — k < 0. Let

A=A+ (my—k)E, = (d—ms—mq +k)H — (ma —my + k)Eo—
—(m3 —my +k)Es —maE, — (m, —mq —myg +2k)E.

It is enough to show that there is a section u” € H(A”), generated by distinguished

sections and such that UI,E € H°(E,, 0) is non-zero. Since A” is a divisor on the
4

blow-up of P? along the points ¢z, g3, 7, 2, it follows from Lemma 7.3 (a direct check
shows that all inequalities (7.1) hold; use k < my4 < m,; and (%)) and Lemma 7.4
applied to the lines Gz, Z and @3, Z, that there is a section v’ € HY(A”), generated
by distinguished sections and not containing ¢4 in its zero-locus.

Case when m, — k > 0. Denote

Ny =mq +my +my +my —d — 2k,
Ny =2d — mg — m3 — my —m, — 2k.
Claim 7.2. N; < Ny, 0 < Ny, Ny <my — k.
Proof of Claim 7.2. We have
Ny — Ny =(d—mq —mg —m;) + (d —mg —mg —my) + (d — my —my) >0,
using (x) and my < m,. Similarly, as 0 < k < my, we have No > 0 and Ny < m,—k
(using (x) and my < m;). O

By Claim 7.2, we may choose «, 3 > 0 be integers such that oo+ 3 = m, — k and
N1 <a< NQ. Let

A”:A—aimy—m;s:(d—m1—m4—my+2k)ﬁ—(m2—m1+k‘—ﬁ)ﬁg—
—(mg —my+k—B)E3 — (my —a)E, — (m, —my —my +2k)E.,.

Since I, and Zl23 have non-zero restriction to Ey, it is enough to find u € H°(A”)
such that uz, # 0. As before, since A" is a divisor on the blow-up of P? along the
points go, g3, x, 2, it follows from Lemma 7.3 and Lemma 7.4 applied to the lines g3, =
and 73, %, that there is a section u” € H’(A”), generated by distinguished sections
and not containing ¢4 in its zero-locus. All inequalities follow in a straightforward
way from (%) and my < m,;, except for:

e A'.(H - E,) >0, (equivalent to a > Nj)

o A.(H — E3) > 0 (use that my < mo)

e AN".(2H — Ey — E3 — E, — E.) > 0 (equivalent to v < Ny)
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Lemma 7.3. Let Z be the blow-up of P? along points q1,. ..,qs (no three collinear).
One has H'(D) # 0 for a divisor D = dH — 2?21 m;E; if and only if:

4
d>0, d—m; >0 2d— m;>0. (7.1)
i=1
The Coz ring Cox(Z) is generated by sections corresponding to the lines l;; and the

exceptional divisors F;.

Proof. Tt is a well known result that the Cox ring Cox(Z) is generated by sections
corresponding to the lines [;; and the exceptional divisors E;, see for example [BP].
If D is an effective divisor, then clearly, the inequalities (7.1) hold. Conversely,

assume (7.1) hold. We write D as an effective combination of the classes of the
lines Zij =H-F,; — Fj and the exceptional divisors E,;. Consider the table with
2 rows and d columns filled with E;’s in the following way. Start in the upper left
corner and write m; E1’s in the first row. Then write my E5’s passing to the second
row if necessary, and so on. Fill the remaining entries with zeros. For example, if
D = 5?—3E1 —3E2 —2E3 —E4Z

E, E. E1 E; FE»,

Ey, E3 E3 E; 0.
Our conditions guarantee that all entries of a given column are different. Therefore
D is the sum of classes H — (E; + E;), one for each column, where E;, E; are the
entries of the column. In the example above:

D=(H-FE —~Ey)+(H—-E,—E3)+(H—-E,—E3)+(H—FEy—Ey)+(H—E>).
O

Lemma 7.4. In the notations of Lemma 7.3, let D be a divisor such that H(D) #
0. Let g be the intersection point of the lines q1qz and qsqz. The linear system |D)|
does not contain q as a base point if and only if

D(H—Fy~Fs) >0, D.(H-TFs—Fy)>0.

Proof. The conditions are clearly necessary. It is enough to show that D can be
written as an effective combination of lines Zij (Zij % 212,734) and the exceptional
divisors F;. Let

D= kijlij+ > kiEi, kij ki > 0.

Assume k12 > 0. Note that the only generators E of Cox(Z) with the property
that E.l13 > 0 are lsq, Eq, E2. Since DIy > 0, it follows that one of k34, ki, ko > 0.
If k&1 > 0 we may replace 112 + E; with a divisor in the pencil |ﬁ — E2| that does
not contain Iqo (for example log + E3). The case ky > 0 is similar. If k3y > 0, we
replace 112 + 34 with, for example, {13 + l24. The case when kss > 0 is similar. At
the end of this process, we have k1o = ksq = 0. O

8. INEQUALITIES FOR THE EFFECTIVE CONE OF X

Let X be the iterated blow-up of P? in points py,...,ps (in linearly general
position) and proper transforms of lines l;; (i,j =1,...4, ¢ # j). Let E;, E;; be the
exceptional divisors. Let [ be the class on X of the proper transform of a general
line in P3. Let e; be the class of (the proper transform of) a general line in E;. Let
e;j be the class of a fiber of the P!-bundle E;; — I;;.

Notation 8.1. For {i,j,k, 1} ={1,2,3,4} let:
Cij =2] — €ij — € — €,

Cij =2l —eix — ey — €5,
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Ci =2l —e;5 — e — €4,

4
B=31-Y e,
i=1

Bi =3l — 26i — €5k — €51 — €kl

Lemma 8.2. Let D be a divisor on X. Then D is an effective sum (with integer,
non-negative coefficients) of boundary divisors Ayji, E;;, E; (in particular, H(D) #
0) if D.C >0 for all C in the list below (for all {3, j, k,1} ={1,2,3,4}): (1) I; (2)
l— €5 (3) [l — €ijs (4) l— €ij — €kls (5) Cij;' (6) Ci;j;' (7) Cz (8) B,’ (9) Bi, and
moreover, if one has D.(l —e;; —exy) > 0 for some 4, j, k, 1.

It is easy to see that each of the classes C' in (1)-(9) in Lemma 8.2 cover a dense
set of X; hence, for any effective divisor D one has D.C' > 0, i.e., C' is a nef curve.

Remark 8.3. It is a standard fact that the divisor D is in the convex hull of
the effective divisors A;;x, E;j, E; (where A;ji is the proper transform of the plane
Dip;pr) if and only if inequalities (1)-(9) hold. However, the extra condition of
having at least one strict inequality in (4) is necessary for H°(D) # 0, as the
following example shows: if D = 2H—3", . E;; then it is easy to see that H(D) =0
(H°(2D) # 0) and D satisfies all of (1)-(9).
Observation 8.4. If
D = dH - ZmiE,- - ZmijEij,
is such that d > 0, d > m;, m;; (for all ¢, j) and there is an ¢ such that m; < 0 and
m;; <0 for all j # 4, then D is an effective sum of boundary, as one has:
D= dAjkl + Z(d — mj)Ej + Z (d — mm,)Em, + (7ml)El + Z(fm”)E”

J#i u,vFE J#i

Proof of Lemma 8.2. Let D =dH — ) m;E; — > m;;E;;. One has:
d= Dl, m; = D.ei, mi; = D.eij.

We do an induction on d. If d = 0 then from (2) and (3) m;, m;; <0 and we are
done by Observation 8.4. Assume d > 0. We show that there are 4, j, k such that
D' = D — A;ji, also satisfies (1)-(9) and hence, we are done by induction.

Note that D" = D — A;ji (for any ¢,j,k) always satisfies (1),(4),(5),(8),(9).
Moreover, one has at least one strict inequality in (4). Inequality (2) fails for D’
if and only if m; = d, where | # 4,75, k, and (3) fails for D’ if and only if one of
mgr, mj, my equal d. Inequality (6) fails for D’ if and only if one has:

2d = my; + myj + my,
(or the similar inequalities for a permutation of indices 4, j, k). Inequality (7) fails

for D' if and only if my + mj; + my € {2d — 1,2d}.

Case I: m;; = d for some i, j. We may assume d = myo. From (4), mgq < 0.

Case 1: m; = d for i € {3,4}. We may assume my = d. Then by (5) one has that
m3 < 0 and by (6) one has mj3, me3 < 0 and we are done by Observation 8.4.

Case 2: Assume m3 < d,my4 < d.
We may assume that mq3 is the largest among mi3, m14, ma3, Mog.

Claim 8.5. One has miq, maoyg < d.



22 ANA-MARIA CASTRAVET

Proof. Assume m;y = d for i = {1,2}. Since by assumption m;4 < my3 and my3 < d
one has myz = d. If myy = d, since mia = d, one has a contradiction with (7). If
ma4 = d one contradicts (4). O

Claim 8.6. The divisor D' = D — A1a3 satisfies (1)-(9).

Proof. Inequality (2) holds, as m4 < d. Since by Claim 8.5 mq4,m24 < d and since
maq < 0, inequality (3) holds. If (7) is not satisfied, i.e., mi4 4+ mog +m3qs = 2d —1
or 2d, one has a contradiction, as mss < 0 and (by Claim 8.5) my4, may < d. If (6)
is not satisfied for D’ then one has:

2d = mj4 + mjq + My, (81)

for some {7,j,k} = {1,2,3}. If k = 3: by (6) one has 2d > m3 + ma4 + ms. Since
mi2 = d one has d > mas + m3 and hence, by (8.1), m14 = d. This contradicts
Claim 8.5. If k € {1,2} (say ¢ = 3): one has 2d = mg4 + m,s + my. Since mgq < 0,
mjs < d (Claim 8.5) and my, < d, this is a contradiction. O

Case II: m; = d for some i, m;; < d for all ,j. We may assume that d = m4. We
may also assume that d > mgs > mg > my. By (9) and (5) one has:

mi2 + mi3 + meog < d, (8.2)

mij +my < d, (8-3)

where {4, 7,k} = {1,2,3}.
Case 1: mgz > 0. By (8.2) one has:

miz +myz < d. (8.4)
Claim 8.7. The divisor D' = D — Aa34 satisfies (1)-(9).

Proof. Inequality (3) is satisfied by the assumption m;; < d. Inequality (2) is not
satisfied if and only if one has m; = d. If m; = d, it follows from the assumptions
that mg = ms = d. As my = d, one has a contradiction with (8). If (7) is not
satisfied, i.e., mig+mi3+myq = {2d—1, 2d}, one has a contradiction with my4 < d
and mig +mys < d (8.4). If (6) is not satisfied then one has:

2d = my; + mij + mg, (85)

for some {i,j,k} = {2,3,4}. If k = 4: since my = d one has from (8.5) d =
mi2 + my3 which contradicts (8.4). If k € {2,3} (say ¢ = 4) one has 2d = mq4 +
my; + my for {k,j} = {2,3}. But mys < d and m;1 + my, < d (8.3). This is a
contradiction. [l

Case 2: ma3 < 0. If my = d then it follows from the assumptions that ms = d. As
my4 = d, one has from (8) that m; < 0. It follows from (5) that mq; < 0 for all

i =2,3,4. Then we are done by Observation 8.4. Hence, we may assume mo < d.

Claim 8.8. The divisor D' = D — Ay34 satisfies (1)-(9).

Proof. Inequality (2) is satisfied as mo < d. Inequality (3) is satisfied by assump-
tion. If (7) is not satisfied, i.e., mia 4+ ma3 + mag € {2d — 1, 2d}, one has a contra-
diction with may < d and mqa + mag < mys < d. If (6) is not satisfied then:

2d = ma; + maj + my, (8.6)

for some {i,7,k} = {1,3,4}. If k = 4: since my = d one has from (8.6) d =
mia + mog. But mias < d and mos < 0. This is a contradiction. If k& € {1,3}
(say ¢ = 4) one has 2d = ma4 + mjs + my, for {k,j} = {1,3}. But mos < d and
mja2 +my < d (8.3). This is a contradiction. O
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Case III: m; < d, m;; < d for all ¢, j.

By Claim 8.10 we may assume D.C;,; > 0 for i =1,2,3, and all j # .

Claim 8.9. One of D1 = D — Ag3q, Dy = D — N134, D3 = D — A9y satisfies all
the inequalities (1) — (9).

Proof. Inequalities (2),(3) follow from the assumptions. If (6) is not satisfied for
D; then D.C;,;, for some j # i, which we assume does not happen. Hence, (6) is
satisfied for all D;. If (7) fails for all D;, then one has for all ¢ € {1,2,3}:

Mmij + My + My >2d — 1. (87)
Adding up (8.7) for ¢ = 1 and i = 2 one has:
2mig + (Ma3 + maa) + (Mg +maz) > 4d — 2. (8.8)

From (4) d > m;; + my;. As myo < d, it follows from (8.8) that mq3 + mos =
mi4+mog = d. Similarly, by adding (8.8) for i = 1 and ¢ = 3 one has mjo+mss = d.
This contradicts our assumption that one of the inequalities in (4) is strict. (]

Claim 8.10. There are at least three indices i € {1,2,3,4} such that D.C;;; > 0
for all j # 1.

Proof. Assume D.C;.; = 0, for some ¢, j. We may assume without loss of generality
that D.Cl;g =0.

2d = mqy3 + mig + ms.

We claim that for all ¢ € {2,3,4} one has D.C;; > 0 for all j # 4. This follows
from D.(Cy,2 + Cy;5) > 0 for all i € {2,3,4}, j # i. This is because:

D.(Cl;g + Cg;j) = D.Cgk + D(l — €23 — 614) + D.613 ({], k} = {1,4})
It follows from (5), (4) and mi3 < d that D.(Cy;2 + Cs;5) > 0. Similarly:
D.(Cl;g + 03;2) = D.Bs + D.eys.

By (9) and mi3 < d, D.(Cy.2 + Cs;2) > 0. By symmetry, D.Cy,; > 0, for all j # 4.
If {j,k} = {3,4}, one has:

D.(Cl;g + Cg;j) = D.Clk + D(l — €15 — egk) + D.612.
From (5), (4) and mi2 < d one has D.(Cy;2 + Ca;;) > 0. Similarly:
D.(Cl;g + 02;1) = D(?l —e] — 62) + D(l —e13 — 624) + D(l — €14 — 623>.

From (4) and mq, mg < d one has D.(Cy,2 + C2.1) > 0.

9. RESTRICTIONS TO GENERATORS

Let 7' : M — P3 be the blow-up along p1, ..., ps and let E/ be the corresponding
exceptional divisors. Let 7 : M — M be the blow-up of the proper transforms
of the lines I;;. In what follows, we compute the classes of the restrictions of an
arbitrary divisor D on M to the divisors E;, Eijy Nijks Qigy(kt) -
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9.1. Restrictions to E;. The divisor E; is the inverse image 7~ (E!). By Fact
9.1 the divisor E; is the blow-up of E! = P? along the 4 points corresponding to the
directions of the lines l;;, for j # i. Denote by E; the corresponding exceptional
divisors. Denote by H the hyperplane class on F;. One may easily see the following:

Hpg =0, Eyp =-H, Ej, =0 E

B =Ej, Ejrp =0, (91

| B,
where j, k # 4, j # k. This is clear from Fact 9.1.

Fact 9.1. [EH, Prop. IV.21,p.167] Let Y and Z be closed subschemes in a scheme
X and let X be the blow-up of X along Z. Let E be the exceptional divisor. The
proper transform Y of Y is the blow-up of Y along the scheme theoretic intersection
Y N Z and the exceptional divisor is YNE. In particular, if Z is contained in Y,
the scheme Y is the blow-up of Y along Z.

Consider an arbitrary divisor D on M:

D =dH — ZmlEz — ZmijEij, where d, Mg, My; € 7. (92)
i 0,J
It follows from (9.1) that the restriction of D to F; is given by:
J#i
Lemma 9.2. The divisor D|g, is an effective divisor if and only if
J#i
Proof. This is Lemma 7.3 applied to (9.3). O
9.2. Restrictions to E;;. The normal bundle N of the proper transform of the
line I;; in M s given by:
N = (7" Ny, ps) (<, — By) = O(~1) @ O(~1).

The divisor E;; = P(N) is isomorphic to P(O® O) = P! x P!, Let p; : P! x P! —
P! be the projection map given by the blow-up map Eyj — i = P! and let py be
the other projection. Since O(Eyj)|g,; = Op(nypr (—1) and

Op(ny e (—1) = Opiogoyp (—1) @ p1O(—1),

it follows that:
Eij p,, = PiO(=1) ® p30(~1).
Moreover, one may easily see, for all distinct i, j, k, [
H\Eij = El\E” = pTO(l), Ek|E” = 0, Ekl\Eij = Eik\Eij =0. (95)

It follows from (9.5) that the restriction of D in (9.2) to E;; is given by:

Dg,; = p1O(d — m; — mj + my;) ® p;0(my;).
Clearly, the divisor D), is an effective divisor if and only if

My >0, d—m;— m; + my; > 0. (96)
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9.3. Restrictions to A;j;. Take the case of Aj23 (the other cases are similar). Let
A be the plane pipaps. Then Ajog is the proper transform A of A in M. Denote
by A’ the proper transform of A in M. Let q be the point l45 N A. Note that
by Fact 9.1, A’ is the blow-up A = P? along p1,p2, p3 and A is isomorphic to the
blow-up of A’ in g, i.e., A is isomorphic to the blow-up of P? along p1, p2, p3,q. Let
El,E27E37Eq be the exceptional divisors and H the hyperplane class. One may
easily see that:

Hj = H, Ej;=0 (i =4,5), Eiji5 =0 (ij # 12,13,23,45).
Using Fact 9.1, one has that:

EMZE (i=1,2,3), E45‘A:Eq, Eilezﬁ—Ei—Ej (ij € {12,13,23}).

It follows that the restriction of D in (9.2) to Aj23 is given by:

Dipyay = (d —mag —maz —maz) H — Z (mi —msj —mag)E; — masEg.
{éd,k}={1,2,3}

By permuting indices and applying Lemma 7.3, one has the following:
Lemma 9.3. If the divisor D)y, is effective and {i, j, k,u,v} = {1,2,3,4,5} then
d>m; +mjg,  d>mi 4+ M+ My + My,  2d > m; +mj +mj + My, (9.7)

9.4. Restrictions to the Keel-Vermeire divisors () (;;)(x)- Take the case of
Q12)(34)- There is a unique (smooth) quadric @ in P3 that contains the points
P1,- -+, 5 and the lines l13, 14, l23,l24. Since Q(12y(34) has class:

Qq2)(34) = 2H — ZEz — L3 — By — By — Eog,

it follows that @Q(12)(34) is the proper transform Q of Q in M. Denote by @’ the
proper transform of @ in . By Fact 9.1 it follows that @’ is the blow-up of
Q = P! x P! along the points p1,...,ps. Moreover Q ~ Q.

Let Fy, respectively Fy, be the class of the lines in the ruling of P! x P! that
contains l;3 and lgy, respectively 14 and lps. Let Ey,...E5 be the exceptional
divisors on Q, considered as a blow-up of P! x P! along p1,...,ps. By Fact 9.1:

Hg=F+F, FEs=E,

Eij,=F —E —E; (ij=1324), E;

516 =F—FE,—E; (ij =14,23),

7Q
Eij@ =0 for all other cases.
It follows that restriction D of the divisor D in (9.2) to Q is given by:
D)5 = (d —miz —maa) Fi + (d — mig — ma3) Fy — (m1 — maz — mua) E1—
—(ma — maz — maa) By — (m3 — mag — ma3) Bz — (g — mig — maa) By — ms Es.

Alternative description of Q. Let p: P3\ {ps} — P? be the projection from ps
and let ¢; = p(p;) (1 =1,...,4). Let Iy (respectively l3) be the unique line through
ps in the ruling of Fy (respectively Fb).

Let y (respectively x) be the image I (respectively lp). The blow-up of Q =
P! x P! in ps is isomorphic to the blow-up of P? in #,y. Hence, Q is isomorphic
to the blow-up of P? along pi,...,ps,2,y. Denote by Ell, . .FL,F%E‘U be the
exceptional divisors corresponding to the points pi,...,ps,z,y and let H be the
hyperplane class. One may immediately see:

F: p*O(l) == Fl +F2 —Fg).
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Note that lines in the ruling Fy (respectively Fy) intersect I; (respectively ls),
therefore their images in P? all pass through y (respectively z). In particular,
the lines q1¢3 and ¢zqs intersect in x, while the lines g1g; and gz¢3 intersect in y.
Moreover, one has:

F-H-E, F-H-E,
It follows that:
Es=H-FE,-E, E :E; (i=1,...,4).

Hence, the restriction D, of the divisor D in (9.2) to Q is given by:
D|Q = (2d — M5 — M3 — Mi14 — M23 — m24)ﬁ - (ml —mi3 — m14)F1—
—(mg — ma3 — mas)Ey — (m3 — miz — mas) B — (my — myg — mag) Ey—

—(d — MMy — M13 — m24)E1; — (d — MMy — M4 — m23)Ey

Lemma 9.4. If the divisor D‘Q 1s effective then

2d > ms + miz + mig + Moz + Moy, 2d > my + ms + Moz + Moy. (9.8)
Proof. This follows from Lemma 7.3. (]
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