
ASYMPTOTIC BEHAVIOUR OF RATIONAL CURVES

DAVID BOURQUI

Abstract. These are a preliminary version of notes for a course delivered
during the summer school on rational curves held in 2010 at Institut Fourier,
Grenoble. Any comments are welcomed.

1. Introduction

1.1. The problem. The problem we will be concerned with, which is also consid-
ered in Peyre’s lecture, may be loosely stated as follows: given an algebraic variety
X (defined over a field k) possessing a lot of rational curves (by this we mean that
the union of rational curves on X is not contained in a proper Zariski closed subset ;
for example, this holds for rational varieties) is it possible to give a quantitative
estimate of the number of rational curves on it? We expect of course an answer
slighly less vague than: the number is infinite.

To give a more precise meaning to the above question, fix a projective embedding
ι : X ⊂ Pn (or, if you prefer and which amounts almost to the same, an ample
line bundle L on X). Then given a morphism x : P1 → X we define its degree
(with respect to ι)

degι(x)
def= deg((x ◦ ι)∗OPn(1) (1.1.1)

(or degL(x)
def= deg(x∗L)). This is a nonnegative integer. Moreover, as explained

in the lectures of the first week, we know from the work of Grothendieck that for
any nonnegative integer there exists a quasi-projective variety Homι,d(P1, X) (or
HomL,d(P1, X)) parametrizing the set of morphisms P1 → X of ι-degree d. Recall
in particular that for every k-extension L there is a natural 1-to-1 correspondence
between the set of L-points of Homι,d(P1, X) and the set of morphisms P1

L →
X ×k L of ι-degree d.

Thus we obtain a sequence of quasi-projective varieties {Homι,d(P1, X)}d∈N
and we can raise the (still rather vague) question: what can be said about the
behaviour of this sequence? Note that one way to understand this question is to
“specialize” the latter sequence to a numeric one, and consider the behaviour of
the specialization. There are several natural examples of such numeric specializa-
tions. For instance we can consider the sequence {dim(Homι,d(P1, X))} obtained
by taking the dimension, or, if k is a subfield of the field of complex numbers C,
the sequence {χc(Homι,d(P1, X))}, where χc designates the Euler-Poincaré char-
acteristic with compact support; if k is finite, one can also look at the sequence
{#Homι,d(P1, X)(k)}.

As explained in details in Peyre’s lecture, the study of the latter sequence is
a particular facet of a problem raised by Manin and his collaborators in the late
1980’s, namely the understanding of the asymptotic behaviour of the number of
rational points of bounded height on varieties defined over global field. The degree
of x : P1 → X may be interpreted as the logarithmic height of the point of
X(k(P1)) determined by x. Note that instead of considering a variety defined over
k, which may be interpreted as a constant family X ×P1 → P1, we might as well
look at nonconstant families, that is, varieties defined over the function field of
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P1. In these notes, we will stick to the case of constant families. Another natural
generalization would be of course to replace P1 by a curve of higher genus. Here we
only stress that most of the results presented in these notes extend without much
difficulty to the higher genus case. It is also possible to consider higher-dimensional
generalization of the problem, see [Wan92].

1.2. Batyrev’s heuristic. We retain all the notations introduced in the previous
section. When the base field k is finite, Manin, his collaborators and subsequent
authors made precise predictions about the asymptotic behaviour of the sequence
{#HomL,d(P1, X)(k)}. Let us explain how Batyrev uses these predictions to give
some heuristic insights on the asymptotic geometric properties of the sequence
{HomL,d(P1, X)} (over an arbitrary field k). We will restrict ourselves to varieties
X for which the following hypotheses hold (recall that the effective cone is the cone
generated by the classes of effective divisors):

Hypotheses 1.1. X is a smooth projective variety whose anticanonical bundle ω−1
X

is ample, in other words X is a Fano variety. The geometric Picard group of X
is free of finite rank and the geometric effective cone of X is generated by a finite
number of class of effective divisors1.

Moreover the degree of a morphism x : P1 → X will always be the anticanonical
degree, namely deg(x) = deg(x∗ω−1

X ).
For the sake of simplicity, we will assume in this section that the class ω−1

X has
index one in Pic(X), that is, Min{d,

[
ω−1
X

]
∈ d Pic(X)} = 1.

In this setting, a naïve version of the predictions of Manin et al. is the asymptotic

#Homω−1
X
,d(P

1, X)(k) ∼
d→+∞

c d rk(Pic(X))−1 (#k)d (1.2.1)

where c is a positive constant.
We call it a naïve prediction since it was clear from the beginning that (1.2.1)

could certainly not always hold because of the phenomenon of accumulating sub-
varieties. One of the simplest examples is the exceptional divisor of the projective
plane blown-up at one point. One can check that with respect to the anticanonical
degree “most” of the morphisms x : P1 → X factor through the exceptional
divisor (cf. Peyre’s lecture). Thus one is led to consider in fact the sequence
{Homω−1

X
,d,U (P1, X)} where U is a dense open subset ofX andHomω−1

X
,d,U (P1, X)

designates the open subvariety ofHomω−1
X
,d(P1, X) parametrizing those morphisms

P1 → X of anticanonical degree d which do not factor through X \ U . And one
predicts that (1.2.1) holds for #Homω−1

X
,d,U (P1, X)(k) if U is a sufficiently small

open dense subset of X2.

1When the characteristic of k is zero, it is true, though highly non trivial, taht the hypotheses
on the Picard group and on the effective cone automatically holds for a Fano variety.

2In fact, one may (and will) also consider the case where the anticanonical bundle of X is not
necessarily ample, but still lies in the interior of the effective cone; in this case Hom

ω−1
X
,d

(P1, X)

is not always a quasi-projective variety, but Hom
ω−1
X
,d,U

(P1, X) is for a sufficiently small dense
open set U , thus the refined prediction still makes sense in this context.

One must also stress that even with this refinement, the prediction has already been shown to
fail for certain Fano varieties (see [BT96]; the proof is over a number field but adapts immediatly
to our setting). Nevertheless, the class of Fano varieties for which the refined prediction holds
might be expected to be quite large; in particular one might still hope that it holds for every del
Pezzo surface; especially in the arithmetic setting, the analogous refined prediction was shown
to be true for a large number of instances of Fano variety; here is a (far from complete) list of
related work in the arithmetic setting: [BT98], [CLT02], [dlB02], [dlBF04], [dlBBP10], [dlBBD07],
[FMT89], [STBT07], [Spe09], [Sal98], [ST97], [Thu08], [Thu93], [Pey95].
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In order to “explain geometrically” the prediction (1.2.1), Batyrev makes use of
the following heuristic:

Heuristic 1.2. A geometrically irreducible d-dimensional variety defined over a
finite field k has approximatively (#k)d rational points defined over k.

Of course there is the implicit assumption that the error terms deriving from this
approximation will be negligible regarding our asympotic counting problem. This
heuristic may be viewed as a very crude estimate deduced from the Grothendieck-
Lefschetz trace formula expressing the number of k-points of X as an alternative
sum of trace of the Frobenius acting on the cohomology. It is also used by Ellenberg
and Venkatesh in a somewhat differentcounting problem, see [EV05].

Now for any morphism x : P1 → X, its absolute degree is the element of Pic(X)∨
defined by 〈deg(x) , L〉 = deg(x∗L). For y ∈ Pic(X)∨ and U an open dense subset
of X, let Homy(P1, X) (respectively Homy,U (P1, X)) denote the quasi-projective
variety parametrizing the morphisms P1 → X with absolute degree y (respectively
which do not factor through X \ U). Let us choose a finite family of effective
divisors of X whose classes in Pic(X) generate the effective cone of X and let U
be the complement of the union of the support of these divisors. Then a morphism
P1 → X which does not factor by X \ U has an absolute degree y such that
〈y , D〉 > 0 for every effective class D, in other words y belongs to the dual Ceff(X)∨
of the effective cone.

As explained in the first week of the summer school, the “expected dimension”
of Homy,U (P1, X) is dim(X) +

〈
y , ω−1

X

〉
. For any algebraic variety Y , let us

denote by ρ(Y ) the number of its geometrically irreducible components of dimension
dim(Y ). Assuming that ρ(Homy,U (P1, X)) is asymptotically constant, that the
dimension of Homy,U (P1, X) dimension coincide with the expected dimension,
and that the above heuristic applies, the number of k-points of Homy,U (P1, X)
may be approximated by

cste#{y ∈ Ceff(X)∨ ∩ Pic(X)∨,
〈
y , ω−1

X

〉
= d}(#k)d+dim(X). (1.2.2)

But we will see below that we have the asymptotic
#{y ∈ Ceff(X)∨ ∩ Pic(X)∨,

〈
y , ω−1

X

〉
= d} ∼

d→X
α(X) d rk(Pic(X)) (1.2.3)

where α(X) is a positive rational number (depending on the effective cone of X
and on the class of ω−1

X ). Thus we see that the above geometric assumptions on the
Homy,U (P1, X) together with the adopted heuristic are compatible with Manin’s
prediction.

As pointed out by Batyrev, this might lead (perhaps optimistically) to raise
the following questions about the asymptotic behaviour of Homy,U (P1, X) and
Homω−1

X
,d,U (P1, X).

Question 1.3. (1) is the dimension of Homω−1
X
,d,U (P1, X) asymptotically equiv-

alent to d+dim(X) ? when
〈
y , ω−1

X

〉
→ +∞, is the dimension of Homy,U (P1, X)

asymptotically equivalent to
〈
y , ω−1

X

〉
+ dim(X) ?

(2) is ρ(Homω−1
X
,d,U (P1, X)) asymptotically equivalent to c drk(Pic(X))−1 where

c is a positive constant? when
〈
y , ω−1

X

〉
→ +∞, is ρ(Homy,U (P1, X))

asymptotically constant?

1.3. A generating series: the degree zeta function. In the previous sections,
some predictions were formulated about the asymptotic behaviour of some particu-
lar specializations of the sequence {Homω−1

X
,d,U (P1, X)}, namely the ones obtained

by considering the dimension, the number of geometrically irreducible components
of maximal dimension and, in case k is finite, the number of k-points. One may of
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course wonder whether there exist predictions for other specializations, for instance
the one deriving from the topological Euler-Poincaré characteristic with compact
support. Concerning the latter, note that it has at least a common feature with
the specialization “number of points over a finite field”: they are both examples
of maps from the set of isomorphism class of algebraic varieties to a commutative
ring, which are additive in the sense that the relation f(X) = f(X \ F ) + f(F )
holds whenever X is a variety and F is a closed subvariety of X, and satisfying
moreover the relation f(X × Y ) = f(X) f(Y ). We call such maps generalized
Euler-Poincaré characteristic, abbreviated in GEPC in the following . We are nat-
urally led to consider the universal target ring for GEPC: as a group it is generated
by symbols [X] where X is a variety modulo the relations [X] = [Y ] whenever
X
∼→ Y and [X] = [F ] + [X \ F ] whenever F is a closed subvariety of X (the latter

are often called scissors relations). We endow it with a ring structure by setting
[X] [Y ] = [X × Y ]. The resulting ring is called the Grothendieck ring of varieties3
and denoted byK0(Vark). Thus the datum of a GEPC with value in a commutative
ring A is equivalent to the datum of a ring morphism K0(Vark)→ A.

For an algebraic variety V we denote by [V ] its class in the Grothendieck ring.
Now a way to handle “all-in-one” every possible specialization of the sequence
{Homω−1

X
,d,U} deriving from a GEPC is to look at the sequence {

[
Homω−1

X
,d,U

]
}

which is thus a sequence with value in the ring K0(Vark). Note that although this
is not really obvious at first sight, the knowledge of the class [Y ] of an algebraic
variety Y allows also to recover dim(Y ) and ρ(Y ) (though dim and ρ are certainly
not GEPC), see below.

A classical and useful tool when dealing with a sequence of complex numbers
{an} is the associated generating series

∑
an t

n. Inded, it is often possible to get
informations about the analytic behaviour of the meromorphic function defined
by the series, which in turn yields by Tauberian theorems informations about the
asymptotical behaviour of the sequence itself.

We can try a similar approach in our context by forming the generating series

Z(X,U, t) def=
∑
d>0

[
Homd,U (P1, X)

]
td ∈ K0(Vark)[[t]] (1.3.1)

(from now on we will systematically drop the subscript ω−1
X , reminding that the

degree will always be considered with respect to the anticanonical line bundle)
whose coefficients lie in the Grothendieck ring of varieties. We call it the geometric
degree zeta function. Applying a GEPC χ : K0(Vark)→ A to its coefficients yields
a specialized degree zeta function with coefficients in A, denoted by Zχ(X,U, t).
If k is finite and the GEPC is #k (that is, the morphism “number of k-points”),
we recover the generating series associated to the counting of points of bounded
anticanonical degree/height, which we will name the classical degree zeta function.

1.4. Some more examples of GEPC. So far we have given only two examples
of GEPC, the topological Euler Poincaré characteristic with support compact and
the number of k-rational points when k is a finite field. Both of them have of
course a cohomological flavour. It turns out that cohomology theories are a natural
reservoir of GEPC. Let us content ourselves to describe one particular example: fix
a prime ` distinct from the characteristic of k, and a separable closure k of k. To
every variety X defined over k are attached its `-adic cohomology groups, which

3This ring, already considered by Grothendieck in the sixties (see [CS01]), has attracted a huge
renewal of interest since Kontsevich used it fifteen years ago as a key ingredient of his theory of
motivic integration. Its structure turns out to be quite difficult to understand. Let us just cite
a celebrated open question, which has connections with the Zariski simplification problem: is the
class of the affine line in the Grothendieck ring a zero divisor?



ASYMPTOTIC BEHAVIOUR OF RATIONAL CURVES 5

form a sequence of Q`-vector spaces {Hn(Xk,Q`)}n∈N equipped with a continuous
action of the absolute Galois group Gal(k/k). If X is proper, the Hn(Xk,Q`) are
finite dimensional and vanish for n > 2 dim(X). When X is proper and smooth,
one defines its `-adic Poincaré polynomial by

Poinc`(X) def=
∑
n>0

dim(Hn(Xk,Q`))tn. (1.4.1)

One can show that there is a ring morphism Poinc` : K0(Vark) → Z[t] extend-
ing Poinc` (in characteristic zero one may use the fact, proven by F.Bittner, that
the class of smooth projective varieties, modulo the relations derived from blowing
up along a smooth subvariety, form a presentation of K0(Vark); when k is finitely
generated, one uses the weight filtration on the `-adic cohomology groups with
compact support; in the general case one reduces to the latter by a limiting pro-
cess). For every algebraic variety X, we have deg(Poinc`([X]) = 2 dim(X) thus the
knowledge of Poinc` allows to recover the dimension. In case k is a subfield of C,
comparison theorems between `-adic cohomology and Betti cohomology show that
the topological Euler-Poincaré characteristic factors through Poinc`.

In fact one can even define a refined `-adic Poincaré polynomial Poincref` :
K0(Vark) → K0(Gal(k/k) − Q`) which satisfies for X smooth and proper the
relation

Poincref` (X) =
∑
n>0

[
Hn(Xk,Q`)

]
tn. (1.4.2)

Here K0(Gal(k/k)−Q`) stands for the Grothendieck ring of the category of finite
dimensional Q`-vector spaces equipped with a continuous action of the absolute
Galois group. If k is finite, one can recover from this refined Poincaré polynomial
the GEPC #k by applying the trace of the Frobenius and evaluating at t = −1.
In general, one can recover the number of geometrically irreducible components of
maximal dimension from the refined Poincaré polynomial: indeed, for any alge-
braic variety X, ρ(X) is the dimension of (a2 dim(X))Gal(k/k), where a2 dim(X) is the
leading coefficient of Poincref` (X).

If the characteristic of k is zero, there exists by the work of Gillet, Soulé et al a
universal “cohomological” GEPC χmot whose target is the Grothendieck ring of the
category of pure motives. Recalling the construction and the basic properties of this
category is beyond the scope of these notes (see [And04] for a nice introduction).
Let us simply stress that one of the guiding lines of the theory of motives is that
it should be a kind of universal cohomological theory for algebraic varieties, which
would allow to recover any classical cohomological theory by specialization. Un-
fortunately, later in these notes, we will be obliged to work with the specialization
Zχmot(X,U, t) rather than with the original geometric degree function. Though this
is certainly inacurrate in many senses, the reader unaware of motives may think
of the Grothendieck ring of motives as if it was the Grothendieck ring of varieties
(localized at the class of the affine line, see below).

1.5. Completion of the Grothendieck ring of varieties and the expected
analytic behaviour of the degree zeta function. We will now define a topology
on (a localization of) the Grothendieck ring of algebraic varieties. This is necessary
if we want to talk about the “analytic behaviour” of the geometric zeta function.
The topology we will consider is the one proposed by Kontsevich for his construction
of motivic integration. We denote by L the class of the affine line A1 in the
Grothendieck ring of varieties4. We denote by Mk the localization of K0(Vark)

4The letter L stands for Lefschetz. This is because the image of
[
A1
]
by the morphism χmot

alluded to above coincides with the class of the so-called Lefschetz motive.
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with respect to L (recall that it is not known whether the localization morphism
K0(Vark)→Mk is injective).

Intuitively, the idea behind the definition given below might be understood as
follows: if k is finite with cardinality q, the image of L by the “number of k-points”
morphism is q; since the series

∑
n>0 q

−n converges, we would like by analogy the
series

∑
n>0 L−n to be convergent too. Let us stress that this is really a loose

analogy here, since the “number of k-points” morphism will not be continuous with
the respect to the topology we will define, and thus will not extend to the completed
Grothendieck ring with respect to this topology.

We filter the elements inMk by their “virtual dimension”: for n ∈ Z, let FnMk

be the subgroup of Mk generated by those elements which may be written as
L−i [X], where i ∈ Z and X is a k-variety satisfying i − dim(X) > n (elements
whose virtual dimension is less than or equal to −n). Thus F• is a decreasing
filtration, and ∪

n∈Z
Fn =Mk.

Let M̂k be the completion of Mk with respect to the topology defined by the
dimension filtration (that is, the topology for which {FnMk} is a fondamental
system of neighboroods of the origin). In other words we have

M̂k = lim
←−
Mk/F

nMk. (1.5.1)

Thus an element of M̂k may be represented as an element (xn) ∈
∏
n∈ZMk/F

nMk

such that for every integers n and m satisfying m > n we have πnm(xm) = xn, where
πnm is the natural projection Mk/F

mMk → Mk/F
nMk. We have the natural

completion morphismMk → M̂k and a natural filtration on M̂k coming from the
filtation F•.

A priori M̂k inherits only the group structure of the ringMk. Now we define a
product. Let x = (xn) and y = (yn) be two elements in M̂k and M be an integer
such that x, y ∈ FMMk (that is, we have xn = yn = 0 for n 6 M). Let n be an
integer and x̃n−M , ỹn−M be liftings of xn−M and yn−M toMk respectively. Define
(x.y)n as the class of x̃n−M .ỹn−M modulo FnMk. The inclusions FnMk.F

mMk ⊂
Fn+mMk show that this does not depend on the choices made and that this endows
M̂k with a ring structure compatible with the completion morphism.

For an element x ∈Mk (respectively x ∈ M̂k), define

dim(x) = −1
2

Sup{n, x ∈ FnMk}. (1.5.2)

Using the `-adic Poincaré polynomial, one may check that if X is a k-variety then
we have indeed dim([X]) = dim(X). Note that for every integer n ∈ Z one has
dim(Ln) = n. One may wonder whether there are nonzero elements in Mk with
dimension −∞, in other words whether the completion morphism is injective: this
is an open question.

Note that a series
∑
n>N xn whose terms belong to M̂k converges in M̂k if and

only if dim(xn) goes to −∞. For example
∑
n>0 Ln converges, and one checks that

its limit is the inverse of 1− L in M̂k.
Note also that if k is finite with cardinality q the morphism #k : Mk → Z[q−1] ⊂

R is not continuous when we endow R with the usual topology; for example, for
any sequence of integers {cn}, the sequence cn L−n converges to zero with respect
to our topology. Thus there is no hope to extend #k to a morphism M̂k → R.

By contrast, the morphism Poinc` : Mk → Z[t, t−1] is continuous when Z[t, t−1]
is endowed with the topology associated to the filtration by the degree, and thus
extends to a morphism M̂k → Z[[t−1]](t).



ASYMPTOTIC BEHAVIOUR OF RATIONAL CURVES 7

1.6. Some questions about the analytic behaviour of the degree zeta func-
tion. We need a preliminary result about the characteristic function of a cone. Let
N be a Z-module of finite rank and C be a rational polyedral cone of N , that is,
C is a cone in N ⊗R generated by a finite number of elements of N . We moreover
assume that C is strictly convex, i.e. C ∩ −C = {0}. We set

Z(N,C , t) def=
∑

y∈N∩C

ty ∈ Z[C ∩N ]. (1.6.1)

When C is regular, that is, generated by a subset {y1, . . . , yd} of a basis of N , a
straightforward computation shows that

Z(N,C , t) =
d∏
i=1

1
1− tyi

. (1.6.2)

In general, it is known that C may be written as an “almost disjoint” union of regu-
lar cones (more precisely as the support of a regular fan, see below) and Z(N,C , t)
will be a finite sum of expression of the type (1.6.2). For any element x ∈ N∨ lying
in the relative interior of C ∨, the level sets {y ∈ C ∩N, 〈y , x〉 = d}d∈N are finite
and we may define

Z(N,C , x, t) =
∑

y∈N∩C

t〈y , x〉 ∈ Z[[t]] (1.6.3)

From the above decomposition, we deduce that Z(N,C , x, t) is a rational function
of t, with a pole of order dim(C ) at t = 1, and whose other poles are roots of unity.
For x in N∨, define the index of x in N∨ by

indN∨(x)
def= Max{d ∈ N, x ∈ dN∨}. (1.6.4)

If indN∨(x) = 1, the order of any pole of Z(N,C , x, t) distinct from 1 is less than
dim(C ). In general, a similar statement holds for the series Z(N,C , x, t

1
ind

N∨ (x) )
Let α(N,C , x) be the leading term of Z(N,C , x, t) at the critical point t = 1.

Thus by Cauchy estimates we obtain

#{y ∈ N ∩ C , 〈y , x〉 = indN∨(x) d} ∼
d→+∞

α(N,C , x) (indN∨(x) d)dim(C )−1.

(1.6.5)

Definition 1.4. Let Z(t) ∈ C[[t]], ρ a positive real number and d a nonnegative
integer. We say that Z(t) is strongly (ρ, d) controlled if Z(t) converges absolutely
in the open disc |t| < ρ and the associated holomorphic function extends to a
meromorphic funtion on the open disc |t| < ρ + ε for a certain ε > 0, whose all
poles on the circle |t| = ρ have order bounded by d. We say that Z(t) is (ρ, d)-
controlled if it is bounded by a strongly (ρ, d)-controlled series (we say that

∑
ant

n

is bounded by
∑
bnt

n if |an| 6 |bn| for all n).

Note that by Cauchy estimates, if d > 1 then
∑
ant

n is (ρ, d)-controlled if and
only if the sequence an

nd−1 ρ−n
is bounded.

We are now in position to state a question about the analytic behaviour of the
classical degree zeta function. It may be seen as a version of a refinement by Peyre
of a question raised by Manin.

Question 1.5. Let k be a finite field of cardinality q. Let X be a k-variety satisfying
hypotheses 1.1. Does there exists a positive real number c and a dense open subset
U such that the series

Z(X,U, t)− c.Z(Pic(X)∨, Ceff(X)∨,
[
ω−1
X

]
, q t) (1.6.6)

is (q−1, rk(Pic(X))−1)-controlled (respectively strongly (q−1, rk(Pic(X))−1)-controlled)?
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Of course the question may be refined by asking whether the result holds for
every sufficiently small dense open subset.

Note that an affirmative answer yields the estimate

#HomindPic(X)(ω−1
X

)d,U (P1, X)(k)

∼
d→+∞

c α(Pic(X)∨, Ceff(X)∨,
[
ω−1
X

]
) (indPic(X)(ω−1

X ) d)rk(Pic(X))−1 qindPic(X)(ω−1
X

) d

(1.6.7)

Of course, in case (1.6.6) is strongly (q−1, rk(Pic(X)− 1)-controlled, we get a more
precise asymptotic expansion.

Let us add that there exists a precise description of the expected value of the
constant c (see at the end of section 2.6).

Now we turn to the search for a motivic analog of the previous question. We
adopt the following definition.

Definition 1.6. Let Z(t) ∈ M̂k[[t]], k ∈ Z and d a nonnegative integer. We say
that Z(t) is (L−k, d) controlled if it may be written as a finite sum

∑
i∈I Zi(t) such

that for every i ∈ I, there exist di 6 d and di positive integers ai,1, . . . , ai,di such
that the series ∏

16e6di

(1− L k ai,e tai,e)Zi(t) (1.6.8)

converges at t = L−k.

This definition is to be thought as a loose analog of definition 1.4.

Question 1.7. Let k be a field and X be a k-variety satisfying hypotheses 1.1.
Does there exists a nonzero element c ∈ M̂k and a dense open subset U such that
the series

Z(X,U, t)− c.Z(Pic(X)∨, Ceff(X)∨,
[
ω−1
X

]
,L t) (1.6.9)

is (L−1, rk(Pic(X))− 1)-controlled?
Does the constant c have an interpretation analogous to the one in the classical

case?

Regarding tauberian statements, it is worth noting that unfortunately the sit-
uation is not as comfortable as in the case of a finite field. One would like for
example to deduce from an affirmative answer to the latter question informations
about the asymptotic behaviour of the dimension and the number of irreducible
components of maximal dimension of Homd,U (P1, X), but one may check that the
only statement one is able to derive is the inequality

lim dim(Homd,U (P1, X))
d

6 1 (1.6.10)

which is less precise that Batyrev’s expectations. In fact, when studying the case of
a toric variety X, we will be able to show that Batyrev’s expectations hold before
we are able to give an affirmative answer to question 1.7.

2. The case of toric varieties

In this section we explain how one can deal with the previously introduced
problem in the case of toric varieties.
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2.1. Toric geometry. Here we recall some basic facts about toric geometry. Proofs
will be omitted or very roughly sketched, and are easily accessible in the classical
references on the topic ([Ful93, Oda88, Ewa96]).

A (split) algebraic torus is a group variety isomorphic to a product of copies
of the multiplicativ groupe Gm. A toric variety is a normal equivariant (partial)
compactification of an algebraic torus. In other words, it is a normal algebraic
variety endowed with an algebraic action of an algebraic torus T and possessing
an open dense subset U isomorphic to T in such a way that the action of T on U
identifies with the action of T on itself by translations.

Examples 2.1. An on which Gn
m acts diagonally, Pn on which Gn

m acts by
(λ1, . . . , λn)(x0 : · · · : xn) = (x0 : λ1 x1 : · · · : λn xn). (2.1.1)

Remark 2.2. A non necessarily split algebraic torus is a group variety which becomes
isomorphic to a split torus over an algebraic closure of the base field. Though the
case of unsplit toric varieties, that is, compactifications of non necessarily split tori,
certainly deserves consideration in the context of our problem, we will stick in these
notes to the case of split toric varieties.

Let T ∼→ Gd
m be a split torus of dimension d. The group X (T ) of algebraic

characters of T , that is, of algebraic group morphism T → Gm, is a free module of
finite rank d.

Let X be a smooth projective equivariant compactification of T , and U its open
orbit. Then X \ U is the union of a finite number {Di}i∈I of irreducible divisors,
which are T -invariant since T is irreducible. We call the Di’s the boundary divisors.

Since k[T ] ∼→ k[t1, t−1
1 , . . . , td, t

−1
d ] is a UFD, the Picard group of U ∼→ T is

trivial, therefore the map which associates to Di its class in the Picard group of X
induces a short exact sequence

0→ k[T ]×/k× → ⊕
i∈I

ZDi → Pic(X)→ 0 (2.1.2)

Moreover the natural morphism X (T ) → k[T ]× induces an isomorphism X (T ) ∼→
k[T ]×/k×.

Remark 2.3. One can show that the image of
∑
i∈I Di in Pic(X) coincides with the

class of the anticanonical line bundle
[
ω−1
X

]
.

By dualizing the exact sequence (2.1.2), we obtain
0→ Pic(X)∨ → ⊕

i∈I
ZD∨i → X (T )∨ → 0. (2.1.3)

Let ρi denote the image of D∨i in X (T )∨. Let ΣX be the set of cones generated by
{ρi}i∈J for those J ⊂ I such that ∩i∈JDi 6= ∅. Then ΣX is a fan of X (T )∨, in the
following sense:

Definition 2.4. A fan Σ of X (T )∨ is a finite family {σ}σ∈Sigma of polyedral
rational cones of X (T )∨ ⊗R such that:

(1) whenever σ and σ′ belong to Σ, σ ∩ σ′ is a face of σ and σ′
(2) whenever σ belongs to Σ, every face of σ belongs to Σ

One of the most striking feature of the theory of toric varieties is that the fan
ΣX defined above allows to recover X (thus the geometry of X may be described
in terms of combinatorial objects coming from convex geometry). In fact, starting
from any fan in X (T )∨ one may construct a normal (partial) compactification of
T by glueing together the affine T -varieties Vσ

def= Spec(k[σ∨ ∩ X (T )]) along the
Vσ∩σ′ , and one can show that every normal compactification of T is obtained in
this way.
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In our case, since we assumed X to be projective, the fan ΣX is complete (that
is, the union of its cone is the whole space) and since it was assumed to be smooth,
the cones of ΣX are regular, that is, each one is generated by a part of a Z-basis of
X (T )∨. Note that this implies that X is covered by affine varieties isomorphic to
affine spaces.

2.2. Homogeneous coordinates on toric varieties. When dealing with (say,
projective) varieties, it may be useful to have coordinates on it, for instance to do
some computations. One basic way to do this is to embed X into a projective space
Pn: the homogeneous coordinates on Pn yields coordinates on X. One drawback
of this approach is that there are a lot of available embeddings X ↪→ Pn, and thus
no canonical choice for such coordinates.

A different approach was proposed by Cox for toric varieties (and, as we will
see below, subsequently generalized by other authors to larger classes of varieties).
The basic idea is to observe that the homogeneous coordinates on Pn correspond
to the quotient of the affine space An+1 minus the origin by the diagonal action of
Gm. Let us denote by π the quotient map An+1 \ {0} → Pn. If we view Pn as a
toric variety in the usual way, the pull back by π of a boundary divisor is the trace
of a coordinates hyperplane on An+1 \ {0}.

This construction can be generalized to any smooth projective toric variety X as
follows: let {Di}i∈I be the finite set of boundary divisors. Let TNS(X) be the torus
whose character group is PicX, that is, the torus Hom(Pic(X),Gm) (the notation
stands for Néron-Severi torus; in our setting the Picard group and the Néron-Severi
group coincide).

The morphism ZI → Pic(X) extracted from the exact sequence (2.1.2) yields
by duality an algebraic group morphism TNS(X) → GI

m. Composing with the
coordinatewise action of GI

m on AI , we get an action of TNS(X) on AI . If X = Pn,
one has Pic(X) ∼→ Z and the action of TNS(X) ∼→ Gm on An+1 is the diagonal one.

We set
TX

def= AI \
⋃
J⊂I
∩
i∈J

Di=∅

∩
i∈J
{xi = 0}. (2.2.1)

Note that the condition ∩i∈JDi = ∅ may be expressed in terms of the fan ΣX by
saying that the {ρi}i∈J are not the rays of a cone of the fan. For X = Pn the only
subset of {0, . . . , n} satisfying the condition is {0, . . . , n} itself.

One checks immediatly that the action of TNS(X) on AI leaves TX invariant.
Now we define a morphism π : TX → X. First we notice that the open subsets of
TX

TX,σ = {x ∈ AI , ∀i ∈ I, ρi /∈ σ ⇒ xi 6= 0} (2.2.2)
are TNS-invariant and form a covering of TX when σ varies along the maximal cones
of ΣX . Now let σ be such a cone and σ(1) = {i ∈ I, ρi ∈ σ}. Then {ρi}i∈σ(1) is
a Z-base of X (T )∨ (recall that X is smooth, so that the fan ΣX is regular), thus
the classes of the divisors {Di}i/∈σ(1) in Pic(X) form a Z-basis of it, and therefore
determine isomorphisms Pic(X) ∼→ ZI\σ(1) and TNS(X) ∼→ GI\σ(1)

m . If t is an
element of TNS(X), which we write (λi)i∈I\σ(1) and x = (xi) ∈ AI , then for all
i /∈ σ(1) we have (λ.x)i = λi xi So if x is in TX,σ, there is a unique x′ ∈ TNS(X).x
such that for all i /∈ σ(1) we have x′i = 1. We set

πσ(x)
def= (x′i)i∈σ(1) ∈ Aσ(1) ∼→ Xσ = Spec(k[σ∨ ∩ X (T )]) (2.2.3)

We leave to the reader the task of verifying that πσ : TX,σ → X is indeed a
morphism of algebraic variety and that the morphisms πσ glue to a morphism
π : TX → X which is a TNS(X)-torsor over X (here, since TNS(X) is a split
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torus, it simply means that there is an open covering (Xα) of X and isomorphisms
ϕα : Uα × TNS(X) ∼→ π−1(Uα) such that π ◦ ϕα = prUα and the action of TNS(X)
on the Uα × TNS(X) induced by ϕ−1

α is by translations on the second factor).

Remark 2.5. One may check that the divisor π∗Di is the trace of the hyperplane
coordinates {xi = 0} on TX ⊂ AI .

Remark 2.6. In the construction of π : TX → X we did not use the fact that X
was projective, and indeed the construction is valid for any smooth toric variety.
For generalization to other toric varieties and some applications we refer to Cox’s
paper [Cox95b].

Remark 2.7. There is a natural Pic(X)-graduation on the polynomial ring k[xi]i∈I ,
which yields the TNS(X)-action on AI used above: we set deg(xd) = [

∑
diDi].

Now let D =
∑
aiDi be an integral combination of the Di’s. It is known that the

set
X (T )D = {m ∈ X (T ) , ∀i ∈ I, 〈m, ρi〉+ ai > 0} (2.2.4)

is a basis of

H0(X,OX(D)) = {f ∈ k(X), div(f) +D > 0} ∪ {0}. (2.2.5)

But the map m 7→
∏
x
〈m, ρi〉+ai
i is clearly a bĳection from X (T )D onto the set

of monomials of degree [D], thus the degree [D] part of k[xi]i∈I may be identified
with the vector space of global sections H0(X,OX(D)).

2.3. Application to the description of the functor of points of a toric
variety. Now we explain the application of homogeneous coordinate rings to the
description of the functor of points of a smooth projective toric variety X defined
over k, that is, the functor which maps a k-scheme S to the set Homk(S,X). This
is due to Cox ([Cox95a]).

Here again the case of Pn may serve as a basic guiding example. In fact what we
will seek to generalize in a minute is the following well-known property: a morphism
S → Pn is determined by the datum of a line bundle on S and n+1 global sections
of this line bundles which do not vanish simultaneously.

Now let X be a smooth toric variety. Recall that we have the exact sequence

0→ X (T )→ ⊕
i∈I

ZDi → Pic(X)→ 0. (2.3.1)

This means in particular that for every m ∈ X (T ) we have

div(m) =
∑
i∈I
〈m, ρi〉Di. (2.3.2)

Therefore m ∈ X (T ) determines an isomorphism cm : ⊗
i∈I

OX(Di)⊗〈m, ρi〉 ∼→ OX .
It is clear that cm ⊗ cm′ = cm+m′ .

Let f : S → X be a morphism from a k-scheme S to our toric variety X.
Let Li

def= f∗OX(Di), ui
def= f∗sDi (where sDi denote the canonical section of Di)

and, for m ∈ X (T ), let dm
def= f∗cm. Then the datum ((Li, ui), (dm)m∈X (T ) is a

X-collection on S in the following sense:

Definition 2.8. An X-collection on a k-scheme S is the datum of:
(1) a family ((Li), ui)i∈I where Li is a line bundle on S and ui a global section

of Li such that for every J ⊂ I satisfying ∩i∈JDi = ∅ the sections {ui}i∈J
do not vanish simultaneously (non-degeneracy condition);

(2) a family of isomorphism dm : ⊗L⊗〈m, ρi〉
i

∼→ OS such that dm ⊗ dm′ =
dm+m′
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We have an obvious notion of isomorphism of X-collections on S and we de-
note by CollX,S the set of isomorphism classes of X-collections on S. Note that
CollX,S is clearly fonctorial in S. We denote by CX the X-collection on X given
by {(OX(Di)), sDi), {cm}}.

In [Cox95a], Cox proves that the maps

Hom(S,X) −→ CollX,S
f 7−→ f∗CX

(2.3.3)

define an isomorphism between the functor of points of X and the functor which
associates to a k-scheme S the set CollX,S

Let us sketch the proof. First we describe a map CollX,S → Hom(S,Pn). Let
((Li, ui), dm) be a representative of an element C of CollX,S . First assume that
the Li’s are trivial. Thus C has a representative of the form ((OS , ui), (dm). In
particular (dm) may be identified with a group morphism

X (T )→ Aut(OS) = H0(S,OS)×, (2.3.4)

that is, an element of T (S), and if t, t′ ∈ T (S) the two X-collections ((OS , ui), t)
and ((OS , u′i), t′) are isomorphic if and only if there is an element λ ∈ GI

m(S) =
H0(S,OS)× such that λ.t = t′ (recall the exact sequence of tori 1→ TNS → GI

m →
T → 1) and λi.ui = u′i. In particular we may choose a representative of C of the
form ((OS , ui), 1)). The ui’s then define a morphism S → AI , whose image lies in
TX thanks to the non degeneracy condition satisfied by the ui’s. By composition
with π : TX → X we obtain a morphism S → X. By the previous observation,
the morphism S → TX depends on the choice of the representative ((OS , ui), 1))
but the induced morphism S → X does not because any other representative of
this form differ by the action of an element of GI

m whose image in T is trivial, that
is, an element of TNS(X).

If the Li’s are not trivial, cover S by open subset trivializing them, and glue
the corresponding morphisms (this is possible thanks to fonctoriality). We thus
obtain a morphism fC : S → P1 associated to C. To check that f∗CCX and C are
isomorphic, agin reduce to the case where the Li’s are trivial and use remark 2.5.
It remains to check that if f∗CX and C are isomorphic then f = fC . This is easy
if f factors through π and we reduce to the latter case by using the smoothness of
π and reasoning locally with respect to the étale topology. We refer to [Cox95a] for
more details.

Remark 2.9. One obtain an analogous description of the functor assigning to a
k-scheme S the set of morphisms Hom(S,P1) which do not factor through the
boundary ∪Di: by remark 2.5 and the above construction they correspond to those
X-collections {(Li, ui), {dm} for which no one of the ui is the zero section. We call
such collections non degenerate X-collections.

2.4. Description of Hom(P1, X) for X toric. Now we are ready to give a useful
description of the scheme Hom(P1, X) where X is a smooth projective toric variety.

More precisely, for every d ∈ ZI , we will describe the variety Homd,U (P1, X)
parametrizing the set of morphisms P1 → X such that for i ∈ I we have deg(f∗Di) =
di, and which do not factor through the boundary ∪Di (recall that U = X \ ∪Di

is the open orbit). Note that this variety will be empty if d does not belong to
the image of Pic(X)∨ in ZI (recall the exact sequence (2.1.3)); if d ∈ Pic(X)∨,
Homd,U (P1, X) parametrizes the set of morphisms with absolute degree d. More-
over, if f : P1 → X does not factor through the boundary, then for all i ∈ I the
divisor f∗(Di) is effective. ThusHomd,U (P1, X) will be empty if d does not belong
to NI . Note that since the Di’s generate the effective cone of X, the intersection
NI ∩ Pic(X)∨ may be identified with Ceff(X)∨ ∩ Pic(X)∨.
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Let L be a k-extension. Let d ∈ NI ∩ Pic(X)∨. By the previous section, a
element f ∈ Homd,U (P1, X)(L) is entirely determined by an isomorphism class
of X-collection {(Li, ui), {dm}} on P1, with deg(Li) = di, and no one of the ui’s
is the zero section. We may assume that Li is OP1(di), thus ui may be identified
with a nonzero homogeneous polynomial in two variables of degree di, denoted
by Pi. As explained above, the datum of {dm} is equivalent to the datum of a
point of T (P1) = T (H0(P1,OP1)) = T (k) and two collections ((OP1(di), Pi), t)
and ((OP1(di), P ′i ), t′) are isomorphic if and only if there exists λ = (λi) ∈ GI

m(L)
such that λ.t = t′ and λi.Pi = P ′i .

For any nonnegative integer d, we denote by H•d the variety Ad+1 \ {0} (this is
only to stress that we wiew a point of the latter as the coefficients of a nonzero
homogeneous polynomial in two variables of degree d). For d ∈ NI , set H•d

def=∏
i H
•
di
.

Elimination theory shows that there exists a dense open subset Ud of H•d such
that for every field L we have that (Pi) lies in Ud(L) if and only if the Pi’s do not
have a common nontrivial root in an algebraic closure of L. Thus there exists an
open dense subset H•d,X of H•d such that (Pi) lies in H•d,X(L) if and only if the Pi’s
satisfy the non degeneracy condition of definition 2.8.

It follows that the map wich associates to the (non degenerate) collection ({OP1(di), Pi, t)}
the element (Pi) ∈ H•d,Σ(X)(L) induces a bĳection between the isomorphism classes
of non degenerate collections and the set

H•d,X(L)/TNS(L) = (H•d,X/TNS)(L) (2.4.1)

The equality holds even if L is not algebraically closed because the torsor H•d,Σ(X) →
H•d,Σ(X)/TNS is locally trivial for the Zariski topology.

The previous reasoning suggests that the variety H•d,X/TNS is isomorphic to
Homd,U (P1, X). It does not prove it, since we only looked at the level of points
with value in a field, but with little extra work one can show that this is indeed the
case.

Note in particular that for every d ∈ Pic(X)∨∩Ceff(X)∨ the varietyHomd,U (P1, X)
is geometrically irreducible of dimension∑

di + #I − rk(Pic(X)) =
∑

di + dim(X) =
〈
ω−1 , d

〉
+ dim(X) (2.4.2)

the last equality coming from remark 2.3. Hence the questions raised at the end of
section 1.2 have an affirmative answer for toric varieties.

2.5. Application to the degree zeta function. Using the above description of
Homd(P1, X), we see that the geometric degree zeta function has an expression

Z(X,U, t) =
∑

d∈Pic(X)∨∩Ceff(X)∨

[
H•d,X/TNS(X)

]
t〈ω
−1
X

,d〉. (2.5.1)

Set Pd =
∏

Pdi and let Pd
X be the image of H•d,X in Pd. Since Pd = H•d,X/GI

m,
H•d,X/TNS(X)→ Pd

X is a GI
m/TNS(X) = T -torsor and we have[

H•d,X/TNS(X)
]

= [T ]
[
Pd
X

]
= (L− 1)dim(X) [Pd

X

]
. (2.5.2)

The class of Pd in the Grothendieck ring is readily computed as
∏
i∈I

Ldi+1−1
L−1 . To

evaluate the class of the open subvariety Pd
X we will use a classical tool to “get rid”

of coprimality conditions, that is, we will perform a kind of Möbius inversion. We
claim that there is a unique fonction µmot

X : NI → K0(Vark) satisfying:

∀d ∈ NI ,
[
Pd
X

]
=

∑
06d′6d

µmot
X (d′)

[
Pd−d′

]
. (2.5.3)
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The claim follows immediately from an induction on the lenght
∑
di of d. Now we

can write:∑
d∈Pic(X)∨∩Ceff(X)∨

[
Homd,U (P1, X)

]
t〈d , ω

−1
X 〉 (2.5.4)

=
∑

d∈Pic(X)∨∩Ceff(X)∨

∑
06d′6d

µmot
X (d′)

[
Pd−d′

]
t〈d , ω

−1
X 〉

(2.5.5)

=
∑

d′∈NI

µmot
X (d′)

∑
d∈Pic(X)∨∩Ceff(X)∨

d>d′

∏
i∈I

Ldi−d′i+1 − 1
L− 1

t〈d , ω
−1
X 〉

(2.5.6)
Then the computation, very roughly, goes on as follows: we approximate the sum-
mation over the truncated cone

{d ∈ Pic(X)∨ ∩ Ceff(X)∨, d > d′} (2.5.7)
by a summation over the whole cone Pic(X)∨ ∩ Ceff(X)∨ and we approximate the
quantity

∏
i∈I

Ldi+1−1
L−1 by L|d|+#I

(L−1)#I . Of course we will have to show that the error
terms resulting of these approximations do not contribute to the main term of the
degree zeta function, that is, are suitably controlled in the sense of definition 1.6.
Neglecting these error terms for the moment, and reminding that

〈
d , ω−1

X

〉
=
∑
di

by remark 2.3, we obtain the following expression for the “leading” term of the
motivic degree zeta function

L#I

(L− 1)rk Pic(X)

( ∑
d∈NI

µmot
X (d) L−|d|

) ∑
d∈Pic(X)∨∩Ceff(X)∨

(L t)〈d , ω
−1
X 〉
 (2.5.8)

In view of question 1.7, the second factor is the expected one, but for the moment
we are not even sure that the first factor is well defined, that is, that the series
converges in the completed Grothendieck ring M̂k.

We will first explain what happens over a finite field for the classical degree zeta
function. In this case the multiplicativity property of the Möbius function allows
to easily settle the convergence of (the analogous of) the first factor of 2.5.8, by
decomposing it as an Euler product. Then we will explain how this approach may
be “mimicked” for the geometric degree zeta function.

2.6. The leading term of the classical degree zeta function of a toric
variety. In this section we assume that k is a finite field, and we will study the
analog of (2.5.8) for the classical degree zeta function, that is

q#I

(q − 1)rk Pic(X)

( ∑
d∈NI

#kµ
mot
X (d) q−|d|

) ∑
d∈Pic(X)∨∩Ceff(X)∨

(q t)〈d , ω
−1
X 〉

(2.6.1)

Let us stress that (2.6.1) is really to be understood as a formal analog of (2.5.8),
and can not be derived from (2.5.8) by applying #k, even if one proves that the
first factor of (2.5.8) converges in the completed Grothendieck ring, since #k does
not extend to the latter.

Recall that the second factor of (2.6.1) is nothing else that Z(Pic(X)∨, Ceff(X)∨,
[
ω−1
X

]
, q t)

It will be shown later that (2.6.1) is indeed the leading term of the classical degree
zeta function, in other words that the difference Z(X,U, t) − (2.6.1) is (strongly)
(q−1, rk(Pic(X))−1)-controlled. Thus the left factor of (2.6.1) will give the constant
c appearing in question 1.5. But our first task is to show its convergence.
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A key fact in the classical setting is that the specialized function #kµ
mot
X : NI →

Z can be refined as a function µX :
⊔

d∈NI Pd(k)→ Z, in the sense that for all d
we will have #kµ

mot
X (d) =

∑
D∈Pd(k)

µX(D). Indeed, define µX by the relation

∀d ∈ NI , ∀D ∈ Pd(k),
∑

(D′
i
)6(Di)

µX((D′i)) = 1Pd
X

(D). (2.6.2)

Here we identify Pd(k) with the set of I-uples of effective k-divisors (Di) on P1 of
degree (di): this gives a sense to the expression (D′i) 6 (Di).

The basic properties of µX are listed in the following proposition The reader
may check them as an easy exercise.

Proposition 2.10. (1) µX is a multiplicative function: whenever (Di) and
(D′i) are such that Di and D′i are coprime (that is, have disjoint supports)
for each i, we have µX((Di +D′i)) = µX((Di))µX((D′i)).

(2) There exists a unique map µ0
X : N I → Z such that for all n ∈ NI and

every closed point P of P1
k we have

µX((ni P)) = µ0
X(n) (2.6.3)

(3) We have

∀n ∈ {0, 1}I ,
∑

06n′6n

µ0
X(n′) =

{
1 if ∩

i∈I, ni=1
Di 6= ∅ or n = 0

0 otherwise.
(2.6.4)

(4) We have µ0
X(n) = 0 if

∑
ni = 1 or if there exists i such that ni > 2.

(5) Denoting by {0, 1}IX the set of elements n of {0, 1}I such that Min
σ∈ΣX

∑
i/∈σ(1) ni >

0 and by {0, 1}IX,min the set of the minimal elements of {0, 1}IX , we have

∀n ∈ {0, 1}I ,
∑

06n′6n

µ0
X(n′) =


1 if n = 0
0 if n 6= 0 and n /∈ {0, 1}IX

(−1)#{n
′∈{0,1}IX,min,n

′6n} if n ∈ {0, 1}IX
(2.6.5)

Using the classical fact that the Euler product∏
P∈(P1

k
)(0)

1 + O
deg(P)→+∞

(
q−(1+ε) deg(P)

)
(2.6.6)

(where (P1
k)(0) denotes the set of closed points of P1

k) converges and thanks to the
previous proposition, we obtain that the series∑

d∈NI

#kµ
mot
X (d) q−|d| =

∏
P∈(P1

k
)(0)

∑
n∈{0,1}I

µ0
X(ni P) q− deg(P)(

∑
i
ni) (2.6.7)

is absolutely convergent. The following proposition will yield a nice interpretation
of this Euler product.

Proposition 2.11. Let L be a finite extension of k. We have the following relation:∑
n∈{0,1}I

µ0
X(ni) (#L)−

∑
i
ni = (1−#L)rk(Pic(X))#X(L)/(#L)− dim(X) (2.6.8)

Proof. We will in fact prove the following relation in the Grothendieck ring of
varieties (valid over any field):∑

n∈{0,1}I
µ0
X(n) L#I−

∑
i
ni = (L− 1)rk(Pic(X)) [X] . (2.6.9)
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The desired relation follows immediatly by applying the realization morphism #L

and the relation #I = dim(X) + rk(Pic(X)).
Since the morphism TX → X is a torsor under a split torus of dimension

rk(Pic(X)), we have
(L− 1)rk(Pic(X)) [X] = [TX ] (2.6.10)

Now for n ∈ {0, 1}I let AI
n

def= ∩
i, ni=1

{xi = 0}. Reminding the definition of TX , we

have (we refer to proposition 2.10 for the definition of {0, 1}IX)

TX = AI \ ∪
n∈{0,1}I

X

AI
n = AI \ ∪

n∈{0,1}I
X,min

AI
n (2.6.11)

The inclusion-exclusion principle and the scissor relations now yield[
∪

n∈{0,1}I
X,min

AI
n

]
=

∑
∅ 6=A⊂{0,1}I

X,min

(−1)1+#A
[
∩

n∈A
AI

n

]
(2.6.12)

=
∑

∅ 6=A⊂{0,1}I
X,min

(−1)1+#A
[
AI

Max
n∈A

(n)

]
. (2.6.13)

Note that the map which associates to a non empty subset A of {0, 1}IX,min the
element Max

n∈A
(n) is a bĳection from P({0, 1}IX,min) \∅ onto {0, 1}IX , whose inverse

is the map associating to n ∈ {0, 1}IX the subset {n′ ∈ {0, 1}IX,min, n
′ 6 n}. Hence

the above equality may be rewritten as[
∪

n∈{0,1}I
X,min

AI
n

]
=

∑
n{0,1}I

X

(−1)1+#{n′∈{0,1}IX,min,n
′6n} L#I−|n| (2.6.14)

Thus we have by proposition 2.10[
∪

n∈{0,1}I
X,min

AI
n

]
= L#I −

∑
n{0,1}I

µ0
X(n) L#I−|n| (2.6.15)

From this and (2.6.11), the desired relation follows immediatly. �

Still assuming for the moment that (2.6.1) is indeed the leading term of the
degree zeta function, this shows that the constant c appearing in question 1.5 may
be written as

qdim(X)

(1− q−1)rk Pic(X)

∏
P∈(P1

k
)(0)

(1− q− deg(P))rk(Pic(X)) #X(κP)
q deg(P) dim(X) (2.6.16)

where κP is the residue field of the closed point P.
Now remark that, disregarding convergence issues, the expression (2.6.16) makes

sense for any variety X satisfying hypotheses 1.1, not only the toric ones. Under
suitable extra hypotheses on X, Peyre showed that the Euler product in (2.6.16) is
indeed convergent and predicted that (2.6.16) should coincide with the constant c
appearing in question 1.5 (in fact Peyre’s construction applies to a far more general
context, including the case of nonconstant families; (2.6.16) is interpreted as the
volume of an adelic space associated to X, with respect to a certain Tamagawa
measure; see [Pey03] for more details). Thus we have checked that it was indeed
the case when X is toric. And, still in the toric case, we are going to show that
the constant c appearing in question 1.7 (which is an element of the completed
Grothendieck ring) has an analogous interpretation.
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2.7. The leading term of the motivic degree zeta function. Now we come
to the study of the leading term of the motivic degree zeta function of a smooth
projective toric variety, whose expression is given by

L#I

(L− 1)rk Pic(X)

( ∑
d∈NI

µmot
X (d) L−

∑
i
di

)
Z(Pic(X)∨, Ceff(X)∨,

[
ω−1
X

]
,L t)

(2.7.1)
Recall that the proof of the fact that the ruled out terms are indeed error terms, in
other words that Z(X,U, t)−(2.7.1) is (L−1, rk(Pic(X))−1)-controlled, is postponed
to section 2.9. Recall also that a priori we do not even know that (2.7.1) is well
defined. Our main task will be in fact to settle the convergence of the series∑

d∈NI

µmot
X (d) L−

∑
i
di (2.7.2)

in the completed Grothendieck ring. When k is finite, the analogous problem for
the classical degree zeta function was easy to handle owing to the decomposition
into Euler product. When working over the Grothendieck ring of varieties or its
completion, there is a priori no immediate analog of the notion of Euler product.
Let us now explain how to define such a notion. Let X be a quasi-projective variety
defined over k. Consider the motivic Hasse–Weil zeta function

ZHW,mot(X, t) =
∑
n>0

[Symn (X)] tn (2.7.3)

where Symn (X) def= Xn/Sn. When k is finite, #kZHW,mot(X, t) = ZHW(X, t) is the
classical Hasse–Weil zeta function attached to X and we have the decomposition
into Euler product

#kZHW,mot(X, t) =
∏
P∈X(0)

(1− tdeg(P))−1 (2.7.4)

where X(0) denotes the set of closed points of X. Now, for n ∈ N, let X(0)
n denote

the set of closed points of X of degree n. Then (2.7.4) may be rewritten as

ZHW(X, t) =
∏
n>1

(1− tn)−#X(0)
n . (2.7.5)

Note that the latter equality may be seen as an immediate formal consequence of
the relations ∑

#X(kn) tn = t
d log
dt

ZHW(X, t) (2.7.6)

and
∀n > 1, #X(kn) =

∑
d|n

d#X(0)
d (2.7.7)

(here kn is an extension of k of degree n).
Now we may wonder whether there is a natural “motivic incarnation” of the

family (#X(0)
n )n>1, that is, a naturally defined family (YX,n) of elements in the

Grothendieck ring of varieties such that when k is finite the following relation
holds:

∀n > 1, #kYX,n = #X(0)
n . (2.7.8)

If we accept to work in the Grothendieck ring of varieties with denominators (that is,
tensorized with Q), there is certainly a cheap and straightforward way of doing this.
For every quasi-projective k-variety X, mimicking the relation (2.7.6) and (2.7.7)
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above, define families (Ψn(X))n>1 and (Φn(X))n>1 of elements of K0(Vark) and
K0(Vark)⊗Q respectively5 by the relations∑

n>1
Ψn(X) tn = t

d log
dt

ZHW,mot(X, t) (2.7.9)

and
∀n > 1, Ψn(X) =

∑
d|n

dΦd(X). (2.7.10)

For example, Ψ1(X) = Φ1(X) = [X], Ψ2(X) = 2
[
Sym2 (X)

]
−
[
X2], and Φ2(X) =[

Sym2 (X)
]
− 1

2 (
[
X2]− [X]).

Lemma 2.12. (1) There are unique group morphisms Ψn : K0(Vark)→ K0(Vark)
and Φn : K0(Vark) → K0(Vark) ⊗Q such that for every quasi-projective
variety X we have Ψn([X]) = Ψn(X) and Φn([X]) = Φn(X).

(2) Assume that k is finite. For every quasiprojective k-variety X, every n > 1,
and every finite extension L of k we have

#LΨn(X) = X(Ln) and #LΦn(X) = #X(0)
L,n. (2.7.11)

(3) For every n > 1 and k > 0, we have Ψn(Lk) = Lk n.
(4) For every n > 1, we have

Ψn(X) =
n∑
k=1

(−1)k+1 n

k

∑
(m1,...,mk)∈(N>0)k

m1+···+mk=n

k∏
i=1

[Symmi (X)] . (2.7.12)

(5) For every n > 1, Ψn(X) and Φn(X) are in F−n dim(X)Mk ⊗Q.

Remark 2.13. We do not claim that Ψn and Φn are ring morphisms. In fact,
by considering for example the image of L, it is straightforward to check that
for n > 2, Φn is not a ring morphism. And anyway, over a finite field, it is
clear that the composition of Φn with #k is not a ring morphism. On the other
hand, the composition of Ψn with #k is a ring morphism (this amounts to the
relation #(X × Y )(kn) = #X(kn)#Y (kn)), as well as its restriction to Z[L] when
k is arbitrary. Nevertheless, it is not true that Ψn is a ring morphism, but the
demonstration relies on a rather subtle construction of Larsen and Lunts, who
proves in fact that the motivic Hasse–Weil zeta function of X is not rational in
general for dim(X) > 2, contrarily to the intuition that the specialization over a
finite field might support (see [LL03, LL04] and [Bou10a, Remarque 2.7]). This
phenomenon may be seen as an incarnation of the fact that the Grothendieck ring
of varieties is definitively too big. By contrast, the specializations of {Ψn} to the
Grothendieck ring of motives are ring morphisms, as we will see below (and the
specialization of the motivic Hasse–Weil zeta function to the Grothendieck ring of
motives is conjectured to always be rational).

Now it is easy to give a motivic counterpart of (2.7.5), since by the very definition
of Φn, we have for every quasiprojective variety X

ZHW,mot(X, t) =
∏
n>1

(1− tn)−Φn(X) (2.7.13)

where for every element x of K0(Vark)⊗Q, (1− t)x denotes the series
exp(x log(1− t)). (2.7.14)

5In [Bou09b], these two families were denoted the opposite way; it was a bit unfortunate choice
since, as pointed out to me by E. Gorsky, what we denote by (Ψn(X)) in this text is a formal
analog of the so-called Adams operations, and the letter Ψ is commonly used to denote the latter.



ASYMPTOTIC BEHAVIOUR OF RATIONAL CURVES 19

Note that (2.7.13) holds in 1 + (K0(Vark) ⊗ Q)[[t]]+ (for any commutative ring
1 +A[[t]]+ denotes the set of formal series with coefficients in A and constant term
1) and that more genrally for any element P (t) ∈ 1+(K0(Vark)⊗Q)[[t]]+, P (t)x =
exp(x log(1− P (t))) makes sense, as makes sense the “motivic Euler product”∏

n>1
P (tn)−Φn(X). (2.7.15)

Now we see that an hypothetic motivic couterpart of the formula∑
d∈NI

#kµ
mot
X (d) t|d| =

∏
P∈(P1

k
)(0)

∑
n∈NI

µ0
X(ni P) t− deg(P)(

∑
i
ni)

=
∏
n>1

(
∑

n∈NI

µ0
X(ni) t−n(

∑
i
ni))#X

(0)
n (2.7.16)

could be the (yet to be proved !) relation

∑
d∈NI

µmot
X (d) t|d| =

∏
n>1

( ∑
n∈NI

µ0
X(ni) t−n(

∑
i
ni)

)Φn(P1)

. (2.7.17)

Remark 2.14. If the latter relation holds, it follows easily that the LHS of (2.7.17)
converges in the completed Grothendieck ring at t = L−1: indeed we have Φn(P1) ∈
F−nMk, hence thanks to point 4 of proposition 2.10 the series( ∑

n∈NI

µ0
X(n) t−n(

∑
i
ni)

)Φn(P1)

(2.7.18)

converges in t = L−1 and its limit lies in 1 + F2n−nM̂k = 1 + FnM̂k.

Notations 2.15. Let r > 1 and f = (f1, . . . , fr) ∈ (N>0)r such that

f1 = f2 = · · · = fi1 < fi1+1 = fi1+2 = · · · = fi2 < fi2+1 = · · · < fik−1+1 = · · · = fr
(2.7.19)

Then for any sequence (xn) with values in a Q-algebra A we set

(xf ) def=
∏

16`6k

xfi` (xfi` − 1) . . . (xfi` − i` + i`−1)
(i` − i`−1)!

(2.7.20)

(where i0 = 0 and ik = r).

We have the following elementary combinatorial lemma.

Lemma 2.16. Let A be a Q-algebra, E a non empty finite set and P = 1 +∑
n∈NE\{0} an t

n an element of A[[(te)e∈E ]]. Then for every sequence (xn) ∈ AN

the following relation holds

exp

∑
n>1

an log(P (tn)e∈E)



= 1 +
∑

m∈NE\{0}


∑
r>1

∑
f∈(N>0)r

f16···6fr

(xf )
∑

(n1,...,nr)∈(NE\{0})r∑
ni fi=m

r∏
i=1

ani

 tm.

(2.7.21)
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For every d ∈ NI , denote by µ̃mot
X (d) the element∑

r>1

∑
f∈Nr

>0

f16···6fr

(Φf (P1))
∑

(n1,...,nr)∈({0,1}I\{0})r∑
n` f`=d

r∏
`=1

µ0
X(n`). (2.7.22)

Thus, by the above lemma, establishing (2.7.17) amounts to proving the following
identities in K0(Vark)⊗Q:

∀d ∈ NI ,
[
Pd
X

]
=

∑
06d′6d

µ̃mot
X (d′)

[
Pd−d′

]
. (2.7.23)

Except in some particular simple situations, including the case where X is a pro-
jective space, we do not know how to prove these relations in K0(Vark) ⊗Q, and
we are not even sure that they indeed hold. Nevertheless, under the additional
hypothesis that the characteristic of the base field is zero, we are going to explain
how to prove a similar relation in the Grothendieck ring of Chow motives, using
a device forged by Denef and Loeser in the context of their theory of arithmetic
motivic integration.

The idea goes basically as follows: when k is finite the relation (2.7.17) certainly
holds after specialization by #k (this is because (2.7.16) is true !). We show that the
involved equalities may be derived from “algebraic d-cover of formulas”, which in
turns allows, thanks to Denef and Loeser’s construction, to do “motivic counting”
instead of “classical counting”. This motivic couting leads to a proof of (2.7.17) (in
the Grothendieck ring of motive) along exactly the same way that classical counting
allows to proof (2.7.17) after specialization by #k.

To illustrate the notions of d-cover and motivic couting, we begin by a very basic
example, postponing the precise definitions to a little later. We refer to [Hal05] for
a very nice introduction to these concepts.

Let k be a finite field of cardinality q, with q odd. The elementary fact that there
are exactly q

2 nonzero squares in k may be seen as follows: let f : Gm → Gm the
morphism x 7→ x2; then for every finite extension L of k, the morphism f induces
a 2-to-1 map from Gm(L) onto the set of squares in Gm(L), which in turn may be
seen as the set of elements x in A1(L) satisfying the intepretation of the first order
logic formula

F : ′(∃y, x = y2) ∧ (x 6= 0)′. (2.7.24)
We say that f induces an algebraic 2-cover of the formula F by Gm. From this
derives the counting formula

#F (L) = 1
2
#Gm(L) (2.7.25)

where F (L) = {x ∈ L, (∃y ∈ L, x = y2) ∧ x 6= 0}.
Now Denef and Loeser’s construction allows to deduce from the fact that Gm is

a 2-cover of F not only the “classical counting” result above but far more generally
a “motivic counting” result, that is,

[F ] = 1
2

[Gm] (2.7.26)

where [.] denotes the class in the Grothendieck ring of motives (here the class of our
formula F may in fact be defined by relation (2.7.26); in general, one has of course
to define the class of an arbitrary formula in the Grothendieck ring of motives, which
is far from trivial). In fact the more precise hypothesis under which one is able to
deduce (2.7.26) is that the property that f induces a 2-to-1 map from Gm(L) onto
F (L) does not hold only when L is finite but also when L is pseudo-finite. In one
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word, pseudo-finite fields are infinite fields satisfying any model theoretic property
which holds for the finite fields.

In the next section we review briefly first order logic formula, pseudo-finite fields
and the construction of Denef and Loeser.

2.8. Pseudo-finite fields and the virtual motive of a formula. A pseudo-
finite field is a perfect infinite pseudo algebraically closed field (i.e. every geomet-
rically irreducible k-variety has a k-point) which has the following property: once
an algebraic closure k of k is fixed, for every n > 1 there is exactly one k-extension
of degree n in k.

One can show that every field k admits a pseudo-finite extension. Pseudo-finite
fields share many properties with finite fields. For example, let k be a pseudo-finite
field, k an a algebraic closure and kn the unique extension of k of degree n in k.
One can show that kn/k is cyclic and that kn ⊂ km if and only if n divides m.

A first order ring formula with coefficients in k (which from now will simply be
called a k-formula) is a logical formula built from boolean combinations of polyno-
mial equalities over k and quantifiers; for example
′∃y,∀x, x2 + y2 = z2 ′, ′x2 + 1 = 0′, ′∀z, x = y′, ′x2 = x3 + x+ 1 ∧ x 6= 0′ . . .

(2.8.1)
Let ϕ be a k-formula with n free variables. For every k-extension L, we can

define a subset ϕ(L) ⊂ Ln (the set of “L-points of ϕ”) consisting of all the elements
in Ln satisfying the interpretation of the formula ϕ in Ln. Note that this defines in
fact a functor (k−extension)→ (Sets). For example if ϕ = ”(∃y, x = y2)∧(x 6= 0)”
then ϕ(L) will be the set of nonzero squares in L. Note also that if ϕ is quantifier
free, there exists a constructible subset F of An such that for every k-extension L
we have ϕ(L) = F (L).

Let ϕ and ψ two k-formulas with free variables x1, . . . , xn and y1, . . . , ym re-
spectively. We say that ϕ and ψ are equivalent if there exists a formula θ with
free variables x1, . . . , xn, y1, . . . , ym such that for every pseudo-finite k-extension
K, θ(K) is the graph of a bĳection between ϕ(K) and ψ(K). Substituting in the
previous definition “d-to-1 map from ϕ(K) onto ψ(K)” to “bĳection between ϕ(K)
and ψ(K)”, we obtain the definition of “ϕ is a d-cover of ψ”. For example the
formula ”y 6= 0” is a 2-cover of the formula ”∃y, (x = y2∧y 6= 0)”; here the formula
θ is given by ”y = x2”.

A very important class of formulas is given by the so-called Galois formula. Let
X be a normal, affine, irreducible variety defined over k, and π : Y → X be an
unramified Galois cover with group G. Let L be a k-extension and x be an element
of X(L). Recall that the decomposition subgroups of x with respect to π are the
stabilizers of the action of G on the Gal(L/L)-orbits of the geometric fiber over
x. You may then check that being given a subgroup D of G, x admits D as a
decomposition subgroup if and only if x lifts to an L-point of Y/D but does not
lift to an L-point of D′ for every strict subgroup D′ of D. Hence we see that
there exists a k-formula ϕY,X,D whose L-points, for every k-extension L, are the
L-points of X admitting D as a decomposition subgroup. You may check that the
morphism Y/D → X makes the formula ϕY,Y/D,D a #NG(D)

#D -cover of the formula
ϕX,Y,D. Galois formulas are the key tool for eliminating quantifiers in the theory
of pseudo-finite fields, see [FJ08] and [Nic07].

Let K0(PFFk) denote the Grothendieck ring of the theory of pseudo-finite fields
over k: as a group, it is generated by the symbols [ϕ], where ϕ is a k-formula,
modulo the relations [ϕ] = [ψ] whenever ϕ and ψ are equivalents and the “scissor
relations” [ϕ ∨ ψ] + [ϕ ∧ ψ] = [ϕ] + [ψ] whenever ϕ and ψ have the same set of
free variables. We endow it with a ring structure by defining the product of [ϕ]
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by [ψ] to be [ϕ ∨ ψ] if ϕ and ψ have disjoint sets of free variables (which of course
we may always assume, by considering equivalent formulas). Now we are ready to
state the result of Denef and Loeser. Their motivation for it was the construction
a motivic incarnation of their theory of arithmetic motivic integration (see [DL01]
and [DL02]).

Recall that when the field k has characteristic zero, there exists a unique mor-
phism χmot : K0(Vark)→ K0 (Motk) which maps the class of a smooth projective
variety to the class of its Chow motive.

Theorem 2.17. Let k be a characteristic zero field. There is a unique ring mor-
phism

χform : K0(PFFk) −→ K0 (Motk)⊗Q (2.8.2)
wich maps the class of a quantifier free formula to the image by χmot of the class
of the associated constructible subset and which satisifies for every formulas ϕ,ψ
such that ϕ is a d-cover of ψ the relation6

χform(ϕ) = dχform(ψ). (2.8.3)

Recall that the reader who may not feel comfortable with motives may as well
consider that the Grothendieck ring of motives is nothing else that the Grothendieck
of varieties localized at the class of the affine line.

We would like to use Denef-Loeser machinery to give an other characterization
of the image the family {Φn(X)} in K0 (Motk) ⊗ Q by the morphism χmot . By
rather straightforward cut-and-paste arguments, we reduce to the case X affine,
normal and irreducible.

What we have in mind is that Φn(X) should be the class of a formula such that
for every pseudo-finite extension K of k, the K-points of this formula are in natural
1-to-1 correspondence with the closed points of degree n of XK . Now closed points
of degree n are particular instances of effective divisors of degree n, so they form
a subset of the set of K-points of Symn (X) and in fact of (Symn (X))0, where
(Symn (X))0 is the image of the open set (Xn)0 consisting of those n-uples whose
coordinates are pairwise distinct. Now the morphism (Xn)0 → (Symn (X))0 is
plainly an unramified Galois cover with Galois group Sn. And we may describe
the subset of (Symn (X))0 of closed points of degree n exactly as those elements
of (Symn (X))0(k) having a decomposition subgroup cyclic of order n with respect
to the above Galois cover. There is therefore a Galois formula Φ̃n(X) whose K-
points identifies naturally with the set of closed points of degree n of XK for every
pseudo-finite k-extension K. It is easy to see that its equivalence class is uniquely
determined (that is, does not depend on the choice of an affine embedding ofX), and
we define Φn,mot(X) to be the image of the class of this formula by the morphism
χform .

Proposition 2.18. Let X be a quasi-projective variety defined over k For every n,
we have

χmot(Φn(X)) = Φn,mot(X). (2.8.4)
In other words, we have the relation∑

n>1
χmot(Symn (X)) tn =

∏
n>1

(1− tn)−Φn,mot(X) (2.8.5)

6In fact Denef and Loeser proved the existence and unicity of the morphism (2.8.2) under the
hypothesis that it satisfies the relation (2.8.3) only for a particular type of d-covers, those induced
by Galois formulas. The fact that such a morphism satisfies (2.8.3) for every d-cover is stated
without proof by Hales in [Hal05], and proved by Nicaise in [Nic07].
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Proof. As before, we easily reduce to the case X affine, normal, irreducible. For
every positive integer r, m and every f ∈ Nr

>0, denote by Ar,f ,m the set{
(n1, . . . , nr) ∈ (N>0)r,

r∑
`=1

n` f` = m

}
. (2.8.6)

By lemma 2.16, we have to show for every positive integer m the relation

χmot ([Symm (X)]) =
∑
r>1

∑
f=(f1,...,fr)∈Nr

>0

f16···6fr

(Φf ,mot(X)) #Ar,f ,m. (2.8.7)

The latter formula may be seen as the motivic counterpart of the following relation,
valid over a finite field k

# Symm (X) (k) =
∑
r>1

∑
f=(f1,...,fr)∈Nr

>0

f16···6fr

(
#X(0)

f

)
#Ar,f ,m. (2.8.8)

Of course the latter relation follows immediatly from the decomposition of the
Hasse–Weil zeta function into Euler product, but the reader may check that it can
also be recovered by a direct counting argument.

Now we can apply the strategy described above: we show that this counting
argument can be derived from d-covers of formulas, and apply the result of Denef
and Loeser to transform the “classical counting” argument into a “motivic counting”
argument.

Letm > 1, r > 1 and f ∈ (N>0)r such that f1 6 · · · 6 fr. We use notations 2.15.
There is a natural action of S

def=
∏
`=1

k
Si`−i`−1 on Ar,f ,m and on

r∏
i=1

(
Symfi (X)

)
0
.

Let Zf denote the Sf -invariant open set of
r∏
i=1

Symfi (X)0 defined by

Zf
def=

∏
16`6k

(Symfi (X)0)
i`−i`−1
0

(recall that Y n0 denotes the open set of Y consisting of n-uples whose coordinates
are pairwise distincts, and Symn (Y )0 the image of Y n0 by Y n → Symn (Y )).

Let ϕf be a formula whose set ofK-points, for every pseudo-finite k-extensionK,
is Zf (K)∩

∏
16i6r

Φ̃fi(X)(K). One easily check the following relation in K0(PFFk):

[ϕf ] =
∏

16`6k

i`−i`−1−1∏
j=0

([
Φ̃fi` (X)

]
− j
)

=
[
Φ̃f (X)

]
. (2.8.9)

Let n ∈ Ar,f ,m. Denote by Sn the stabilizator of n under the action of Sf ,
and by πf ,n the k-morphism Zf −→ Symm (X) wich maps the r-uple of zero-
cycles (C1, . . . , Cr) to

∑
` n` C`. It factors through Zf/Sn. Let ψf ,n be a for-

mula on Symm (X) whose set of K-points, for every pseudo-finite k-extension K,
is πf ,n(ϕf (K)). Thus ψf ,n(K) is the set of K-rationals zero-cycles which can be
written C =

∑r
i=1 ni Pi where Pi is a closed point of degree fi on XK and Pi 6= Pj

whenever fi = fj . Note that π−1
f ,n(C) is then a Sn-orbit. Therefore ϕf is a #Sn-

covering of ψ(f ,n) and the motivic counting formula (2.8.3) yields

χform ([ψf ,n]) = 1
#Sn

χform ([ϕf ]) .
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Let A0
r,f ,m ⊂ Ar,f ,m denote a system of representatives of Ar,f ,m/SΓf . We have∑

n∈A0
r,f,m

χform ([ψf ,n]) =
( ∑

n∈A0
r,f,m

1
#Sn

)
χform ([ϕf ]) = #Ar,f ,m

#Sf
χform ([ϕf ]) .

(2.8.10)
Thus from (2.8.9) we deduce the relation∑

n∈A0
r,f,m

χform ([ψf ,n]) = (Φf ,mot(X)) #Af ,m. (2.8.11)

Moreover the above description of ψf ,n(K) shows immediatly that every element
of Symm (X) (K) is in ψf ,n(K) for a unique f and a n ∈ Ar,f ,m unique modulo
the action of Sf . Thus the formulas

(ψr,f ,n) r>1,

f∈Nr
>0,

f16···6fr,

n∈A0
r,f,m.

(2.8.12)

form a partition of Symm (X). This concludes the proof of the relation (2.8.7).
�

Now we return to the case of our inital smooth projective toric variety X. In
order to show the validity of the relation∑

d∈NI

µmot
X (d) t|d| =

∏
n>1

(
∑

n∈NI

µ0
X(ni) t−n(

∑
i
ni))Φn,mot(P1) (2.8.13)

in the Grothendieck ring of motives (tensorized with Q), we apply exactly the same
strategy that in the proof of the preceding proposition. Since the proof is very
similar and the only real novelty consists in dealing with more intricate notations,
it will not be given in these notes and we refer to [Bou09b] for more details.

This shows that (2.7.1) makes sense in the completed Grothendieck ring of mo-
tives and (still assuming for the moment that (2.7.1) is the leading term of the
degree zeta function, which will be shown below) that the constant c in (1.7) may
be expressed as

Ldim(X)

(1− L−1)rk Pic(X)

∏
n>1

( ∑
n∈NI

µ0
X(ni) L−n(

∑
i
ni)

)Φn,mot(P1)

(2.8.14)

But a reasoning analogous to the one used to establish (2.6.9) shows that for every
n > 1 we have∑

n∈{0,1}I
µ0
X(n) Ln(#I−

∑
i
ni) = (L− 1)rk(Pic(X)) Ψn,mot(()X) (2.8.15)

where Ψn,mot(X) denote the image of Ψn(X) by χmot . We use the fact that,
contrarily to Ψn(.), Ψn,mot(.) is multiplicative, i.e. satisfies Ψn,mot(Y × Z) =
Ψn,mot(Y )Ψn,mot(Z). One can prove this by motiving counting, see [Bou09b]. It is
also an immediate consequence of the fact, proved by F.Bittner in [Hei07], that the
λ-structure on K0 (Motk) defined by the Hasse–Weil zeta function is special (see
[Gor09]).

Thus the constant c may be rewritten as

Ldim(X)

(1− L−1)rk Pic(X)

∏
n>1

(
(1− L−1)rk(Pic(X)) Ψn,mot(X)

Ln dim(X)

)Φn,mot(P1)
(2.8.16)
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and the latter may be seen as a motivic analog of (2.6.16) in the case of a toric
variety X.

2.9. The error terms. Recall from the beginning of section 2.5 that we had writ-
ten

Z(X,U, t) = Z(X,U, t)lead + Z(X,U, t)error (2.9.1)
where

Z(X,U, t) =
∑

d′∈NI

µmot
X (d′)

∑
d Pic(X)∨∩Ceff(X)∨

d>d′

∏
i∈I

Ldi−d′i+1 − 1
L− 1

t〈d , ω
−1
X 〉 (2.9.2)

and

Z(X,U, t)lead = L#I

(L− 1)rk Pic(X)

( ∑
d∈NI

µmot
X (d) L−|d|

) ∑
d∈Pic(X)∨∩Ceff(X)∨

(L t)〈d , ω
−1
X 〉


(2.9.3)
Recall that {Di}i∈I denote the finite set of the boundary divisors of the toric variety
X, and that for every element d ∈ Pic(X)∨ ⊂ ZI and d′ ∈ ZI the condition d > d′
may be rewritten as 〈d , Di〉 > d′i for all i.

From the above expressions and the inclusion-exclusion principle we see that
Z(t)error may be written as a finite sum and differences of the series

ZJ1,J2(t) = L#I−#J2

(L− 1)rk Pic(X)

∑
d∈NI

µmot
X (d′)L

−
∑
i/∈J2

d′i ∑
d∈Pic(X)∨∩Ceff(X)∨
∀i∈J1, 〈d , Di〉<d′i
∀i∈J2, 〈d , Di〉>d′i

L

〈
d ,
∑

i/∈J2
Di

〉
t〈d , ω

−1
X 〉

(2.9.4)
where (J1, J2) runs over all the couples of subsets of I such that J1 ∩ J2 = ∅ and
(J1, J2) 6= (∅,∅).

Now we can conclude thanks to the following elementary lemma. The key fact
(already used in these notes in section 1.6) is that every polyedral rational cone
may be written as the support of a regular fan (the support of a fan is the union
of its cones), see [Bry80, Théorème 11]; the geometric significance of this result is
the existence of equivariant resolution of singularities for toric varieties.

Note that this is not a priori clear that the above series are well defined, since
their coefficients are given by infinite summations over terms of Z[L,L−1]. The
lemma will show in particular that these series are indeed convergent in the com-
pleted Grothendieck ring (of motives), thus establishing the validity of the decom-
position.

Lemma 2.19. Let N be a free Z-module of finite rank and C be a polyedral rational
cone in N⊗R of maximal dimension. Let x ∈ N be an element lying in the interior
of C . Let S, U be disjoiny finite sets, x ∈ (C \{0})S∪U be a finite family of nonzero
elements in C and d ∈ NS∪U be a finite family of nonnegative integers.

Let ∆ be a regular fan of N whose support is C ∨. If δ is a cone of ∆, let δ(1)
denote the set of its rays, and let δ(1)x denote the subset of δ(1) consisting of those
elements ρ satisfying

∀s ∈ S, 〈yρ , xs〉 = 0, and ∀u ∈ U , 〈yρ , xu〉 = 0 (2.9.5)

(where yρ denotes the generator of N ∩ ρ). For (eu) ∈ NU , let δ(x,d, e) denote the
set of elements y ∈

∑
ρ∈δ(1)\δ(1)x

N>0 yρ satisfying

∀s ∈ S, 〈y , xs〉 6 ds and ∀u ∈ U , 〈y , xu〉 = du + eu. (2.9.6)
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Let δ(x,d) denote the set of elements y ∈
∑

ρ∈δ(1)\δ(1)x

N>0 yρ satisfying

∀s ∈ S, 〈y , xs〉 6 ds. (2.9.7)

We set

Rδ,x,d(θ, t) def=
∑

e∈NU
θ
−
∑

u∈U
eu

∑
y∈δ(x,d,e)

(θ t)〈y , x〉 ∈ Z[θ, θ−1][[t]] (2.9.8)

if U is non empty and

Rδ,x,d(θ, t) =
∑

y∈δ(x,d)

(θ t)〈y , x〉 ∈ Z[θ, θ−1][[t]] (2.9.9)

otherwise (here θ is a variable).
We set also M(x,∆) def= Max

δ∈∆,ρ∈δ(1)
〈x , yρ〉.

Then the following holds:
(1) For every δ ∈ ∆, d ∈ NS∪U and e ∈ NU , the cardinality of δ(x,d, e) is

bounded by
∑
s∈S ds+

∑
u∈U du+

∑
u∈U eu, and for every y ∈ δ(x,d, e) we

have the inequality

〈y , x〉 6M(x,∆)

(∑
s∈S

ds +
∑
u∈U

du +
∑
u∈U

eu

)
(2.9.10)

(2) Same assertion for δ(x,d) after dropping the
∑
u∈U

(3) We have the decomposition∑
y∈C∨∩N∨

∀s∈S, 〈y , xs〉6ds
∀u∈U, 〈y , xu〉>du

θ

〈
y ,−

∑
u∈U

xu
〉

(θ t)〈y , x〉

= θ
−
∑

u∈U
du
∑
δ∈∆

Rδ,x,d(θ, t)
∏

ρ∈δ(1)x

θ

〈
yρ ,−

∑
u∈U

xu
〉

(θ t)〈yρ , x〉

1− θ
〈
yρ ,−

∑
u∈U

xu
〉

(θ t)〈yρ , x〉
. (2.9.11)

(4) If δ is of maximal dimension and S ∪ U is non empty, the cardinality of
δ(1)x is less than dim(C).

Proof. We decompose ∑
y∈C∨∩N∨

∀s∈S, 〈y , xs〉6ds
∀u∈U, 〈y , xu〉>du

· · · =
∑
δ∈∆

∑
y∈Relint(δ)∩N∨
∀s∈S, 〈y , xs〉6ds
∀u∈U, 〈y , xu〉>du

. . . (2.9.12)

For δ ∈ ∆, one easily checks that every element y ∈ Relint(δ) ∩N∨ satisfying

∀s ∈ S, 〈y , xs〉 6 du and ∀s ∈ U , 〈y , xu〉 = du + eu (2.9.13)

may be written uniquely as y1 + y2 where y1 is an element of
∑

ρ∈δ(1)\δ(1)x

N>0 yρ

satisfying (2.9.13) (that is, y1 is an element of δ(x,d, e)) and y2 is an element of∑
ρ∈δ(1)x

N>0 yρ. The decomposition (2.9.11) follows immediatly.

Let y ∈
∑

ρ∈δ(1)\δ(1)x

N>0 yρ Thus there is a unique element n ∈ Nδ(1)\δ(1)x

>0 such

that y =
∑

ρ∈δ(1)\δ(1)x

nρ yρ Assume moreover that y satisfies (2.9.13). By the defini-

tion of δ(1)x there is an s ∈ S such that 〈yρ , xs〉 6= 0 (hence is a positive integer) or
a u ∈ U such that 〈yρ , xu〉 6= 0 (same remark). In the former case, the inequality
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〈y , xs〉 6 ds yields the inequality nρ 6 ds and similarily in the latter case we obtain
nρ 6 du + eu. Thus the first point of the proposition holds.

If δ is of maximal dimension (hence of dimension rk(N)), {yρ}ρ∈δ(1) is a Z-basis
of N∨, hence if x is a nonzero element of N we cannot have 〈yρ , x〉 = 0 for every
ρ ∈ δ(1). This shows the third assertion. �

Applying the lemma with N = Pic(X), C = Ceff(X), S = J1 and U = J2 we
obtain that ZJ1,J2(t) may be written as a finite sum of terms of the shape( ∑

d∈NI

µmot
X (d)L−

∑
i
diRδ,x,d(L, t)

) ∏
ρ∈δ(1)x

L

〈
yρ ,
∑

i∈J2
Di

〉
(L t)〈yρ , ω

−1
X 〉

1− L

〈
yρ ,
∑

i∈J2
Di

〉
(L t)〈yρ , ω

−1
X 〉

(2.9.14)
You may check that ∑

d∈NI

µmot
X (d)L−

∑
i
diRδ,x,d(L, t) (2.9.15)

is indeed a well defined element of M̂k[[t]], and that Rδ,x,d(L,L−1) converges to
an element of F0M̂k. Assuming that the characteristic of k is zero, we obtain that∑

d∈NI µmot
X (d)L−

∑
i
diRδ,x,d(L,L−1) converges in the completed Grothendieck

ring of motive. Thanks to (2.9.14) and the third point of the lemma, this shows
that ZJ1,J2 is (L−1, rk(Pic(X))− 1)-controlled. Thus the answer to question 1.7 is
positive for a smooth toric variety (after specializing to the Grothendieck ring of
motives).

Now we turn to the classical case, showing that the answer to question 1.5 is
positive for a toric variety X, when U is the open orbit. We use a decomposition
of the error term formally analogous to the one used for the motivic term. Note
that the latter was a decomposition into a finite sum of series with coefficients in
the completed Grothendieck ring of variety, and thus, strictly speaking, we can not
apply the morphism #k to it in order to obtain a decomposition of the classical
degree zeta function. Nevertheless, it happens that doing so formally give the
right answer, that is, the error term of the classical degree zeta function may be
decomposed as a finite sum of terms of the shape( ∑

d∈NI

µmot
X (d)L−

∑
i
diRδ,x,d(q, t)

) ∏
ρ∈δ(1)x

q

〈
yρ ,
∑

i∈J2
Di

〉
(L t)〈yρ , ω

−1
X 〉

1− q

〈
yρ ,
∑

i∈J2
Di

〉
(L t)〈yρ , ω

−1
X 〉

(2.9.16)
Here we have to show that∑

d∈NI

µmot
X (d)q−

∑
i
diRδ,x,d(q, t) (2.9.17)

is indeed a well defined element of R[[t]] (this is a bit subtler than in the motivic
case, since in the latter we had dealt with a non-archimedean norm). Moreover,
still using the above lemma, we see easily that there exists an ε > 0 such that for
every η 6 ε Rδ,x,d(q, q−1+η) is absolutely convergent and its sum is bounded by∑

(ei)∈NJ2

( ∑
i∈J1∪J2

di +
∑
i∈J2

ei

)
q
−
∑

i∈J2
ei−εM(−KX ,∆) (

∑
i∈J1∪J2

di+
∑

i∈J2
ei)

(2.9.18)

6 (1 +
∑
i∈I

di)q
εM(ω−1

X
,∆)
∑

i∈I
di(

∑
e∈NJ2

(1 +
∑

ei)q−(1−εM(ω−1
X
,∆))

∑
ei) (2.9.19)
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By the properties of µmot
X (proposition 2.10), the series∑

d∈NI

#kµ
mot
X (d)(1 +

∑
di)qεM(ω−1

X
,∆)
∑

diq−
∑

i
di (2.9.20)

converges for every sufficiently small ε > 0. Hence we obtain that the error term of
the classical degree zeta function is strongly (q−1, rk(Pic(X))− 1)-controlled.

3. The general case

In this section, we want to explain how the use of homogeneous coordinates for
the study of the degree zeta function of a smooth projective toric varieties might be
generalized to other varieties. The first natural question is of course: how does the
notion of homogeneous coordinates generalize? The general notion of homogeneous
coordinate rings emerged from the work of Cox in the toric case, and began to be
intensively studied in the last ten years. The terms Cox rings or total coordinate
rings are often found in the literature to designate homogeneous coordinate rings7.
The notion is tightly connected with that of universal torsor, introduced by Colliot-
Thélène and Sansuc in the 1970’s in order to study weak approximation and Hasse
principle on rational varieties (see e.g. [CTS80, Sko01]). One owes to Salberger
the idea of using universal torsors in the context of Manin’s conjecture on rational
points of bounded height. He showed in [Sal98] that this approach was indeed
fructuous for toric varieties (defined over Q) and the first non toric example of a
succesful application of the method is due to de la Breteche ([dlB02]). Since then,
the use of universal torsors/homogeneous coordinate rings has allowed to settle the
arithmetic version of Manin’s conjectures for a certain number of non toric varieties
(especially in dimension 2), see e.g. [Bro07].

In the arithmetic setting, the use of homogeneous coordinate rings reduces the
counting of rational points of bounded height to the counting of integral points
of an affine space satisfying certain algebraic relations, coprimality conditions and
norm inequalities. In the geometric setting, we will explain below how it similarily
reduces the counting of morphism C → X of bounded degree to the counting
of global sections of line bundles of C satisfying certain algebraic relations, non
degeneracy conditions, and degree conditions. This will generalize the case of a
toric variety X, for which there are indeed no algebraic relations. For the sake of
simplicity we will limit ourselves to the case C = P1.

For more about homogeneous coordinate rings and examples of computations,
see e.g. [BH03, BH07, Bri07, Has04, HT04].

3.1. A bief survey of the theory homogeneous coordinate rings. Let k be
a perfect field and X be a smooth projective variety. We hereby assume that the
Picard group of X coincides with its geometric Picard group and that it is free of
finite rank (the theory of homogeneous coordinate rings can be developed in a more
general context, see e.g. [EKW04, BH03]).

Very roughly, the idea behind the theory of homogeneous coordinate rings is that
instead of working with a particular choice of coordinates coming from a morphism
from X to a projective space, which in turn corresponds to a subspace of the space
of global sections of a particular invertible sheaf on X, we could as well work
simultaneously with the space of global sections of all the invertible sheaves on X.

7Though “Cox ring” is probably the most commonly used, I will stick to the terminology
“homogeneous coordinate ring” which I find more appealing, even though there might be confusion
with the homogeneous coordinate ring associated to one particular projective embedding. Note
that what is called an homogeneous coordinate ring in [BH03] is in fact the ring we discuss here
plus an extra structure
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Let L1, . . . ,Ln be a basis of Pic(X). We define the homogeneous coordinate ring
of X by

HCR(X) def=
⊕

d∈Zn
H0(X,L⊗d1

1 ⊗ · · · ⊗ L⊗dnn ). (3.1.1)

This is a k-algebra naturally graded by Pic(X): just impose thatH0(X,L⊗d1
1 ⊗· · ·⊗

L⊗dnn ) is homogeneous of degree the class of L⊗d1
1 ⊗ · · · ⊗ L⊗dnn . The degree of the

nonzero graded pieces are precisely the effective classes in Pic(X). The definition
depends of course on a particular choice of a basis of Pic(X). Nevertheless, one
can easily shows that two different choices give rise to isomorphic Pic(X)-graded
k-algebras.

Example 3.1. The first example of homogeneous coordinate ring is due to Cox who
worked oud the toric case in [Cox95b]. Let X be a smooth toric variety and let
{Di}i∈I be the irreducible divisors of the boundary. For i ∈ I let si be the canonical
section of OX(Di). Then the si’s generate HCR(X), and there are no nontrivial
relation between them, thus HCR(X) is a polynomial ring in #I variables in this
case (this is essentially the content of remark 2.7).

Example 3.2. Let X be the projective plane blown up at three collinear points,
D0 be the strict transform of the line L joining the points, D1, D2 and D3 the
exceptional divisors and D4, D5, and D6 the strict transform of the lines joining
a point not lying on L to the blown up points. Let si be the canonical section of
OX(Di). Then one can show that the si generate HCR(X) and that (after a suitable
normalization of the si’s) one has HCR(X) ∼→ k[s0, . . . , s6]/s1 s4+s2 s5+s3 s6. (see
[Has04] and [Der06])

In the previous examples, the homogeneous coordinate ring happens to be finitely
generated. The relevance of the property of finite generatedness of the homogeneous
coordinate ring was stressed by Hu and Keel in the context of Mori theory. In
[HK00], they call varieties with finitely generated homogeneous coordinate rings
Mori dream spaces, showing in particuler that they behave very well with respect
to the minimal model program. The question of deciding whether the homogeneous
coordinate ring of a variety is finitely generated is a difficult one. The finiteness
of the canonical ring, a very deep result proved recently by Birkar, Cascini, Hacon
and McKernan, implies that the homogeneous coordinate ring of a Fano variety is
finitely generated. Another difficult issue is to compute explicitely generators and
relations for the homogeneous coordinate ring.

In the following, we will denote by X a smooth projective variety defined over
a perfect field k such that the Picard group is free of finite rank, coincide with
the geometric Picard group, and such that HCR(X) is finitely generated by sec-
tions invariant under the action of the absolute Galois-group. Hu an Keel showed
the following generalization of the fact that a toric variety may be recovered as a
quotient of an open set of an affine space by the action of a torus. Recall that
TNS(X) = Hom(Pic(X),Gm) ∼→ Grk(Pic(X))

m .

Proposition 3.3. Let D be an ample class in Pic(X). It corresponds to a character
of TNS(X), hence to a TNS(X)-linearization of the trivial bundle on Spec(HCR(X)).
The GIT quotient of the open set Spec(HCR(X))ss of semi-stable points by the
action of TNS(X) is a geometric quotient isomorphic to X and the quotient map is
a TNS(X)-torsor.

We refer to [HK00, Proposition 2.9] for a proof of this proposition. We will not
review here the tools of Geometric Invariant Theory necessary to understand the
statement and its proof (see [MFK94, Dol03]). Let us just explain how the open set
of semi-stable points appearing in the above statement may be explicitely discribed.
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In our situation, the semi-stable points are by definitions those points x admitting
a TNS(X) invariant section s of some power of the D-linearized trivial line bundle
such that s(x) 6= 0. The TNS(X)-invariant sections s ∈ HCR(X) are those sections
s which satisify t.s = t([D]).s: these are exactly the elements of the D-graded part
of HCR(X). Hence the semi-stable points are those points x for which there exists
s ∈ ∪

m>1
HCR(X)mD such that s(x) 6= 0; in other words the open set of semi-stable

points is the complement of the closed subscheme with ideal

ID
def= 〈 ∪

m>1
HCR(X)mD〉. (3.1.2)

Note that one easily checks that the radical
√

ID (and thus the open set of semi-
stable points) does not depend on the choice of the ample class D. We denote by
TX the open set of semi-stable points.

Now we choose a presentation of HCR(X). Let {si}i∈I denote a finite family
of global (non constant) sections generating HCR(X). They induce an isomor-
phism HCR(X) ∼→ k[xi]i∈I/IX , where IX is a Pic(X)-homogeneous ideal, and an
embedding Spec(HCR(X)) ↪→ AI .

For i ∈ I, let Di denote the divisor of si. Let U denote the complement of the
union of the Di. Since the si’s generate HCR(X), the class of the Di’s generate
Pic(X) as a group and Ceff(X) as a cone, and Pic(U) is trivial. It is moreover
known that HCR(X) is an UFD ([EKW04, BH03]), thus we may assume that the
si are irreducible elements of HCR(X), and that no two of them are associate.

Therefore we obtain an exact sequence of free modules of finite rank:

0→ k[U ]×/k× → ⊕
i∈I

ZDi → Pic(X)→ 0 (3.1.3)

which is a generalization of (2.1.2) valid in the toric case.
Now comes an even more explicit description of TX , viewed as a locally closed

subvariety of AI . For an ample class D denote by ID the class of subset J of I
such that there exists λi ∈ NI

>0 and m ∈ N 0 satisfying [
∑
λiDi] = [mD]. Then

the ideals 〈
∏
i∈J si〉J∈ID and ID have the same radical, and therefore TX may be

described as the open subset of the variety Spec(HCR(X)) given by the union over
J ∈ ID of the trace of the open subset

∏
i∈J xi 6= 0. Setting

ĨD = {J ⊂ I, ∀K ∈ ID, J ∩K 6= ∅}, (3.1.4)

we therefore have

TX = Spec(HCR(X)) \ ∪
J∈ĨD

∩
i∈J
{xi = 0}. (3.1.5)

In fact one may check that denoting by π the quotient morphism TX → X the
divisor π∗Di is the trace of the hyperplane {xi = 0} on TX . Hencewe have

TX = Spec(HCR(X)) \ ∪
J⊂I
∩
i∈J

Di=∅

∩
i∈J
{xi = 0}. (3.1.6)

For a toric variety X, we thus recover the previous definition (2.2.1) of TX . For
the plane blown up at three collinear points, we have

TX = Spec(k[x0, . . . , x6]/(x1x4 + x2x5 + x3x6))\
∪

46i 6=j66
{xi = 0}∩{x0 = 0}∪ ∪

16i6=j63
{xi = 0}∩{xj = 0}∪ ∪

16i63,
46j66,
j 6=i+3

{xi = 0}∩{xj = 0}.

(3.1.7)
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3.2. Description of the functor of points of a variety whose homogeneous
coordinate ring is finitely generated. Retain all the notations of the previous
section. We now want to describe the functor of points of X in terms of its homo-
geneous coordinate ring. We follow closely the approach used in the toric case. In
fact, the only novelty is the nontrivial relations satisfied by the generator

Recalling exact sequence (3.1.3), similarily to the toric case, every element m
of k[U ]×/k× determines an isomorphism cm : ⊗

i∈I
OX(Di)⊗vDi (m) ∼→ OX (where

vDi(m) is the order of annulation of the rational function m along Di), and we
have cm ⊗ cm′ = cm+m′ .

Let f : S → X be a morphism from a k-scheme S to X. Let Li
def= f∗OX(Di),

ui
def= f∗si and for m ∈ k[U ]×/k×, dm

def= f∗cm The datum ((Li, ti), (dm)m∈k[U ]×/k×

is then a X-collection on S in the following sense:

Definition 3.4. An X-collection on a k-scheme S is the datum of:
(1) a family ((Li), ui)i∈I where Li is a line bundle on S and ui a global section

of Li
(2) a family of isomorphisms {dm : ⊗L⊗vDi (m)

i
∼→ OS}m∈k[U ]×/k×

satisfying the following conditions:
(1) dm ⊗ dm′ = dm+m′ ;
(2) for every J ⊂ I such that ∩i∈JDi = ∅ the sections {ui}i∈J do not vanish

simultaneously;
(3) For every homogeneous element F of IX , the section F (ui)i∈I is zero.

Note that the datum of the trivializations {dm} allows to give a sense to the latter
condition. We have a canonicalX-collection CX onX given by ((OX(Di), si), {cm})
and similarily to the toric case one shows that the maps

Hom(S,X) −→ CollX,S
f 7−→ f∗CX

(3.2.1)

define an isomorphism between the functor of points of Pn and the functor which
associates to a k-scheme S the set CollX,S of isomorphism classes of X-collections
on S. Moreover (3.2.1) induces a bĳection between the element of Hom(S,X) which
do not factor through the boundary ∪Di and the non-degenerate X-collections on
S (those for which no one of the sections ui is the zero section).

Now we should examine the functor Hom(P1, X), or more precisely the open
subfonctor given by morphisms who do not factor through the boundary. Such
a morphism is entirely determined by an equivalence class of non-degenerate X-
collections on P1. Let d ∈ NI ∩Pic(X)∨ = Pic(X)∨ ∩Ceff(X)∨ (here of course we
view Pic(X)∨ as a subgroup of ZI through the dual of the exact sequence (3.1.3)).
Denote by Z̃ d

X the TNS(X)-invariant closed subscheme of H•d
∼→
∏
i∈I Adi+1 \ {0}

defined by the equations

F (Pi) = 0 (3.2.2)

where F varies along the homogeneous elements of IX . Denote by Z d
X the image

of Z̃ d
X in Pd.

Denote by H•d,X the open subset of H•d consisting of I-uple (Pi) such that for
every J ⊂ I such that ∩i∈IDi = ∅, the {Pi}i∈J are coprime.

Then one can show that the variety H•d,X∩Z̃ d
X/TNS(X) is isomorphic toHomd,U (P1, X).

Hence, if TX denotes the torus Hom(k[U ]×/k×,Gm), Homd,U (P1, X) is a TX -
torsor over Pd

X ∩Z d
X .



32 DAVID BOURQUI

3.3. Application to the degree zeta function. Let us know explain how this
description of Hom(P1, X) gives rise to an expression of the degree zeta function
similar to the one we obtained in the toric case. We will assume that the base field
k is a finite field of cardinality q and restrict ourselves to the case of the classical
degree zeta function. We have

#kZ(X,U, t)
(q − 1)dim(TX) (3.3.1)

=
∑

d∈Ceff(X)∨∩Pic(X)∨
#
(
Pd
X ∩Z d

X(k)
)
t 〈d , ω

−1
X 〉 (3.3.2)

=
∑

d∈Ceff(X)∨∩Pic(X)∨

∑
D∈Pd(k)

1Pd
X

(k)(D)1Z d
X

(k)(D) t〈d , ω
−1
X 〉 (3.3.3)

=
∑

d∈Ceff(X)∨∩Pic(X)∨

∑
D∈Pd(k)

∑
06D′6D

µX(D′)1Z d
X

(k)(D) t〈d , ω
−1
X 〉 (3.3.4)

where µX is the function determined by the relation

∀d ∈ NI , ∀D ∈ Pd(k),
∑

(D′
i
)6(Di)

µX((D′i)) = 1Pd
X

(k)(D), (3.3.5)

for which proposition 2.10 remains valid. After a straightforward change of vari-
ables, the previous expression becomes∑

D∈Diveff(P1)I
µX(D)

∑
d∈Ceff(X)∨∩Pic(X)∨,
∀i∈I, 〈d , Di〉>deg(Di)

∑
D′∈Pd−deg(D)

1Z d
X

(k)(D + D′) t〈d , ω
−1
X 〉.

(3.3.6)
For D ∈ Diveff(P1) and d ∈ Ceff(X)∨ ∩ Pic(X)∨ such that 〈d , Di〉 > deg(Di) let
us denote by NX(D,d) the cardinality of the set

{(Pi) ∈ H•d−deg(D)(k), ∀F ∈ I homog
X , F (Pi.PDi) = 0} (3.3.7)

(where PDi ∈ H•deg(Di)(k) denotes a representative of Di ∈ Pdeg(Di)(k)). Then
#kZ(X,U, t) may be rewritten as

1
(q − 1)rk(Pic(X))

∑
D∈Diveff(P1)I

µX(D)
∑

d∈Ceff(X)∨∩Pic(X)∨,
∀i∈I, 〈d , Di〉>deg(Di)

NX(D,d) t〈d , ω
−1
X 〉.

(3.3.8)
Compare this expression with the one we obtained in the toric case (that is,

(2.5.4) to which we apply the morphism #k), and note that this is indeed a gen-
eralization. In the toric case, the ideal IX is zero and NX(D,d) is nothing else
than the cardinality of H•d−deg(D). Since the behaviour of the Möbius function µX
is easily handled whether the variety X is toric or not, the fundamental difference
between the toric and non toric case in the study of the degree zeta function is
that we have to deal with the non trivial relations satisfied by the generators of the
homogeneous coordinate ring. Thus NX(D,d) is really the hard part to undersand
in the above expression; as far as I know, there is yet no general procedure to handle
these kind of relations; every succesful attempt to settle Manin’s conjecture using
this method is highly dependent on the particular shape of the equations defining
the homogeneous coordinate ring on the involved variety or family of varieties.

Remark 3.5. It is not clear (at least to me) what a sensible analog of expression
(3.3.8) for the geometric degree zeta funtion could be.
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3.4. Application to the projective plane blown up at three collinear points.
I will now describe very sketchly how the expression (3.3.8) leads to the expected es-
timates for the degree zeta function in a very particular case, namely the case of the
projective plane blown up at three collinear points. So let X be the plane blown up
at three collinear points, D0 be the strict transform of the line L joining the points,
D1, D2 and D3 the exceptional divisors and D4, D5, and D6 the strict transform
of the lines joining a point not on L to the blown up points. As already stated,
one may find sections {si}06i67 with divisor Di generating HCR(X) and such that
xi 7→ si induces an isomorphism k[x0, . . . , x6]/x1 x4 + x2 x5 + x3 x6]

∼→ HCR(X).
Note that (D0, D1, D2, D3, D4) is a basis of Pic(X) and that we have the linear
equivalence relations

D4 ∼ D0 +D2 +D3, D5 ∼ D0 +D1 +D3, D6 ∼ D0 +D1 +D2. (3.4.1)

Moreover an anticanonical divisor is easily computed as 3D0 + 2D1 + 2D2 + 2D3.
Note that its class coincide with the class of the sum of the boundary divisors minus
class of the degree of the relation defining HCR(X); this in fact a special case of a
generalized adjunction formula, see [BH07, proposition 8.5].

Now let D ∈ Diveff(P1)7 and let d ∈ Ceff(X)∨ ∩ Pic(X)∨ ⊂ Z7 such that
d > deg(D); note that the condition d ∈ Ceff(X)∨ ∩ Pic(X)∨ means here that d
satisifies di > 0 for 0 6 i 6 7 and

d4 = d0 + d2 + d3, d5 = d0 + d1 + d3, d6 = d0 + d1 + d2. (3.4.2)

Let Qi ∈ H•deg(Di) be a representative of Di. We have to estimate the number of ele-
ments P0, . . . , P7 ∈ H•d−deg(D) satisfying P1 P4Q1Q4+P2 P5Q2Q5+P3 P6Q3Q6 =
0. We make a first “approximation” by allowing P4, P5 and P6 to be zero and use
the following elementary lemma.

Lemma 3.6. Let D be a nonnegative integer, e1, e2 and e3 be nonnegative integers
such that ei 6 D. Moreover we assume that ei + ej 6 D holds whenever i 6= j. Let
(R1, R2, R3) be an element of H•(e1,e2,e3)(k). Then the cardinality of the set

{(R′1, R′2, R′3) ∈ H(D−e1,D−e2,D−e3), R1R
′
1 +R2R

′
2 +R3R

′
3 = 0} (3.4.3)

is
q2+2D−(e1+e2+e3)+deg(gcd(P1,P2,P3)) (3.4.4)

We apply this lemma to the above situation, setting Ri = PiQiQi+3 and R′i =
Pi+3 (hence ei = di + deg(Di+3) and D = di + di+3 = d0 + d1 + d2 + d3), and we
find that under the conditions

deg(Di) + deg(Dj) 6 d0 + dk {i, j, k} = {1, 2, 3} (3.4.5)

we have

NX(d,D) = q2+2 d0+d1+d2+d3−deg(D4)−deg(D5)−deg(D6)

×
∑

E∈P(di−deg(Di))06i63

qdeg(gcd(E1+D1+D4,E2+D2+D5,E3+D3+D6)). (3.4.6)

Our second “approximation” will be to assume that (3.4.6) holds regardless (3.4.5)
are satisfied or not.

Now for d ∈ N4 and D ∈ Diveff(P1)7 we want to estimate the quantity∑
E∈Pd

qdeg(gcd(E1+D1+D4,E2+D2+D5,E3+D3+D6)) (3.4.7)
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We consider the generating series∑
d∈N4

∑
E∈Pd

qdeg(gcd(E1+D1+D4,E2+D2+D5,E3+D3+D6))
∏

06i63
tdii

=
∑

D∈Diveff(P1)4

qdeg(gcd(E1+D1+D4,E2+D2+D5,E3+D3+D6))
∏

06i63
t
deg(Ei)
i (3.4.8)

wich decomposes into an Euler product∏
P∈(P1

k
)(0)

∑
n∈N4

q
deg(P) Min

16i63
(ni+ordP(Di)+ordP(Di+3)) ∏

06i63
t
deg(P)ni
i (3.4.9)

Let us explain what happens in the case D = 0. It is rather easy to check the
identity ∑

n∈N4

θMin(n1,n2,n3)
∏

06i63
tnii = 1− t1 t2 t3

1− θ t1 t2 t3

∏
16i63

1
1− ti

. (3.4.10)

Thus (3.4.9) may be rewritten as∏
P∈(P1

k
)(0)

1− (t1 t2 t3)deg(P)

1− (q t1 t2 t3)deg(P)

∏
06i63

ZHW(P1
k, t) (3.4.11)

(recall that ZHW(P1
k, t) = 1

(1−t)(1−q t) is the Hasse–Weil zeta function of P1
k). Note

that the first factor of the above expression defines a holomorphic function F in
the polydisc

∏
{|ti| 6 q−1+ε} for sufficiently small ε > 0. Using Cauchy estimates,

one obtains the approximation∑
D∈Diveff(P1)d

qdeg(gcd(D1,D2,D3)) ∼ F (q−1, . . . , q−1) qd0+d1+d2+d3 (3.4.12)

In case D 6= 0, an analogous reasoning shows the approximation∑
D∈Diveff(P1)d

qdeg(gcd(D1,D2,D3)) ∼ FD(q−1, . . . , q−1) qd0+d1+d2+d3 (3.4.13)

where FD(q−1, . . . , q−1) has an explicit expression as an Euler product
∏
P F̃D(q− deg(P))

where F̃D is a rational function. Note that FD and F̃D depends only on the 7-uple
of integers ordP (D).

As a third approximation we will assume that the above estimation is in fact
equality, thus obtaining

NX(d,D) = FD(q−1, . . . , q−1) q 2+3d0+2 d1+2 d2+2 d3−
∑

06i66
deg(Di) (3.4.14)

NX(d, 0) = F (q−1, . . . , q−1) q 2+3d0+2 d1+2 d2+2 d3−
∑

06i66
deg(Di) (3.4.15)

Our last approximation will be to drop the conditions 〈d , Di〉 > deg(Di) ap-
pearing in the summation in (3.3.8).

Modulo all the previous approximations, (3.3.8) may be now written as∑
D∈Diveff(P1)I

µX(D)FD(q−1, . . . , q−1)q−
∑

06i66
deg(Di)

×
∑

d∈Ceff(X)∨∩Pic(X)∨
q2+3 d0+2 d1+2 d2+2 d3 t〈d , ω

−1
X 〉 (3.4.16)

Recalling that the anticanonical class is given by 3D0 +D1 +D2 +D3, the second
factor is Z(Pic(X)∨, Ceff(X)∨,

[
ω−1
X

]
, q t).
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Now the main task we are left with in order to show that the answer to question
1.5 is indeed positive, is to establish that all the above approximations yield error
terms which are indeed (q−1, rk(Pic(X))−1) controlled. Roughly, this can be done
using a regular decomposition of the effective cone analogous to the one used in
the toric case, but there is a certain amount of technical subtelties that will not be
discussed here (see [Bou09a, Bou10b]).

Regarding Peyre’s refinement of Manin’s conjecture discussed at the end of sec-
tion 2.6, another task is to show that the constant given by the first factor of
(3.4.16) may be expressed as the Tamagawa number

qdim(X)

(1− q−1)rk Pic(X)

∏
P∈(P1

k
)(0)

(1− q− deg(P))rk(Pic(X)) #X(κP)
q deg(P) dim(X) . (3.4.17)

But using properties of µX , this factor may be rewritten as the Euler product∏
P∈(P1

k
)(0)

∑
n∈{0,1}7

µ0
X(n)F̃n(q− deg(P))q− deg(P)

∑
ni (3.4.18)

Hence we must check, for every P ∈ (P1
k)(0), the following identity

(1−q− deg(P))rk(Pic(X)) #X(κP)
q deg(P) dim(X) =

∑
n∈{0,1}7

µ0
X(n)F̃n(q− deg(P))q− deg(P)

∑
ni .

(3.4.19)
Note that #X(κP) = 1 + 4 qdeg(P) + q2 deg(P), hence (3.4.19) may be seen as a
formal identity between two rational functions in the variable qdeg(P), which may be
checked in a finite amount of time (recall that we have in fact an explicit expression
for the functions F̃n; of course a symbolic computation software may be helpful...).
One can also try to exploit the following relation, which holds for every finite k-
extension L. This is a generalization of proposition 2.11 to the nontoric case, valid
for every k-variety X having a finitely generated homogeneous coordinate ring:∑

n∈{0,1}I
µ0
X(n) #TX,n(L)

(#L)dim(TX) = (1−#L)rk(Pic(X)) #X(L)
(#L)dim(X) (3.4.20)

Here we denote by TX,n the intersection of TX ⊂ AI with the subspace ∩
i, ni=1

{xi =

0}. The proof goes along the same line that the proof of proposition 2.11 and from
(3.4.20) one may derive a slightly more conceptual proof of (3.4.19) (see [Bou09a]).
But to our mind this still does not explain clearly why (3.4.19) holds, and it would
be nice to find a genuine conceptual explaination.

One of the key ingredient in the above (sketch of) proof of the geometric Manin’s
conjecture for the plane blown up at three collinear points was in fact the property
that the homogeneous coordinate ring has one relation and that there exists I0 ⊂ I
such that the classes of {Di}i∈I0 form a basis of Pic(X) and the relation is linear
with respect to the variables {si}i∈I\I0 . In a sense, in the context of our counting
problem, this situation may be considered as the simplest one once the case of toric
varieties (for which there are no relations) has been excluded. One might hope that
the techniques employed may lead to an kind of uniform proof of Manin’s conjecture
for varieties satisfying the above requirements (see [Bou10b] for a beginning of
justification), though even under these hypotheses the control of the error terms
seems to be a very hard task in general. Note that along varieties for which the
hypotheses hold one finds a lot of generalized del Pezzo surfaces whose homogeneous
coordinate ring has one relation (see [Der06] for their complete classification).
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