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1. Introduction

Many of the rigidity questions in non-positively curved geometries that will be addressed
in the more advanced lectures of this summer school either directly concern symmetric spaces
or originated in similar questions about such spaces.

This course is meant to provide a quick introduction to symmetric spaces of the non-
compact type, from the (di�erential) geometer point of view. A complementary algebraic
introduction is given in P.-E. Paradan's lecture [P]. We have tried to always start from (and
stick to) geometric notions, even when the aim was to obtain more algebraic results. Since the
general topic of the summer school is non-positively curved geometries, we have insisted on
the aspects of non-positive curvature which can be generalized to much more general settings
than Riemannian manifolds, such as CAT(0)-spaces.

Of course this course is very incomplete and the reader should consult the references given
at the end of the paper for much more detailed expositions of the subject.

In what follows, (M, g) denotes a (smooth and connected) Riemannian manifold of dimen-
sion n.

2. Riemannian preliminaries

In this section we review very quickly and without proofs the basics of Riemannian geometry
that will be needed in the rest of the paper. Proofs and details can be found in standard text
books, for example [dC], [GHL] or [KN].

2.1. Levi-Civitá connection.

A connection on the tangent bundle TM of M is a bilinear map

∇ : Γ(TM)× Γ(TM) −→ Γ(TM)

such that, for every function f ∈ C∞(M) and all vector �elds X,Y ∈ Γ(TM),
• ∇fXY = f∇XY ,
• ∇XfY = df(X)Y + f∇XY (Leibniz rule).

Note that the value of ∇XY at a point m of M depends only on the value of X at m.
On a Riemannian manifold (M, g), there is a unique connection on the tangent bundle, the

so-called Levi-Civitá connection of g, which is both torsion-free and metric, namely, such that

• ∇XY −∇YX = [X,Y ] for all X,Y ∈ Γ(TM),
• ∇g = 0, i.e. X.g(Y, Z) = g(∇XY, Z) + g(Y,∇XZ) for all X,Y, Z ∈ Γ(TM).

The following formula for the Levi-Civitá connection, which also implies its existence, is useful:

2g(∇XY, Z) = X.g(Y, Z) + Y.g(X,Z)−Z.g(X,Y )− g(X, [Y, Z]) + g(Y, [Z,X]) + g(Z, [X,Y ]).
1
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2.2. Curvatures.
If X,Y, Z ∈ Γ(TM), we de�ne R(X,Y )Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z. In fact, the value of

this vector �eld at a point m depends only on the values of the vectors �elds X, Y , Z at m.
R is called the Riemann curvature tensor of g.

The metric allows us to see the Riemann curvature tensor as a (4,0)-tensor by setting
R(X,Y, Z, T ) = g(R(X,Y )Z, T )

The Riemann curvature tensor has the following symmetries [GHL, Proposition 3.5]:

• R(X,Y, Z, T ) = −R(Y,X,Z, T ) = R(Z, T,X, Y ),
• First Bianchi identity: R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0.

The sectional curvature K(P ) of a 2-plane P in TmM is de�ned as follows : pick a g-
orthonormal basis (u, v) of P and set K(P ) = R(u, v, u, v). The sectional curvature coincides
with the usual notion of Gaussian curvature on a surface. Namely, if P is a tangent 2-plane
in TmM and S a small piece of surface in M tangent to P at m, then the sectional curvature
of P is the Gaussian curvature of S at m [dC, p. 130-133].

Note that the sectional curvatures determine the curvature tensor [dC, p. 94].

2.3. Parallel transport, geodesics and the exponential map.

The Levi-Civitá connection allows to di�erentiate vector �elds de�ned along curves[GHL,
Theorem 2.68]. If c is a curve in M and X a vector �eld along c, we call ∇ċX, or X ′ when no
confusion is possible, the covariant derivative of X along c: it is a new vector �eld along c.

A vector �eld X along a curve c is called parallel if its covariant derivative along c vanishes
identically: ∇ċX = 0. It follows from the standard theory of di�erential equations that given
a curve c and a vector v tangent to M at c(0), there exists a unique parallel vector �eld Xv

along c such that Xv(0) = v. The parallel transport along c from c(0) to c(t) is by de�nition
the linear isomorphism given by v ∈ Tc(0)M 7→ Xv(t) ∈ Tc(t)M . Since ∇ is metric, the parallel
transport is in fact a linear isometry Tc(0)M −→ Tc(t)M [GHL, Proposition 2.74].

A geodesic is a smooth curve γ : I −→M such that ∇γ̇ γ̇ = 0.
Note that a geodesic always has constant speed [GHL, 2.77].
One can prove (see for example [dC, p. 62-64]) that given a point m in M and a tangent

vector v ∈ TmM , there exist ε > 0 and a geodesic γ : (−ε, ε) −→M such that γ(0) = m and
γ̇(0) = v. This geodesic is unique, depends in a C∞ way of m and v. It will generally be
denoted γv (or σv).

Proposition 2.1. [dC, p. 64] For all m ∈ M , there exists a neighborhood U of m and δ > 0
such that, for all x ∈ U and all v ∈ TxM with ‖v‖ < δ, the geodesic γv is de�ned on ]− 2, 2[.

Let x ∈ M . The exponential map at x is the map expx : v ∈ TxM 7→ γv(1) ∈ M , de�ned
on a su�ciently small neighborhood of 0 in TxM .

The di�erential at 0 ∈ TxM of expx is the identity map and therefore:

Theorem 2.2. [dC, p. 65] For all x ∈ M , there exists δ > 0 such that the restriction of
expx : TxM −→M to the ball B(0, δ) is a di�eomorphism onto its image.

A neighborhood U of m ∈M is called a normal neighborhood of m if it is the di�eomorphic
image under expm of a star-shaped neighborhood of 0 ∈ TmM .

Theorem 2.3. [dC, p. 72 & 76] Each m ∈M has a normal neighborhood Um which is also a
normal neighborhood of each of its points. In particular, any two points of Um can be joined
by a unique geodesic in Um.

Such a neighborhood will be called a convex normal neighborhood of m.
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2.4. Jacobi �elds. Di�erential of the exponential map.

Let γ be a geodesic inM . A vector �eld Y along γ is called a Jacobi vector �eld if it satis�es
the di�erential equation along γ:

Y ′′ +R(γ̇, Y )γ̇ = 0.

This equation is equivalent to a linear system of ordinary second order linear equations
([dC, p. 111]) and therefore for any v, w ∈ Tγ(0)M , there exists a unique Jacobi vector �eld
Y such that Y (0) = v and Y ′(0) = w. The space J(γ) of Jacobi vector �elds along γ is
2n-dimensional.

Note that t 7→ γ̇(t) and t 7→ tγ̇(t) are Jacobi vector �elds along γ. If Y is a Jacobi �eld
along γ such that Y (0) and Y ′(0) are orthogonal to γ̇(0) then Y (t) is orthogonal to γ̇(t) for
all t (such Jacobi �elds are called normal Jacobi �elds).

Let H be a variation of geodesics. This means that H is a di�erentiable map from a product
I × J into M such that for all s the curve t 7→ γs(t) := H(s, t) is a geodesic in M . It is then
easy to see that the vector �eld Y along γ0 given by Y (t) = ∂H

∂s (0, t) is a Jacobi vector �eld
[GHL, 3.45].

In particular, we obtain an explicit formula for Jacobi �elds along t 7→ γ(t) vanishing at
t = 0 in terms of the exponential map. Indeed, for any v, w ∈ TmM , the derivative Y of
the variation of geodesic H(s, t) = expm(t(v+ sw)) is a Jacobi vector �eld along the geodesic
γ : t 7→ H(0, t) = expm(tv). But Y (t) = dtv expm(tw) and

Y ′(t) = ∇γ̇(tdtv expm(w)) = dtv expm(w) + t∇γ̇dtv expm(w)

so that Y ′(0) = d0 expm(w) = w. From uniqueness, we obtain:

Proposition 2.4. [dC, p. 114] Let t 7→ γ(t) = expm(tv) be a geodesic in M . Then any Jacobi
vector �eld Y along γ such that Y (0) = 0 is given by Y (t) = dtv expm(tY ′(0)).

2.5. Riemannian manifolds as metric spaces.

The length of a (piecewise) di�erentiable curve c : [a, b] −→M is de�ned to be

L(c) =
∫ b

a
‖ċ(t)‖g dt.

A curve c is a geodesic if and only if it locally minimizes length, meaning that for all t,
there exists ε such that c is the shortest curve between c(t− ε) and c(t+ ε) (see for example
[GHL, p. 91]).

A geodesic is called minimizing if it minimizes length between any two of its points.
Given two points x and y of M , de�ne d(x, y) to be the in�mum of the length of all

piecewise di�erentiable curves joining x to y. Then d de�nes a distance onM compatible with
the manifold topology of M [GHL, p. 87]. We call it the length metric of (M, g).

We have the following very important theorem (for a proof see [dC, p. 146] or [GHL, p. 94]):

Theorem 2.5 (Hopf-Rinow). Let (M, g) be a Riemannian manifold. The following assertions
are equivalent:

(1) M is geodesically complete, namely, all the geodesics are de�ned over R, or equivalently,
for all m ∈M , expm is de�ned on TmM ;

(2) There exists m ∈M such that expm is de�ned on TmM ;
(3) (M,d) is complete as a metric space;
(4) the closed bounded subsets of M are compact.
Moreover, all these assertions imply that given any two points in M , there exists a mini-

mizing geodesic joining them.
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We can also give a metric interpretation of sectional curvature showing that it gives a
measurement of the rate at which geodesics in�nitesimally spread apart:

Proposition 2.6. [C] Let u and v be two orthonormal tangent vectors at m ∈ M . Let σu

and σv be the corresponding unit speed geodesics. Call κ the sectional curvature of the 2-plane
spanned by u and v. Then

d(σu(t), σv(t))2 = 2t2 − κ

6
t4 + o(t5).

2.6. Isometries.

A map f : M −→M is a local isometry of (M, g) if for all x ∈M , dxf is a (linear) isometry:
∀u, v ∈ TxM , gf(x)(dxf(u),dxf(v)) = gx(u, v). Note that a local isometry is necessarily a local
di�eomorphism.

A local isometry is called an isometry if it is a global di�eomorphism.
An isometry of (M, g) maps geodesics to geodesics and is therefore an a�ne transformation

of M . It is also obviously a distance preserving map of the metric space (M,d).
Conversely, one can prove :

Theorem 2.7. [H, p. 61] Let (M, g) be a Riemannian manifold. Then:
(1) Any a�ne transformation f such that dxf is isometric for some x ∈M is an isometry

of M .
(2) Any distance preserving map of the metric space (M,d) onto itself is an isometry of M .

One also has the useful

Lemma 2.8. [dC, p. 163] Let φ and ψ be two isometries of M . Assume that at some point
x, φ(x) = ψ(x) and dxφ = dxψ. Then φ = ψ.

and the

Proposition 2.9. [GHL, p. 96] Let f : M −→ N be a local isometry between two Riemannian
manifolds. Assume that M is complete. Then f is a Riemannian covering map.

The isometries ofM obviously form a group I(M). We endow I(M) with the compact open
topology, namely, the smallest topology for which the sets

W (K,U) := {f ∈ I(M) | f(K) ⊂ U},

where K is a compact subset of M and U is an open subset of M , are open.
Since M is a locally compact separable metric space, this topology has a countable basis

([H, p. 202]). Note that a sequence of isometries converges in the compact open topology if
and only if it converges uniformly on compact subsets of M .

Theorem 2.10. [H, p. 204] Endowed with the compact open topology, the isometry group
I(M) of a Riemannian manifold M is a locally compact topological transformation group of
M . Moreover, for all x ∈ M , the isotropy subgroup I(M)x = {g ∈ G | gx = x} of I(M) at x
is compact.

3. Riemannian locally symmetric spaces

Starting from the geometric de�nition in terms of geodesic symmetries, we prove that a
Riemannian manifold is locally symmetric if and only if its Riemann curvature tensor is
parallel. A good reference is [H] (see also [W]).
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De�nition 3.1. Let (M, g) be a Riemannian manifold and let m ∈ M . The local geodesic
symmetry sm at m is the local di�eomorphism de�ned on small enough normal neighborhoods
of m by sm = expm ◦(−IdTmM ) ◦ exp−1

m .

De�nition 3.2. A Riemannian manifold (M, g) is called locally symmetric if for each m ∈M
the local geodesic symmetry at m is an isometry.

Remark 3.3. It follows from Lemma 2.8 that a Riemannian manifold (M, g) is locally
symmetric if for each m ∈ M there exists a local isometry φm de�ned on a neighborhood of
m such that φm(m) = m and whose di�erential dmφm at m is −idTmM.

Since the Levi-Civitá connection ∇ and the Riemann curvature tensor R of g are invariant
by isometries, for any point m of M we have s?

m(∇R)m = dmsm ◦ (∇R)m = −(∇R)m. But
∇R is a (4,1)-tensor and therefore s?

m(∇R)m = (∇R)m. Hence:

Proposition 3.4. A Riemannian locally symmetric manifold has parallel Riemann curvature
tensor : ∇R = 0.

In fact, the converse of this statement is also true, as the following more general result
shows.

Theorem 3.5. Let (M, gM ) and (N, gN ) be two Riemannian manifolds with parallel cur-
vature tensors. Let m ∈ M and n ∈ N . Assume that ϕ : TmM −→ TnN is a linear
isometry preserving the Riemann curvature tensors, i.e. such that for all u, v, w in TmM ,
RN

n (ϕ(u), ϕ(v))ϕ(w) = ϕ(RM
m (u, v)w). Then there exist normal neighborhoods U and V of m

and n and an isometry f : U −→ V such that f(m) = n and dmf = ϕ.

Proof . Let r > 0 be such that expm : B(0, r) −→ U = B(m, r) and expn : B(0, r) −→
V = B(n, r) are di�eomorphisms, and de�ne f : U −→ V by f = expn ◦ϕ ◦ exp−1

m . f is a
di�eomorphism. Let us prove that f is an isometry.

Let x ∈ U , x = expm(v), and let w ∈ TxM . Let J be the Jacobi �eld along the geodesic
γv joining m to x such that J(0) = 0 and J ′(0) = dx(expm)−1(w). Then J(1) = w by
Proposition 2.4. Let (e1(t) = γ̇v(t), . . . , en(t)) be a parallel �eld of orthonormal frames along
the geodesic γv in M . In this frame, we have J(t) =

∑
i yi(t)ei(t).

Let now (ε1(t), . . . , εn(t)) be the parallel orthonormal frame �eld along the geodesic γϕ(v)

in N starting from n such that for all i, εi(0) = ϕ(ei(0)). De�ne I(t) =
∑

i yi(t)εi(t). Then I
is a Jacobi vector �eld along γϕ(v). Indeed,

gN (I ′′ +RN (γ̇ϕ(v), I)γ̇ϕ(v), εi) = y′′i +
∑

j yj R
N (ε1, εj , ε1, εi)

= y′′i +
∑

j yj R
N
n (ε1(0), εj(0), ε1(0), εi(0))

= y′′i +
∑

j yj R
N
n (ϕ(e1(0)), ϕ(ej(0)), ϕ(e1(0)), ϕ(ei(0)))

= y′′i +
∑

j yj R
M
m (e1(0), ej(0), e1(0), ei(0))

= y′′i +
∑

j yj R
M (e1, ej , e1, ei)

= gM (J ′′ +RM (γ̇v, J)γ̇v, ei)
= 0

where we have used the fact that the curvature tensor R is parallel if and only if for any
parallel vector �elds X, Y and Z, the vector �eld R(X,Y )Z is also parallel.

Now, I(0) = 0 and I ′(0) = ϕ(J ′(0)). Therefore,

dxf(w) = dϕ(v) expn(ϕ(J ′(0))) = I(1) .

Since ‖I(1)‖2
N =

∑
i |yi(1)|2 = ‖J(1)‖2

M , f is an isometry. �

We therefore get:
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Corollary 3.6. A Riemannian manifold (M, g) is locally symmetric if and only if one of the
following equivalent assertions is true

(1) the Riemann curvature tensor is parallel,
(2) any linear isometry from TxM to TyM preserving the Riemann curvature tensor (or

equivalently the sectional curvatures) is induced by a (unique) local isometry between normal
neighborhoods of x and y.

Remark 3.7. It is clear from the proof of Theorem 3.5 that if γ is a geodesic through m ∈M ,
then the di�erential at γ(t) of the geodesic symmetry sm is given by dγ(t)sm = −γ−t

t where
γs

t denotes parallel transport along γ from Tγ(t)M to Tγ(s)M .

4. Riemannian globally symmetric spaces

Our starting point is the geometric de�nition of a Riemannian (globally) symmetric space
M , from which we deduce some of the algebraic properties of the isometry group of M and
its Lie algebra. One could also go the other way around: this is the topic of P.-E. Paradan's
lecture [P]. A much more detailed exposition can be found in [H] (see also [Bo]).

4.1. De�nition and �rst results.

De�nition 4.1. A Riemannian manifold (M, g) is said to be a Riemannian (globally) sym-
metric space if for all m ∈ M , the local geodesic symmetry at m extends to a global isometry
of M .

Remark 4.2. It follows from the results of the previous section that ifM is locally symmetric
and if expm : TmM −→ M is a di�eomorphism for all m, then sm is a global isometry and
henceM is globally symmetric. This is the case for example ifM is locally symmetric, simply
connected, complete and non-positively curved.

Example. Let M = P (n,R) be the open cone of positive-de�nite symmetric n× n matrices.
The cone M is a di�erentiable manifold of dimension n(n + 1)/2. The tangent space at m
is isomorphic via translation to the space S(n,R) of symmetric matrices and one can de�ne
a Riemannian metric on M by the following formula: gm(X,Y ) = tr(m−1Xm−1Y ), where
m ∈M , X,Y ∈ TmM ' S(n,R) and trA is the trace of the matrix A.

It is easily checked that the map x 7→ mx−1m is an isometry ofM endowed with the metric
we just de�ned. This map �xes m and its di�erential at m is −id. It is therefore the geodesic
symmetry sm at m and M is globally symmetric (cf. the remark following De�nition 3.2).

Proposition 4.3. A Riemannian globally symmetric space M is complete. Moreover, if G
denotes the identity component of the isometry group ofM , then G is transitive onM ; namely,
M is G-homogeneous.

Proof . We can use the geodesic symmetries to extend the geodesics on R and hence M is
complete. If now x and y are two points of M then let γ be a unit speed geodesic from x to y
and consider the isometries pt = sγ(t/2) ◦ sx. Then p0 = Id and hence pt ∈ G. For t = d(x, y),
pt(x) = y thus G is indeed transitive on M . �

Given a unit speed geodesic γ in M , the isometry t 7→ pt := sγ(t/2) ◦ sγ(0) of the previous
proof is called a transvection along γ (see Lemma 4.11 below).

Let K = Gm be the isotropy group at m ∈M of the identity component G of the isometry
group of M .

We know from theorem 2.10 that endowed with the compact open topology, the group G is
a locally compact topological transformation group of M and that K is a compact subgroup
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of G. Since G is transitive on M , this implies that the map gK 7→ g.m from G/K to M is a
homeomorphism. Furthermore, one has the following result, due to Myers-Steenrod:

Theorem 4.4. [H, pp. 205-209] The topological group G is a Lie transformation group of M
and M is di�eomorphic to G/K.

Example. The group GL+(n,R) of invertible matrices with positive determinant acts tran-
sitively and isometrically on M = P (n,R) by g.m := gm tg. The stabilizer of id ∈ M is
SO(n,R). Therefore M can be identi�ed with GL+(n,R)/SO(n,R). One should notice that
if n is even, GL+(n,R) does not act e�ectively on M : the identity component of the isometry
group of M is GL+(n,R)/{±id}.

Before analyzing in more details the structure of G and its Lie algebra, we prove that if
a Riemannian manifold is locally symmetric, complete and simply connected, it is globally
symmetric. In particular, this implies that the universal cover of a complete locally symmetric
space is a globally symmetric space. For this, we need two lemmas [H, pp. 62-63].

Lemma 4.5. LetM and N be complete Riemannian locally symmetric manifolds. Let m ∈M ,
U a normal neighborhood of m and f : U −→ N an isometry. Let σ be a curve in M starting
from m. Then f can be continued along σ, i.e. for each t ∈ [0, 1], there exists an isometry ft

from a neighborhood Ut of σ(t) into N such that U0 = U , f0 = f and there exists ε such that
for |t− s| < ε, Us ∩ Ut 6= ∅ and fs = ft on Us ∩ Ut.

Remark 4.6. Such a continuation is unique because ft(σ(t)) and dσ(t)ft vary continuously
with t.

Proof . Assume that f is de�ned on a normal ball B(x, ρ) around some x ∈ M and that
for some r > ρ, B(x, r) and B(f(x), r) are normal balls around x and f(x). Then the map
expf(x) ◦dxf ◦ exp−1

x is an isometry from B(x, r) to B(f(x), r) and it must coincide with f

on B(x, ρ) since it maps x to f(x) and its di�erential at x equals dxf . Therefore f can be
extended to B(x, r).

De�ne I = {t ∈ [0, 1] | f can be extended near σ(t)} and T = sup I. I is an open subinterval
of [0, 1] and 0 ∈ I.

Let then q = lim
t→T

ft(σ(t)). This limit exists by completeness. Choose r such that

B(σ(T ), 3r) and B(q, 3r) are convex normal balls around σ(T ) and q, and let t be such that
σ(t) ∈ B(σ(T ), r) and ft(σ(t)) ∈ B(q, r). Then B(σ(t), 2r) and B(ft(σ(t)), 2r) are normal
balls around σ(t) and ft(σ(t)). Hence f can be extended to B(σ(t), 2r), which contains σ(T ).
Thus T ∈ I and I = [0, 1]. �

Lemma 4.7. LetM and N be complete Riemannian locally symmetric manifolds. Let m ∈M ,
U a normal neighborhood of m and f : U −→ N an isometry. Let σ be a curve in M starting
from m and τ be another curve, homotopic to σ with end points �xed. Call fσ and f τ the
continuations of f along σ and τ . Then fσ and f τ agree in a neighborhood of σ(1) = τ(1).

Proof . Let H : [0, 1]2 −→ M be the homotopy between σ and τ : ∀t, s, H(t, 0) = σ(t),
H(t, 1) = τ(t), H(0, s) = m, H(1, s) = σ(1) = τ(1).

Call fs the continuation of f along the curve Hs : t 7→ H(t, s).
Let I = {s ∈ [0, 1] | ∀a ≤ s, fa(1) = f0(1) = fσ(1) near σ(1)}. I is clearly an open

subinterval of [0, 1] containing 0. Let S = sup I.
The curves HS and fS ◦ HS are continuous, hence there exists r such that for all t,

B(HS(t), 2r) and B(fS ◦ HS(t), 2r) are normal balls. But then there exists ε such that for
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0 < S− s < ε and for all t, Hs(t) ∈ B(HS(t), r). Then fS is a continuation of f along Hs and
therefore by uniqueness fS = fs near σ(1). Hence S ∈ I and I = [0, 1]. �

We may now state:

Theorem 4.8. Let M and N be complete Riemannian locally symmetric spaces. Assume that
M is simply connected. If m ∈ M , n ∈ N , and ϕ : TmM −→ TnN is a linear isometry
preserving the Riemann curvature tensors, then there exists a unique Riemannian covering
f : M −→ N such that f(m) = n and dmf = ϕ.

Proof . It follows from the lemmas above that setting f(expm(v)) = expn(ϕ(v)) gives a well-
de�ned map f fromM onto N . Moreover this map is a local isometry and sinceM is complete,
it is a Riemannian covering map by Proposition 2.9. �

Corollary 4.9. Let M be a complete simply connected Riemannian manifold. The following
conditions are equivalent:

(1) M is locally symmetric,
(2) M is globally symmetric,
(3) Any linear isometry between TxM and TyM preserving the Riemann curvature tensor

(or equivalently the sectional curvatures) is induced by an (unique) isometry of M .

4.2. Structure of the Lie algebra of the isometry group.

Let now (M, g) be a globally symmetric Riemannian space, G the identity component of
the isometry group of M , m ∈ M , s = sm the geodesic symmetry at m, and K the isotropy
group of m in G.

The isotropy group K is a compact subgroup of G and it follows from what we have seen
that the linear isotropy representation k ∈ K 7→ dmk identi�es K with the (closed) subgroup
of O(TmM, gm) consisting of linear isometries which preserve the curvature tensor Rm.

Recall thatM is identi�ed with the quotient G/K. We call m the map G −→M , g 7→ g.m.
The Lie algebra g of G can be seen as a Lie algebra of Killing vector �elds on M : if X ∈ g,

the corresponding vector �eld X? is de�ned by X?(m) = d
dte

tXm|t=0, for any m ∈M . Then,
X?(m) = deωm where ωm denotes the orbit map G→M de�ned by g 7→ g.m. It should also
be noted that, under this identi�cation, [X,Y ]? = −[X?, Y ?], where in the right-hand side,
[ , ] denotes the usual bracket of vector �elds on M .

The symmetry s induces an involution σ of G given by σ(g) = sgs and the di�erential
deσ = Ad(s) is an involution of the Lie algebra g of G.

We therefore have a splitting g = k ⊕ p where k and p are respectively the +1 and −1
eigenspaces of Ad(s). Note that since Ad(s)[X,Y ] = [Ad(s)X,Ad(s)(Y )] for all X,Y ∈ g, we
have [k, k] ⊂ k, i.e. k is a subalgebra of g, [k, p] ⊂ p, i.e. p is ad(k)-invariant, and [p, p] ⊂ k.
Such a decomposition g = k⊕ p is called the Cartan decomposition of g associated to m.

Proposition 4.10. The group K lies between Gσ := {g ∈ G |σg = g} and Gσ
0 , the identity

component of Gσ. The Lie algebra k of K is also the kernel of dem : g −→ TmM . Consequently,
dem|p : p −→ TmM is an isomorphism.

Proof. Let k ∈ K. Then sks(m) = m = k(m) and dm(sks) = −Id◦dmk ◦ (−Id) = dmk, hence
sks = k. Thus K ⊂ Gσ and Lie(K) ⊂ k.

Now, let X ∈ k. This is equivalent to etX ∈ Gσ
0 since setXs = etAd(s)X = etX . Then etXm

is �xed by s for all t. Since m is an isolated �xed point of s, we have etXm = m for all t.
Thus Gσ

0 ⊂ K and k ⊂ Lie(K).
If X ∈ k, then dem(X) = d

dte
tXm|t=0 = d

dtm|t=0 = 0. On the other hand, assume that
X ∈ g is such that dem(X) = 0. Let f : M −→ R be any function and let h be the function
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on M de�ned by h(p) = f(eaXp) for some a ∈ R. Then

0 = dmh(demX) =
d
dt
h(etXm)|t=0 =

d
dt
f(eaXetXm)|t=0 =

d
dt
f(etXm)|t=a .

Hence t 7→ f(etXm) is constant. This implies etX ∈ K and X ∈ k.
The map dem|p is therefore injective. Since p and TmM have the same dimension, we are

done. �

Finally, the scalar product gm on TmM gives a positive de�nite inner product Q on p
which is ad(k)-invariant. Indeed, for X ∈ k and V,W ∈ p, Q([X,V ],W ) + Q(V, [X,W ]) =
gm([X,V ]?(m),W ?(m)) + gm(V ?(m), [X,W ]?(m)) = (X.g(V,W ))|m = 0 since X?(m) = 0.
This inner product can be extended to g by choosing any ad(k)-invariant inner product on k.

Altogether, these data de�ne what is called a structure of orthogonal involutive Lie algebra
on g.

Example. In the case of the symmetric space M = P (n,R) = GL+(n,R)/SO(n,R), the
involution σ of GL+(n,R) corresponding to the geodesic symmetry s = sid : x 7→ x−1 is easily
seen to be the map g 7→ tg−1. Its di�erential at e is the map X 7→ − tX. Therefore the
Cartan decomposition of g = gl(n,R) is just the decomposition of a matrix into its symmetric
and skew-symmetric parts: k = so(n,R) and p = S(n,R).

We end this section with a little lemma about transvections along a geodesic.

Lemma 4.11. Let v ∈ TmM and let γ : t 7→ expm(tv) be the corresponding geodesic. The
transvections pt = sγ(t/2)sm along γ form a 1-parameter group of isometry. Moreover, if X ∈ p

is such that dem(X) = v, then pt = etX , so that in particular etXm = γ(t) and dme
tX = γt

0,
the parallel transport along γ from TmM to Tγ(t)M .

Proof . Clearly, pt(γ(u)) = γ(u + t). Moreover, dγ(u)pt : Tγ(u)M −→ Tγ(u+t)M is parallel

transport along γ. Indeed dγ(u)pt = dγ(u)(sγ(t/2)sm) = dγ(−u)sγ(t/2) ◦ dγ(u)sm = γu+t
−u ◦ γ−u

u =
γu+t

u . Therefore, ptpu = pu+t since they agree at m along with their di�erentials. t 7→ pt is
hence a 1-parameter group of isometries. Thus there exists X ∈ g such that pt = etX . Now,
dem(X) = d

dtptm|t=0 = v. �

4.3. Further identi�cations and curvature computation.

As we said, p can be identi�ed with TmM , whereas k can be identi�ed with a subalgebra t
of o(TmM, gm). More precisely,

t = {T ∈ o(TmM, gm) | ∀u, v ∈ TmM, T ◦Rm(u, v) = Rm(Tu, v)+Rm(u, Tv)+Rm(u, v)◦T} .

We will denote by TX the element of t corresponding to X ∈ k.
Therefore, g is isomorphic to t⊕ TmM as a vector space. We will now see what is the Lie

algebra structure induced on t⊕ TmM by this isomorphism.
Let X ∈ k and Y ∈ p, and let f be a function on M . Then,

[X,Y ]?.f = −[X?, Y ?].f = Y ?.X?.f −X?.Y ?.f .
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But (X?.(Y ?.f))(m) = 0 since X?(m) = 0. On the other hand, X?.f = lim
t−→0

1
t
(f ◦ etX − f).

Therefore,

(Y ?.(X?.f))(m) = lim
t−→0

1
t

(
Y ?.(f ◦ etX)(m)− (Y ?.f)(m)

)
= lim

t−→0

1
t

(
dmf ◦ dme

tX(Y ?(m))− dmf(Y ?(m))
)

= dmf
(

lim
t−→0

1
t
(dme

tX(Y ?(m))− Y ?(m))
)

= dmf
(
TX(Y ?(m))

)
Hence [X,Y ]?(m) = TX(Y ?(m)).

Let now X,Y, Z ∈ p and X?, Y ?, Z? the corresponding Killing �elds on M . First, it is
immediate from the formula for the Levi-Civitá connection that

2g(∇X?Y ?, Z?) = g([X?, Y ?], Z?) + g([Y ?, Z?], X?) + g([X?, Z?], Y ?) ,

since X?.g(Y ?, Z?) = g([X?, Y ?], Z?)+g(Y ?, [X?, Z?]). We hence have (∇X?Y ?)(m) = 0. The
Riemann curvature tensor is given by R(X?, Y ?)Z? = ∇[X?,Y ?]Z

?−∇X?∇Y ?Z?+∇Y ?∇X?Z?.
Hence, dropping the upper-script ? for the computation,

R(X,Y,X, Y ) = g(∇[X,Y ]X,Y )− g(∇X∇YX,Y ) + g(∇Y∇XX,Y )
= −g(∇YX, [X,Y ])−X.g(∇YX,Y ) + g(∇YX,∇XY )

+Y.g(∇XX,Y )− g(∇XX,∇Y Y )
= ‖∇YX‖2 + Y.g([X,Y ], X)− g(∇XX,∇Y Y )
= ‖∇YX‖2 + g([Y, [X,Y ]], X)− ‖[X,Y ]‖2 − g(∇XX,∇Y Y )

Therefore, at m, Rm(X?(m), Y ?(m), X?(m), Y ?(m)) = gm([[X?, Y ?], X?](m), Y ?(m)). This
implies that the curvature tensor is given by

Rm(X?(m), Y ?(m))Z?(m) = [[X?, Y ?], Z?](m) = [[X,Y ], Z]?(m) = T[X,Y ](Z
?(m)) .

Thus T[X,Y ] = Rm(X?(m), Y ?(m)).
One then checks easily that if X,Y ∈ k, T[X,Y ] = TXTY − TY TX .
Summarizing, we have

Proposition 4.12. The Lie algebra structure on g = t⊕ TmM is given by:
[T, S] = TS − ST for T, S ∈ t;
[T, u] = −[u, T ] = T (u) for T ∈ t and u ∈ TmM ;
[u, v] = Rm(u, v) for u, v ∈ TmM .

Remark 4.13. For any Riemannian locally symmetric space (M, g), the Lie algebra t⊕TmM
is de�ned and is an orthogonal involutive Lie algebra. It is the in�nitesimal version of the
isometry group of a globally symmetric space.

5. Riemannian manifolds of non-positive curvature

In this section we review some of the most important "comparison" results for manifolds of
non-positive curvature. They will be useful in our study of symmetric space of non-compact
type. We will stick to Riemannian manifolds but most of these results generalize to the setting
of metric spaces (see the remark following Proposition 5.11). Good references for the material
in this section are the books [Ba] and [BH] (and also [E]).
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5.1. The Rauch comparison theorem.

Before specializing to non-positive curvature, we prove (see also [dC, chap. 10]) the following

Theorem 5.1 (Rauch comparison theorem). Let M be a Riemannian manifold and let γ :
[0, T ) −→M be a unit speed geodesic. Assume that all the sectional curvatures of M along γ
are bounded from above by some real number κ. Let Y be a normal Jacobi �eld along γ. Then,
for all t such that ‖Y ‖(t) 6= 0, we have

‖Y ‖′′(t) + κ‖Y ‖(t) ≥ 0 .

In particular, if yκ is the solution of the di�erential equation y′′+κy = 0, with the same initial
conditions as ‖Y ‖, then ‖Y ‖(t) ≥ yκ(t) for t ∈ [0, T ).

Proof. This is just a computation. ‖Y ‖′ = 〈Y, Y ′〉‖Y ‖−1, hence

‖Y ‖′′ = (〈Y, Y ′′〉+ 〈Y ′, Y ′〉)‖Y ‖−1 − 〈Y, Y ′〉2‖Y ‖−3

= ‖Y ′‖2‖Y ‖−1 − 〈R(γ̇, Y )γ̇, Y 〉‖Y ‖−1 − 〈Y, Y ′〉2‖Y ‖−3

≥ ‖Y ′‖2‖Y ‖−1 − κ‖Y ‖ − 〈Y, Y ′〉2‖Y ‖−3

where for the second equality we used the de�nition of a Jacobi �eld, and for the inequality
the fact that Y is normal to γ. Thus

‖Y ‖′′ + κ‖Y ‖ ≥ ‖Y ‖−3(‖Y ′‖2‖Y ‖2 − 〈Y, Y ′〉2) ≥ 0

by Cauchy-Schwarz inequality.
Let now f := ‖Y ‖′yκ − ‖Y ‖y′κ. Then f(0) = 0 and f ′ = ‖Y ‖′′yκ − ‖Y ‖y′′κ ≥ −‖Y ‖(y′′κ +

κyκ) = 0. Hence f ≥ 0 and therefore (‖Y ‖/yκ)′ ≥ 0 and we are done. �

This result allows to compare di�erent geometric quantities in a manifold M all of whose
sectional curvatures are bounded from above by κ to corresponding quantities in a simply
connected manifold Mκ of constant sectional curvature κ. Recall that Mκ is unique up to
isometry. By scaling the metric, we can assume κ ∈ {−1, 0, 1}, and the corresponding model
spaces of dimension n are hyperbolic n-spaceM−1 = Hn, Euclidean n-spaceM0 = En and the
n-sphere M1 = Sn with its standart metric.

Corollary 5.2. LetM be a Riemannian manifold all of whose sectional curvatures are bounded
from above by κ ∈ R. Let Mκ be the model space of constant sectional curvature κ (of the same
dimension as M). Let m ∈ M , p ∈ Mκ and ϕ a linear isometry between TmM and TpMκ.
Let r be so small that B(m, r) and Bκ(p, r) are normal convex neighborhoods of m in M and
p in Mκ. Let f : B(m, r) −→ Bκ(p, r) be given by f = expp ◦ϕ ◦ exp−1

m . Then f is distance
non-increasing.

Proof. Let x ∈ B(m, r), x = expm(v), and γ the geodesic t 7→ expm(tv). Let w ∈ TxM , and
call w⊥ the component of w orthogonal to γ̇(1) and wT = w − w⊥.

Let Y be the Jacobi �eld along γ such that Y (0) = 0 and Y (1) = w. We can also write

Y = Y T + Y ⊥ where Y T (t) = ‖wT ‖
‖γ̇(1)‖ tγ̇(t) is a Jacobi �eld along γ collinear to γ̇ such that

Y T (1) = wT and Y ⊥ = Y −Y T is a normal Jacobi vector �eld along γ such that Y ⊥(1) = w⊥.
Call Yκ the Jacobi �eld along the geodesic expp(tϕ(v)) in Mκ such that Yκ(0) = 0 and

Y ′
κ(0) = ϕ(Y ′(0)). With the obvious notation, we have Yκ = Y T

κ + Y ⊥
κ .

Then dxf(w) = Yκ(1). Hence

‖dxf(w)‖2 = ‖Yκ(1)‖2 = ‖Y T
κ (1)‖2 + ‖Y ⊥

κ (1)‖2 .

Now, ‖Y T
κ (1)‖ = ‖Y T (1)‖ and it follows from the Rauch comparison theorem that ‖Y ⊥‖ ≥

yκ = ‖Y ⊥
κ ‖. Hence ‖dxf(w)‖ ≤ ‖w‖.
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Therefore if x and y are two points in B(m, r) and if γ ⊂ B(m, r) is the geodesic joining
these two points, then dκ(f(x), f(y)) ≤ L(f ◦ γ) ≤ L(γ) = d(x, y). �

5.2. Hadamard manifolds.

From now on, we will focus on the case κ = 0, namely, (M, g) is non-positively curved.

De�nition 5.3. A complete simply connected non-positively curved manifold is called a
Hadamard manifold.

It follows immediately from the Rauch comparison theorem that in a Hadamard manifold
M , a Jacobi vector �eld Y along a geodesic γ such that Y (0) = 0 never vanishes again. This
implies that for all m ∈ M , expm is a local di�eomorphism from TmM onto M (since M is
complete). Endowing TmM with the metric exp?

m g, expm becomes a local isometry. Now,
(TmM, exp?

m g) is complete since the geodesics through 0 are straight lines. Hence expm is a
covering map and since M is simply connected, expm is a di�eomorphism:

Theorem 5.4. A Hadamard space of dimension n is di�eomorphic to Rn.

Note that two points in a Hadamard manifold are joined by a unique minimizing geodesic.

Until the end of this section, M will be a Hadamard manifold and E will be Euclidean
2-space. We will assume all geodesics parametrized by arc length.

5.2.1. Geodesic triangles in Hadamard manifolds. The CAT(0) Property.
Given three points p, q, r in M (or in E) we will denote by <)p(q, r) the angle between the

geodesic segments [p, q] and [p, r] emanating from p, that is, the Riemannian angle between
the tangent vectors to these geodesics at p.

De�nition 5.5. A geodesic triangle T in a Riemannian manifold consists of three points p,
q, r, its vertices, and three geodesic arcs [p, q], [q, r] and [r, p] joining them, its sides or edges.
Note that in a Hadamard manifold a geodesic triangle is determined by its vertices.

We will sometimes denote by p̂ (resp. q̂, r̂) the vertex angle of a geodesic triangle T =
T (p, q, r) at p (resp. q, r), i.e. p̂ =<)p(q, r).

De�nition 5.6. A comparison triangle of a geodesic triangle T ⊂M in E is a geodesic triangle
T0 in E whose side lengths equal the side lengths of T . Such a triangle always exists and is
unique up to isometries of E.

Given an �object� a in a geodesic triangle T in M , we will always denote by a0 the com-
parison object in the comparison triangle T0. For example, if p is a vertex of T , p0 will be the
corresponding vertex of T0. If x is a point on the side [p, q] of T , x0 will be the point on the
comparison side [p0, q0] of T0 such that d0(p0, x0) = d(p, x).

We begin with the following remark concerning angles.

Lemma 5.7. [A] The Riemannian angle between two unit tangent vectors u, v ∈ TmM is the
limit as t goes to zero of the vertex angle at m0 of the comparison triangle of T (m,σu(t), σv(t)).

Proof . It follows from Corollary 5.2 that d(σu(t), σv(t)) ≥ t‖u − v‖. Now, consider the path
c : s 7→ expm(tu+ st(v − u)) from σu(t) to σv(t).

d(σu(t), σv(t)) ≤ L(c) = t

∫ 1

0
‖dt(u+s(v−u)) expm(v − u)‖ds .
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For t close to 0, dt(u+s(v−u)) expm is close to Id and therefore we see that

lim
t−→0

d(σu(t), σv(t))
t‖u− v‖

= 1 .

This implies that the triangle T (0, tu, tv) in TmM goes to the comparison triangle of
T (m,σu(t), σv(t)) as t −→ 0, hence the result. �

Let us start to compare geodesic triangles in a Hadamard manifolds with triangles in Euclid-
ean space.

Lemma 5.8. Let m ∈M and u, v ∈ TmM . Let σu and σv be the corresponding unit speed geo-
desics. Let x = σu(s) and y = σv(t). Let alsom0, x0 y0 be points in E such that d0(m0, x0) = s,
d0(m0, y0) = t and the angle <)m0(x0, y0) equals the angle between u and v (see Figure 1). Then
d0(x0, y0) ≤ d(x, y).

Consequently, if α, β, γ are the vertex angles of a geodesic triangle T in M and α0, β0, γ0

the corresponding vertex angles of its comparison triangle T0, then

α ≤ α0, β ≤ β0, and γ ≤ γ0 .

In particular, α+ β + γ ≤ π.

Proof. Immediate from Corollary 5.2. �

m0

x0

y0

α
α

x

m
y

Figure 1.

Lemma 5.9. Let T = T (p, q, r) be a geodesic triangle in M and let T0 be its comparison
triangle in E. Let x be a point on the side [q, r]. Then d(p, x) ≤ d0(p0, x0). Moreover, if the
sum of the vertex angles of T equals π then d(p, x) = d0(p0, x0).

Proof . Consider the geodesic triangles T ′ = T (p, q, x) and T ′′ = T (p, x, r) and call T ′0 and
T ′′0 their respective comparison triangles in E. We can assume that T ′0 and T ′′0 are such that
p′0 = p′′0 and x′0 = x′′0, and that they lie on di�erent sides of the line through p′0 and x′0 (see
Figure 2).

If x̂′, resp. x̂′′, is the vertex angle at x of T ′, resp. T ′′, and if x̂′0, resp. x̂′′0, is the
corresponding vertex angle in T ′0, resp. T

′′
0 , then x̂

′
0 + x̂′′0 ≥ x̂′ + x̂′′ = π. This implies that

if we want to straighten the union T ′0 ∪ T ′′0 to form a comparison triangle for T (without
modifying the side lengths of T ′0 and T ′′0 other that [p′0, x

′
0]), we have to increase (at least not

decrease) the distance from p0 to x0. Hence the �rst part of the result.
Now assume that the sum of the vertex angles of T is π. Call p̂′ and q̂′, resp. p̂′′ and r̂′′, the

remaining vertex angles of T ′, resp. T ′′. Then p̂′+p̂′′+q̂′+x̂′+x̂′′+r̂′′ = 2π. Since p̂′+q̂′+x̂′ ≤ π
and p̂′′ + x̂′′ + r̂′′ ≤ π, we have in fact p̂′ + q̂′ + x̂′ = π and p̂′′ + x̂′′ + r̂′′ = π, hence all these
vertex angles are equal to their comparison angles. This implies that x̂′0 + x̂′′0 = x̂′ + x̂′′ = π,
hence that d(p, x) = d0(p0, x0). �
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T ′

x

T ′′

p

T ′
0

r

q

x0

p0 = p′
0 = p′′

0

r0

q0 = q′
0

T ′′
0

x′
0 = x′′

0

r′′
0

2

2

3

3

4

4

1

5

5

3

1

1

2

Figure 2.

We can now state the main property of geodesic triangles in Hadamard manifolds.

De�nition 5.10. A geodesic triangle T in a manifold is said to be CAT(0) if it is thinner
than its comparison triangle in E, namely if for any two points x and y on T , and for x0, y0

the corresponding points in the comparison triangle T0 of T in E, we have d(x, y) ≤ d0(x0, y0).

Proposition 5.11. (1) Geodesic triangles in a Hadamard manifold M are CAT(0).
(2) Moreover, if the sum of the vertex angles of a geodesic triangle T of M equals π, then

there exists a unique isometry Φ from the convex hull Conv(T0) of T0 in E into the convex hull
Conv(T ) of T in M , such that Φ(x0) = x for all x0 ∈ T0, that is to say, T bounds a �at solid
triangle in M .

Proof . Let us �rst prove (1). Let x and y be two points in the triangle T = T (p, q, r), and
T0 = T (p0, q0, r0) the comparison triangle of T . We can assume x and y are not on the same
side of T , say x ∈ [q, r] and y ∈ [p, q]. We know from Lemma 5.9 that d(p, x) ≤ d0(p0, x0).
Consider the comparison triangle T ′0 = T (p′0, x

′
0, q

′
0) of T (p, x, q). Then, again from Lemma 5.9,

d(x, y) ≤ d0(x′0, y
′
0). Now, the lengths of the sides [p′0, q

′
0] and [x′0, q

′
0] of T

′
0 are equal to those

of [p0, q0] and [x0, q0] in T0, whereas [p′0, x
′
0] is shorter than [x0, p0]. This implies that [x′0, y

′
0]

is shorter than [x0, y0], hence that d(x, y) ≤ d(x0, y0).
Proof of (2). The assumption is p̂ = p̂0, q̂ = q̂0 and r̂ = r̂0. From the second assertion

in Lemma 5.9 and from the proof of part (1) we get that d(x, y) = d(x0, y0) for all x, y ∈ T .
Now we want to de�ne Φ in the interior of Conv(T0). Let y0 be a point there and call z0 the
unique point on the side [q0, r0] such that y0 ∈ [p0, z0]. Map z0 to its corresponding point z
on the side [q, r] of T . It follows from what we just seen that the triangle T (p0, q0, z0) is the
comparison triangle of T (p, q, z). Since again the vertex angles are the same, the comparison
map between these triangles is an isometry and we can map z0 ∈ [p0, z0] to the corresponding
point Φ(z0) ∈ [p, z]. One then checks easily that Φ is isometric. �

Remark 5.12. Property (1) gives one way to generalize the notion of non-positive curvature
to metric spaces. Namely, we say that an (interior) metric space (X, d) has non positive
curvature in the sense of Alexandrov if every point in X has an open neighborhood U such
that any two points in U can be joined by a minimizing geodesic and every geodesic triangle
in U is CAT(0). (X, d) is called a CAT(0)-space if every geodesic triangle in X is CAT(0). A
complete simply connected interior metric space of non positive curvature is called a Hadamard
space.

It should also be noted that, as was proved by Alexandrov in [A], a smooth Riemannian
manifold has non positive curvature in the sense of Alexandrov if and only if all its sectional
curvatures are non positive (see [BH, p.173] for a proof using Proposition 2.6).
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Corollary 5.13 (Flat quadrilateral theorem). Let p, q, r, s be four points in M and let
α =<)p(q, s), β =<)q(p, r), γ =<)r(q, s), δ =<)r(p, r). Then if α + β + γ + δ ≥ 2π, this sum
equals 2π and p, q, r, s �bound� a convex region in M isometric to a convex quadrilateral in
E.

Proof . Let T = T (p, q, s) and T ′ = T (q, r, s). Call p̂, q̂, ŝ and q̂′, r̂′, ŝ′ the vertex angles of
T and T ′. It follows from the triangle inequality that β ≤ q̂ + q̂′ and δ ≤ ŝ + ŝ′. Hence, if
α+β+γ+δ ≥ 2π, then p̂+ q̂+ ŝ ≥ π and q̂′+ r̂′+ ŝ′ ≥ π. Therefore all these inequalities are in
fact equalities and the triangles T and T ′ are �at. Let T0 = T (p0, q0, s0) and T ′0 = T (q0, r0, s0)
be comparison triangles for T and T ′ so that p0 and r0 lie on opposite sides of the line
through q0 and s0. Then the quadrilateral Q0 = (p0, q0, r0, s0) is convex. Let x0 ∈ Conv(T0)
and x′0 ∈ Conv(T ′0). The fact that q̂ + q̂′ = β implies that <)q(x, x′) =<)q0(x0, x

′
0), where

x, resp. x′, is the image of x0, resp. x
′
0, under the isometry Conv(T0) −→ Conv(T ), resp.

Conv(T ′0) −→ Conv(T ′). This shows that these isometries patch together to give an isometry
between Conv(p0, q0, r0, s0) and Conv(p, q, r, s). �

5.2.2. Convexity properties of Hadamard manifolds. Parallel geodesics.
A Hadamard manifold shares many convexity properties with Euclidean space. Recall that

a function f : M −→ R is convex if its restriction to each geodesic σ of M is convex.
Lemma 5.9 immediately implies

Lemma 5.14. Let m ∈M . The function x 7→ d(x,m) is convex.

We also have

Proposition 5.15. Let σ and τ be two (unit speed) geodesics in M . The function t 7→
d(σ(t), τ(t)) is convex.

Proof. Let t1 < t2 and let t = 1
2(t1 + t2). Call γ the geodesic segment from σ(t1) to τ(t2) (see

Figure 3).

τ

σ(t1)

τ(t1)

τ(t)

τ(t2)

γ(t)

σ(t2)

σ

σ(t)

Figure 3.

We have d(σ(t), τ(t)) ≤ d(σ(t), γ(t)) + d(γ(t), τ(t)). From the CAT(0) prop-
erty, d(σ(t), γ(t)) ≤ 1

2d(σ(t2), τ(t2)) since equality holds in the comparison triangle of

T (σ(t1), σ(t2), τ(t2)). In the same way, d(γ(t), τ(t)) ≤ 1
2d(σ(t1), τ(t1)). This implies the

proposition. �

More generally, the following proposition holds:



16

Proposition 5.16. Let C ⊂ M be a closed convex set. Then for every x ∈ M there exists a
unique point πC(x) ∈ C such that d(x, πC(x)) = d(x,C). Moreover the map πC : x 7→ πC(x)
is 1-Lipschitz and the function x 7→ d(x,C) is convex.

De�nition 5.17. Two (unit speed) geodesics σ1 and σ2 in M are called parallel if there exists
k > 0 such that ∀t ∈ R, d(σ1(t), σ2) ≤ k and d(σ2(t), σ1) ≤ k.

Corollary 5.18 (Flat strip theorem). Let σ1 and σ2 be two parallel geodesics in M . Then
σ1 and σ2 bound a �at strip, namely, there exist D ∈ R and an isometry Φ from R × [0, D]
with its Euclidean metric into M such that (up to a�ne reparametrizations of σ1 and σ2),
Φ(t, 0) = σ1(t) and Φ(t,D) = σ2(t), ∀t ∈ R.

Proof . The function t 7→ d(σ1(t), σ2(t)) is convex and bounded on R, hence constant, say
equal to D ∈ R. We can assume that the closest point to p := σ1(0) on σ2(R) is q := σ2(0).
We claim that for t 6= 0, the angle <)q(p, σ2(t)) ≥ π

2 . If not, then by Lemma 5.7 there is a
point x in the geodesic segment [q, p] and a point y on the geodesic segment [q, σ2(t)] such
that the vertex angle at q0 of the comparison triangle T (q0, x0, y0) of T (q, x, y) is strictly
less than π

2 . This would implies that there are points x′ on [q, x] and y′ on [q, y] such that
d(x′, y′) < d(x′, q). But then q wouldn't be the point on σ2(R) closest to p. Hence, for all
t 6= 0, <)σ2(0)(σ1(0), σ2(t)) = π

2 , and p = σ1(0) is the point on σ1(R) closest to q = σ2(0) so
that for all t 6= 0 we also have <)σ1(0)(σ2(0), σ1(t)) = π

2 . Therefore the sum of the vertex angles
of the quadrilateral (σ1(−t), σ1(t), σ2(t), σ2(−t)) is 2π. Thus this quadrilateral is isometric to
[−t, t]× [0, D] with its Euclidean metric. Letting t −→∞ yields the result. �

Corollary 5.19. Let σ be a geodesic in M and let P (σ) be the union of all geodesics in M
that are parallel to σ. Then P (σ) is a closed convex subset of M . Moreover, P (σ) splits
isometrically as a product Q × R, where Q is closed and convex and {q} × R is parallel to σ
for all q ∈ Q.

Proof . The convexity of P (σ) is a direct consequence of the �at strip theorem. Now, let
(xn)n∈N be a sequence of points in P (σ) converging to some x∞ ∈ M . For all n, there
exists a unit speed geodesic σn parallel to σ such that σn(0) = xn. Now, for all n, m, the
geodesics σn and σm are parallel and hence the function t 7→ d(σn(t), σm(t)) is constant equal
to d(σn(0), σm(0)) = d(xn, xm). Hence, for all t, the sequence (σn(t))n∈N is a Cauchy sequence
and therefore, by completeness ofM , converges to a point, say σ∞(t). It is now easily checked
that t 7→ σ∞(t) is a geodesic in M parallel to σ. Thus P (σ) is closed.

Let x and y be two points in P (σ), and let q = σ(0). Up to parametrization there is a
unique unit speed geodesic σx, resp. σy, through x, resp. y, and parallel to σ. We can choose
the parametrization of σx, resp. σy, so that qx := σx(0), resp. qy := σy(0), is the point on
σx(R), resp. σy(R), closest to q.

The geodesics σ and σx bound a �at strip and therefore, for all a ∈ R,

d(σ(t), σx(a))− t =
(
d(σ(a), σx(a))2 + (t− a)2

) 1
2 − t −→ −a, as t −→ +∞ .

Hence qx, resp. q, is the only point on σx(R), resp. σ(R), so that d(σ(t), qx) − t −→ 0 as
t −→∞, resp. d(σx(t), q)− t −→ 0 as t −→∞.

Now, d(σy(t), qx)− t ≤ d(σy(t), σ(t/2))− t
2 + d(σ(t/2), qx)− t

2 and since d(σy(t), σ(t/2))−
t
2 −→ 0 as t −→∞, we get

lim
t−→∞

d(σy(t), qx)− t = 0

and, similarly,
lim

t−→∞
d(σx(t), qy)− t = 0
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Since σx and σy are parallel, they bound a �at strip and therefore qx, resp. qy, is the point
on σx(R), resp. σy(R), closest to qy, resp. qx. Hence,

d(x, y)2 = d(qx, qy)2 +
(
d(y, qy)− d(x, qx)

)2
,

thus the result with Q = {qx, x ∈ P (σ)}. �

5.2.3. The boundary at in�nity.
Let M be a Hadamard manifold.

De�nition 5.20. Two (unit speed) geodesics rays σ, τ : [0,+∞) −→M are called asymptotic
if the function t 7→ d(σ(t), τ(t)) is bounded.

De�nition 5.21. The boundary at in�nity ∂∞M of M is the set of equivalence classes of
rays for the equivalence relation �being asymptotic�. The equivalence class of a ray σ will be
denoted σ(∞).

It follows from the results in the previous section that if σ and τ are two asymptotic geodesic
rays, then <)σ(0)(σ(1), τ(0))+ <)τ(0)(τ(1), σ(0)) ≤ π with equality if and only if σ and τ bound
a �at half strip, namely a region isometric to [0, D]× [0,+∞), where D = d(σ(0), τ(0)).

The distance function t 7→ d(σ(t), τ(t)) between two rays σ and τ is convex and therefore two
asymptotic rays cannot have a point in common unless they are equal. Hence, given a point
x ∈M , the map Φx from the unit sphere UxM ⊂ TxM into ∂∞M given by Φx(v) = γv(∞) is
injective.

If σ is geodesic a ray and x a point in M , call γn the geodesic ray starting at x and passing
through σ(n), n ∈ N. Comparison with Euclidean triangles shows that <)σ(n)(σ(0), x) −→ 0
as n −→ +∞ since d(σ(0), σ(n)) −→ +∞. Hence <)σ(n)(x, σ(n + k)) −→ π as n −→ +∞
uniformly on k so that <)x(σ(n), σ(n+ k)) −→ π as n −→ +∞ uniformly on k. This implies
that for all t ≥ 0, (γn(t))n∈N is a Cauchy sequence and hence converges to a point that we
call γ(t). The curve t 7→ γ(t) is easily seen to be a geodesic ray in M . Now, d(γ(t), σ(t)) ≤
d(γ(t), γn(t))+d(γn(t), σ(t)). For n large enough, d(γ(t), γn(t)) is small whereas d(γn(t), σ(t))
is bounded by d(x, σ(0)). Hence t 7→ d(γ(t), σ(t)) is bounded and γ is asymptotic to σ.

Thus, for all x ∈M , Φx : UxM −→ ∂∞M is a bijective map.
Given x ∈ M , the bijection Φx allows to de�ne a distance <)x on ∂∞M as follows : if ξ

and η are two point at in�nity, then <)x(ξ, η) is the distance in UxM of the vectors u and v
such that σu(∞) = ξ and σv(∞) = η. This metric de�nes a topology on ∂∞M . The following
lemma shows that this topology is in fact independent of the point x. It is called the cone
topology.

Lemma 5.22. Let x and y be two points in M . The map Φ−1
y ◦ Φx : UxM −→ UyM is a

homeomorphism.

Proof . Let (un) be a sequence of unit tangent vectors at x, converging to some u ∈ UxM .
Let σn : t 7→ expx(tun) and σ : t 7→ expx(tu) be the corresponding geodesic rays. Let now
vn and v be the unit tangent vectors at y such that the geodesic rays γn : t 7→ expy(tvn) and
γ : t 7→ expy(tv) satisfy γn(∞) = σn(∞) and γ(∞) = σ(∞). We want to prove that the
sequence (vn) converges to v in UyM , namely that <)y(σn(∞), σ(∞)) −→ 0 as n −→∞.

For k ∈ N,
<)y(σn(∞), σ(∞)) ≤<)y(σn(∞), σn(k))+ <)y(σn(k), σ(k))+ <)y(σ(k), σ(∞)) .

Moreover, <)y(σn(∞), σn(k)) ≤ π− <)σn(k)(y, σn(∞)) =<)σn(k)(x, y). Clearly, if x0 and y0 are
two points in Euclidean 2-space and if pk is a point at distance k from x0, then <)pk

(x0, y0) −→
0 as k −→∞. Therefore <)σn(k)(x, y) −→ 0 as k −→∞, uniformly on n.
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Similarly, <)y(σ(k), σ(∞)) ≤ π− <)σ(k)(y, σ(∞)) =<)σ(k)(x, y) −→ 0 as k −→∞.
Therefore, given ε > 0, we can �nd k so that <)y(σn(∞), σ(∞)) < 2ε+ <)y(σn(k), σ(k)).

Now, the sequence (σn(k))n∈N converges to σ(k), hence, for n big enough, <)y(σn(k), σ(k)) < ε
and the result follows. �

The union M := M ∪ ∂∞M can also be given a topology extending both the topology of
M and of ∂∞M : a basis of open sets is given by

• the open metric balls in M , and
• the sets W (m, ξ, r, ε) := {x ∈ M | <)m(σmx(∞), ξ) < ε}\B(m, r), where m ∈ M ,
ξ ∈ ∂∞M , r > 0, ε > 0, and σmx denotes the geodesic ray starting from m and
passing through x.

With this topology, M is homeomorphic to a closed ball.

It should be noted that the isometries of M act by homeomorphisms on M and ∂∞M .

6. Symmetric spaces of non-compact type

We now apply what we saw in the preceding sections to symmetric spaces of non-compact
type. We try to give geometric proofs of some algebraic results. Our exposition follows quite
closely [E, chap. 2].

6.1. De�nition and �rst properties.

De�nition 6.1. A Riemannian symmetric space (M, g) is said to be of non-compact type if
it is non-positively curved and if it has no Euclidean de Rham local factor (i.e. the universal
cover of M does not split isometrically as Rk ×N).

Example. It follows from Proposition 4.12 that our favorite symmetric space M = P (n,R)
is non-positively curved. However, it is not a symmetric space of non-compact type since
it does split isometrically as R × M1, where M1 = P1(n,R) = SL(n,R)/SO(n,R) is the
space of positive-de�nite symmetric matrices of determinant 1. M1 is a symmetric space of
non-compact type. The Lie algebra of its isometry group g = sl(n,R) admits the Cartan
decomposition g = p⊗ k, where p is the space of trace free symmetric matrices and k the space
of skew-symmetric matrices.

Proposition 6.2. A Riemannian symmetric space of non-compact typeM is simply-connected
(and therefore di�eomorphic to RdimM ).

Proof . Let M be a symmetric space of non-compact type and assume that M is not simply

connected. Let Γ be its fundamental group and π : M̃ −→ M be its universal cover, so that

M = M̃/Γ. Then M̃ is symmetric. Call G the identity component of its isometry group and
Z(Γ) the centralizer of Γ in G.

We claim that Z(Γ) is transitive on M̃ . Indeed, let x and y be two points of M̃ and choose
f in the identity component of the isometry group of M such that f(π(x)) = π(y). Then,

f ◦ π : M̃ −→ M is a Riemannian covering. We can lift f ◦ π to a map F : M̃ −→ M̃ such
that F (x) = y and π ◦ F = f ◦ π. F is a local isometry between complete manifolds, hence

a Riemannian covering, hence an isometry since M̃ is simply connected. Therefore F ∈ G
(since we can also lift homotopies).

For γ ∈ Γ, π ◦ F ◦ γ = f ◦ π ◦ γ = f ◦ π = π ◦ F . Hence there exists γ′ in Γ such that
F ◦γ = γ′◦F , i.e. F belongs to the normalizer N(Γ) of Γ in G and this normalizer is transitive
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on M̃ . Thus the identity component of N(Γ), which centralizes Γ (since Γ is discrete), is still

transitive on M̃ .
This implies that the elements of Γ are Cli�ord translations, namely, that their displacement

function is constant on M̃ (i.e. ∀γ ∈ Γ, ∀x, y ∈ M̃ , d(x, γx) = d(y, γy)). For if x and y are

in M̃ and if z ∈ Z(Γ) is such that zx = y, then for all γ ∈ Γ, d(y, γy) = d(zx, γzx) =
d(zx, zγx) = d(x, γx).

Let now γ ∈ Γ and x ∈ M̃ . Call σ the geodesic from x to γx. Then σ is γ-invariant
since γx ∈ σ ∩ γσ and, γ being a Cli�ord translation, σ and γσ are parallel. γ acts on σ by
translation.

Pick a point y in M̃ and consider the geodesic zσ, where z ∈ Z(Γ) is such that zx = y.
Then

d(zσ(t), σ(t)) = d(γzσ(t), γσ(t)) = d(zγσ(t), γσ(t)) = d(zσ(t+ δ), σ(t+ δ))

and therefore, if γ 6= Id, the function t 7→ d(zσ(t), σ(t)) is periodic and hence bounded (since

continuous). Thus zσ is parallel to σ and we have shown that every point of M̃ belongs to a
geodesic parallel to σ.

Corollary 5.19 then implies that M̃ has a non trivial Euclidean de Rham factor. Contra-
diction. �

Using the same kind of ideas, one proves

Theorem 6.3. [E, p. 69] The identity component G of the isometry group of a symmetric
space M of non-compact type is semi-simple and has trivial center.

Proof. By contradiction. If G is not semi-simple then there are non-trivial connected normal
Abelian Lie subgroup of G. Let A be such a subgroup. We can assume that the Lie algebra
a of A is maximal, i.e. not properly contained in a bigger Abelian ideal of the Lie algebra g
of G. Let m ∈ M , s the geodesic symmetry at m and g = k + p the corresponding Cartan
decomposition. We claim that a ∩ Ad(s)a 6= {0}. Indeed, if not, then Ad(s)a is also an
Abelian ideal and so is a⊕Ad(s)a, which properly contains a. Therefore, b := a∩Ad(s)a is a
non-trivial Ad(s)-invariant Abelian ideal of g. Hence b = (b ∩ k)⊕ (b ∩ p). Now, b ∩ p 6= {0}.
For if b ⊂ k, then on the one hand [b, p] ⊂ b ⊂ k because b is an ideal, and on the other hand
[b, p] ⊂ [k, p] ⊂ p, hence [b, p] = 0 which implies b = 0 since the linear isotropy representation
of k is faithful. We conclude that A contains a 1-parameter subgroup of transvections t 7→ pt

along some geodesic γ : t 7→ pt(m).
Assume that some η ∈ ∂∞M can be joined to γ(+∞) by a geodesic, say σ: σ(+∞) = η

and σ(−∞) = γ(+∞). Call t 7→ qt the 1-parameter group of transvections along σ.
For any x ∈M , we have

<)σ(0)(qtx, η) =<)q−1
t σ(0)(x, q

−1
t η) =<)σ(−t)(x, η) =<)σ(−t)(x, σ(0)) −→ 0 as t −→ +∞ ,

hence qtx −→ η as t −→ +∞. Moreover,

<)m(qtγ(−∞), η) ≤ <)m(qtγ(−∞), qtm)+ <)m(qtm, η)
≤ <)q−1

t m(γ(−∞),m)+ <)m(qtm, η)
≤ π− <)m(q−1

t m, γ(−∞))+ <)m(qtm, η)
≤ <)m(q−1

t m, γ(+∞))+ <)m(qtm, η)

Since γ(+∞) = σ(−∞), we get <)m(qtγ(−∞), η) −→ 0 as t −→ +∞.
This implies that η is in the closure of the orbit of γ(−∞) under the group G. Denote by

Λ(A) the set of cluster points in ∂∞M of the orbit A.x of some point x ∈ M under A. The
subset Λ(A) is closed and independent of the choice of the point x. Since p−1

t m −→ γ(−∞),
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γ(−∞) ∈ Λ(A). The subgroup A being normal in G, Λ(A) is stable by G and therefore

η ∈ Λ(A) = Λ(A). Now, the fact that A is Abelian implies that A �xes Λ(A) pointwise.
Hence for all t, ptη = η. But the proof above shows that p−tη −→ γ(−∞) as t −→ +∞. Thus
η = γ(−∞).

We have proved that every point in M belongs to a geodesic joining γ(−∞) to γ(+∞),
hence parallel to γ. Corollary 5.19 then implies that M has a non trivial Euclidean de Rham
factor. Contradiction.

Assume now that A is a discrete Abelian normal subgroup in G. Take a ∈ A and x ∈ M .
For each y ∈ M there exists g ∈ G such that y = gx. Therefore d(y, ay) = d(gx, agx) =
d(x, g−1agx) = d(x, ax) since A being discrete and G connected, G actually centralizes A.
The contradiction follows as in the proof of the previous proposition, hence G has trivial
center. �

Concerning the action on ∂∞M of the identity component G of the isometry group of M ,
we have:

Proposition 6.4. [E, pp. 59 & 101] Let ξ ∈ ∂∞M , m ∈M and let K be the isotropy subgroup
of G at m. Then G.ξ = K.ξ. Moreover, the stabilizer Gξ of ξ in G acts transitively on M .

Remark 6.5. This property is a weak geometric version of the Iwasawa decomposition of
non-compact semisimple Lie groups. The full geometric version of the latter decomposition
requires to introduce horospheric coordinates.

Proof. Call γ the geodesic ray emanating fromm and belonging to ξ and t 7→ pt the 1-parameter
group of transvections along this ray.

Let g ∈ G. We want to prove that there exists k ∈ K so that kξ = gξ. Call σt the geodesic
ray starting from m and passing through the point gptm and set ξt = σt(∞). Let qt be the
transvection along σt such that qtm = gptm. Note that qtξt = ξt.

The isometry kt := q−1
t gpt belongs to K. Moreover,

<)m(ktξ, ξt) =<)qtm(gptξ, qtξt) =<)gptm(gξ, ξt) =<)gptm(m, gm)

and this last quantity goes to 0 as t goes to ∞. Similarly,

<)m(ξt, gξ) =<)m(gptm, gξ) ≤ π− <)gptm(m, gξ) =<)gptm(m, gm) −→ 0 .

Hence ktξ −→ gξ as t −→ ∞. Since K is compact, there exists k ∈ K so that kξ = gξ as
wanted.

Now let m′ be another point of M and let g ∈ G be such that gm = m′. It follows from
what we just proved that there exists k ∈ K so that kξ = g−1ξ. Now gkξ = ξ and gkm = m′.
Therefore Gξ is transitive on M . �

Example. For M1 = SL(n,R)/SO(n,R), the points at in�nity can be identi�ed with
eigenvalues-�ag pairs, as follows: For ξ ∈ ∂∞M1, there is a unique X ∈ p (namely, a trace
free symmetric matrix) of norm one such that ξ = γX(+∞), where γX(t) = etX . Call λi(ξ)
the distinct eigenvalues of X arranged so that λ1(ξ) > . . . > λk(ξ), and let Ei(ξ) be the corre-
sponding eigenspaces. Put Vi(ξ) =

⊕
j≤iEj(ξ). To the point ξ, we have therefore associated

a vector λ(ξ) = (λ1(ξ), . . . , λk(ξ)) and a �ag V (ξ) = (V1(ξ) ⊂ . . . ⊂ Vk(ξ)) of Rn such that

• λ1(ξ) > . . . > λk(ξ),
•

∑
i(dimVi(ξ)− dimVi−1(ξ))λi(ξ) = 0 (since X is trace free),

•
∑

i(dimVi(ξ)− dimVi−1(ξ))λi(ξ)2 = 1 (since X has norm 1).
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Conversely, it is easily seen that given a vector λ = (λ1, . . . , λk) and a �ag V = (V1 ⊂ . . . ⊂
Vk) satisfying those conditions, there is a unique point ξ ∈ ∂∞M1 such that λ(ξ) = λ and
V (ξ) = V .

One can also check that the action of g ∈ SL(n,R) on the eigenvalues-�ag pairs correspond-
ing to its action on ∂∞M1 is given by g.(λ, V ) = (λ, gV ) where gV is the �ag gV1 ⊂ . . . ⊂ gVk.

6.2. Totally geodesic subspaces.

A submanifold N of (M, g) is said to be totally geodesic if the Levi-Civitá connection of the
metric on N induced by g is simply the restriction of the Levi-Civitá connection of g. This
means that any geodesic γ of M such that γ(0) ∈ N and γ̇(0) ∈ Tγ(0)N stays in N .

Let N be a totally geodesic submanifold of M and let m ∈ N . Then necessarily, for any
tangent vectors u, v, w to N at m, R(u, v)w is also tangent to N at m (since R is also the
curvature tensor of the induced metric on N). If we consider the Cartan decomposition of g
associated to m, this means that, if we see TmN as a subspace q of p, [[q, q], q] ⊂ q. Such a q
is called a Lie triple system.

Conversely, if q ⊂ p is a Lie triple system, then the (complete) manifold eqm is totally
geodesic. Indeed, one checks that h = [q, q] + q is a subalgebra of g. If H is the analytic
subgroup of G whose Lie algebra is h then let N be the orbit H.m. Clearly, a geodesic tangent
to N at m is of the form t 7→ etXm with X ∈ q. Hence a geodesic through x ∈ N is of the
form t 7→ hetXm with X ∈ q and h ∈ H such that hm = x, thus is contained in N . Hence N
is totally geodesic. Now any point x of N can be joined to m by a geodesic inside N , hence
N = eqm = expm(TmN).

6.3. Flats.

De�nition 6.6. A k-�at F in M is a complete totally geodesic submanifold of M isometric
to a Euclidean space Rk.

Obviously, if F is a k-�at of M , then 1 ≤ k ≤ dimM .

De�nition 6.7. The rank r = rk(M) of the symmetric space M is de�ned to be the maximal
dimension of a �at in M . A r-�at is therefore a �at of maximal dimension.

Proposition 6.8. The �ats through m ∈ M are in one-to-one correspondence with Abelian
subspaces of p = TmM . Moreover, if a is such an Abelian subspace (seen as a subspace of
TmM), then expm : a −→ F := expm(a) is an isometry.

Proof. The �rst assertion is a direct consequence of the curvature formula and the discussion
about totally geodesic submanifolds of M . Now let A ∈ a seen as a subspace of TmM and
ξ ∈ TAa = a. Then

dA expm(ξ) =
d
dt

expm(A+ tξ)|t=0 =
d
dt
eA+tξm|t=0 =

d
dt
eAetξm|t=0 = dme

A(ξ) .

Since eA is an isometry, ‖dA expm(ξ)‖expm(A) = ‖ξ‖m. �

Example. For M1 = SL(n,R)/SO(n,R), a maximal Abelian subspace a of p = TidM is the
space of trace free diagonal matrices. Therefore, the rank of M1 is n− 1.

The identity component G of the isometry group of the symmetric space M in general does
not act transitively on the tangent bundle TM of M (nor on geodesics in M), but it acts
transitively on the pairs (x, F ), where x is a point in M and F a r-�at through x. Indeed:
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Theorem 6.9. Let g = k+p be a Cartan decomposition of the Lie algebra of G, and let a and
a′ be two maximal Abelian subspaces of p. Then there exists k ∈ K such that Ad(k)a = a′.

Proof. See P.-E. Paradan's lecture [P]. �

In particular, any geodesic of M is contained in a maximal �at.

6.4. Regular geodesics. Weyl chambers.

We refer to [E, p. 85-94] for details.
A geodesic of M is called regular if it is contained in a unique maximal �at. Otherwise, it

is called singular. In the same way, a tangent vector v ∈ TmM (or the corresponding element
of p) is de�ned to be regular, resp. singular, if the geodesic γv : t 7→ expm(tv) is regular, resp.
singular.

Example. For our symmetric space M1 = SL(n,R)/SO(n,R), an element of a (that is, a
diagonal matrix of trace zero) is regular if and only if its coe�cients are all distinct.

If a geodesic γ, resp. a tangent vector v, is regular, we denote by F (γ), resp. F (v), the
unique maximal �at containing γ, resp. γv.

If σ and τ are two asymptotic rays, it follows from Proposition 6.4 that σ is regular if and
only if τ is. Therefore we may de�ne a point ξ ∈ ∂∞M to be regular if some (hence any) ray
belonging to ξ is regular.

If v is a unit tangent vector at some point m ∈ M and if x is a point in M , we call v(x)
the unit tangent vector at x asymptotic to v, namely, such that γv(x)(+∞) = γv(+∞). Note
that if v is regular, then v(x) is regular for all x ∈M .

We will de�ne three kinds of Weyl chambers: in the tangent bundle TM (or the unit tangent
bundle UM) of M , in M itself, and on the boundary at in�nity of M .

Let v0 and v1 be two regular (unit) tangent vectors at a point m ∈ M . Call v0 and v1
equivalent if there is a �at F through m and a curve t 7→ v(t) of regular (unit) tangent vectors
at m, joining v0 to v1, and tangent to F for all t. The equivalence classes for this equivalence
relation on the regular vectors in TmM (in UmM) are called Weyl chambers at m. Given a
regular vector v ∈ TmM (or UmM), we call C(v) the Weyl chamber of v.

Example. There are therefore n! Weyl chambers in the maximal Abelian subspace a of p for
M1 = SL(n,R)/SO(n,R): if A is a diagonal matrix with distinct coe�cients a1, . . . , an, there
exists a permutation τ such that aτ(1) > . . . > aτ(n) and the Weyl Chamber of A is the set of
diagonal matrices A′ = diag(a′1, . . . , a

′
n) such that a′τ(1) > . . . > a′τ(n).

If C ⊂ UmM is a Weyl chamber, we de�ne its center to be the unit vector at m pointing
in the same direction as

∫
C ι(u)dµS(u), where S ⊂ UmM is the great subsphere of smallest

dimension containing C, µS is Lebesgue measure on S, and ι : UmM −→ TmM is the inclusion.

Let v ∈ UmM be a regular vector and F (v) the corresponding maximal �at. We de�ne the
Weyl chamber of v in F (v) as follows:

W (v) = {expm(tu)| u ∈ C(v), t > 0} .

One proves that the singular geodesics through a pointm in a maximal �at F form the union of
a �nite number of hyperplanes in F , called walls, and the connected components of F\{walls}
are precisely the Weyl chambers W (v) for v regular unit tangent vectors to F at m.

We now give, without proof, some of the most important properties of Weyl chambers
(see [E]).
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(1) If v ∈ UmM is a regular vector and if F (v) is the maximal �at through m tangent to
v, then W (v) is an open unbounded convex subset of F (v).

(2) If v ∈ UmM is a regular vector and if x ∈ M , then the Weyl chambers W (v)
and W (v(x)) are asymptotic, more precisely, the Hausdor� distance between them
is bounded by the distance between m and x.

(3) For v ∈ UmM and v′ ∈ Um′M two regular vectors, there exists an element g ∈ G such
that gm = m′ and dmg(v) ∈ C(v′), hence g C(v) = C(v′) and gW (v) = W (v′), thus
implying that any two Weyl chambers are isometric.

The third kind of Weyl chambers is simply the asymptotic version of the previous ones. Let
ξ be a regular point on ∂∞M and let m and v ∈ UmM be such that γv(∞) = ξ. Then set

C(ξ) = {γu(∞)|u ∈ C(v)} .

This is well-de�ned by Property (2) above. Note that C(ξ) and C(ξ) are subsets of the boundary
at in�nity of F (v).

We say that a regular point ξ ∈ ∂∞M is the center of its Weyl chamber C(ξ) if ξ = γv(∞)
for some v ∈ UM center of its Weyl chamber C(v)

6.5. Dichotomy between rank 1 and higher rank symmetric spaces.

There are many di�erences, which have very important implications (for example for lat-
tices), between symmetric spaces of non-compact type of rank 1 and of rank at least 2. Here
we list only straightforward consequences of what we have seen.

Proposition 6.10. LetM be a symmetric space of non-compact type. The following assertions
are equivalent:

(1) M has rank 1;
(2) M has strictly negative sectional curvatures (hence there exist b > a > 0 such that the

sectional curvatures of M are pinched between −b2 and −a2);
(3) The isotropy group of G at some point m ∈M is transitive on the unit tangent vectors

at m;
(4) any two points on the boundary at in�nity of M can be joined by a geodesic.

Proof . (2) obviously implies (1). Conversely, assume that u, v ∈ TmM are such that
Rm(u, v, u, v) = 0. Then Rm(u, v)u = 0 because v 7→ Rm(u, v)u is negative semi-de�nite.
Hence [[u, v], u] = 0, i.e. (adu)2v = 0. Now, adu is symmetric w.r.t. the bilinear form Bθ

(see [P]). Thus Ker(adu)2 ⊂ Ker(adu) and [u, v] = 0, namely u and v are tangent to a
maximal �at through m.

(1) implies (3) by Theorem 6.9. Conversely, if the rank of M is greater than 1, then a
singular geodesic can not be sent to a regular one.

Assume (2). The fact that the sectional curvatures of M are bounded from above by a
strictly negative constant −a2 implies that geodesic triangles in M are thinner than their
comparison triangles in M−a2 , the 2-dimensional model space of constant curvature −a2 (in
other words, M is CAT(−a2)). Let ξ and η be two points on ∂∞M and let σ and τ be two
geodesic rays starting from some point x ∈ M such that σ(∞) = ξ and τ(∞) = η. The
distance between x and the geodesic segment [σ(n), τ(n)] is bounded independently of n ∈ N
(because this is true in M−a2). Hence it will be possible to �nd a convergent subsequence and
this will be the geodesic joining ξ to η: (2) implies (4).

We prove that (4) implies (1) by contradiction: assume there exists a 2-dimensional �at
F in M , and choose points x and y on the boundary at in�nity of F that cannot be joined
by a geodesic in F . Then x and y can not be joined by a geodesic in M . Indeed, if γ is
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such a geodesic, m a point of F , and σ, τ the geodesic rays emanating from m such that
σ(∞) = x and τ(∞) = y, then the Hausdor� distance between γ(R) and σ(R+) ∪ τ(R+) is
bounded by some k > 0. Now, the intersection of F with the k-neighborhood of γ(R) is convex
and contained in the 2k-neighborhood of σ(R+) ∪ τ(R+). Hence, for all n ∈ N, the geodesic
segment [σ(n), τ(n)] is contained in the 2k-neighborhood of σ(R+) ∪ τ(R+). This is possible
only if the angle between σ and τ at m is π, i.e. if x and y are joined by a geodesic inside F .
�

Example. Using the eigenvalues-�ag pair description of the boundary at in�nity of M1 =
P1(n,R), one can prove (see [E, p. 93]) that two points ξ and η on ∂∞M1 corresponding to
the eigenvalues-�ag pairs ((λi(ξ))1≤i≤k, (Vi(ξ))1≤i≤k) and ((λi(η))1≤i≤l, (Vi(η))1≤i≤l) can be
joined by a geodesic if and only if

• k = l,
• ∀i, λi(η) = −λk−i+1(ξ),
• ∀i, Rn is the direct sum of Vi(ξ) and Vk−i(η).

6.6. Towards the building structure of the boundary at in�nity.

We just saw that in rank one symmetric spaces, two points at in�nity can always be joined
by a geodesic. In higher rank symmetric spaces, they can be joined by �ats. A much stronger
result is true: the boundary at in�nity of a symmetric space of non-compact type admits the
structure of a building whose apartments are the boundaries at in�nity of the maximal �ats
(see the lecture of G. Rousseau [R] for the de�nition of a building).

Here we will only prove the following

Theorem 6.11. Let M be a symmetric space of non-compact type. Any two points on the
boundary at in�nity ∂∞M of M lie on the boundary at in�nity ∂∞F of a maximal �at F of
M .

Proof (adapted from [BS]).
Let n be the dimension of M and r its rank. We may assume that r ≥ 2.
Let ξ0 and η0 be two points of ∂∞M . Let ξ and η be regular points of ∂∞M so that

ξ0 ∈ C(ξ) and η0 ∈ C(η). We can assume that η is the center of its Weyl chamber. It is enough
to prove that there exists a �at F such that ξ and η belong to ∂∞F .

Let m be a point of M and v ∈ UmM so that γv(−∞) = ξ. Note that γv is a regular
geodesic. Let φ be a transvection along γv and F (v) be the unique maximal �at containing
γv. The boundary at in�nity ∂∞F (v) of F (v) is the union of a �nite number of Weyl chambers
which are permuted by φ. Up to taking a power of φ, we can assume that φ �xes the centers
of the Weyl chambers in ∂∞F (v).

We claim that, up to extraction of a subsequence, the sequence (φjη)j∈N converges to some
point η′ ∈ ∂∞F (v). Indeed, for all x ∈ ∂∞M ,

<)m(φx, γv(+∞)) =<)m(φx, φm) ≤ π− <)φm(φx,m) = π− <)m(x, φ−1m) =<)m(x, γv(+∞))

with equality if and only if the triangle T (m,φm, φx) is �at, i.e. if and only if x ∈ ∂∞F (v),
since v is regular and ∂∞F (v) is invariant by φ. Now, if y is any limit point of {φjx, j ∈ N},
we have <)m(φy, γv(+∞)) =<)m(y, γv(+∞)), hence y ∈ ∂∞F (v).

Let vj ∈ UmM be such that γvj (∞) = φjη. Since φjη is the center of its Weyl chamber, so
is vj . Now, all the Weyl chambers are isometric. Therefore, the angle <)m(vj ,walls of C(vj))
is constant and this implies that η′ is regular and is the center of its Weyl chamber.

Call γ the (regular) geodesic of F (v) such that γ(0) = m and γ(+∞) = η′ and let ζ =
γ(−∞). Again, ζ is regular and is the center of its Weyl chamber.



25

Let Hu be the strong unstable horosphere of γ̇(0). Hu is a submanifold of the unstable
horosphere H of γ̇(0), that is, of the horosphere centered at ζ = γ(−∞) and passing through
m = γ(0). Hu is (roughly) de�ned as follows. Through each point x of the horosphere H
there is a (unique) maximal �at Fx containing the ray joining x to ζ. Consider the distribution
Q of (n − r)-planes in TH given by Qx = TxFx

⊥ ⊂ TxH. One proves that this distribution
is integrable and Hu is de�ned to be the maximal integral submanifold through m. For all
x ∈ Hu, Hu ∩ Fx = {x}.

Consider the map f : Hu × C(ζ) −→ ∂∞M given by f(m′, ζ ′) = γm′ζ′(−∞), where γm′ζ′

is the geodesic joining m′ to ζ ′. This map is continuous. Moreover, it is injective. Indeed,
assume that γ1 := γm1ζ1 and γ2 := γm2ζ2 satisfy γ1(−∞) = γ2(−∞). Let P be the maximal
�at containing γ1. Then, since ζ1 and ζ2 belongs to the same Weyl chamber, ∂∞P contains
γ2(+∞) = ζ2 and γ2(−∞) = γ1(−∞). Therefore (see the proof of Proposition 6.10), there is
a geodesic σ in P such that σ(+∞) = γ2(+∞) and σ(−∞) = γ2(−∞). The geodesics σ and
γ1 are both contained in P and satisfy σ(−∞) = γ1(−∞): they must be parallel and hence
ζ1 = γ1(+∞) = σ(+∞) = ζ2. The geodesics γ1 and γ2 are therefore parallel, hence they
bound a �at strip, and since they are regular, they both must be contained in the maximal
�at P . Now P also contains the geodesic joining m1 to ζ, and by the de�nition of the strong
unstable horosphere Hu, the intersection of P and Hu is reduced to m1. Hence m1 = m2 and
f is injective as claimed. Since the domain and the target of f have the same dimension, f is
in fact a homeomorphism from a neighborhood U × V of (m, ζ) to a neighborhood W of η′.

Since (φjη)j∈N converges to η′, we may assume that for all j, there exists (mj , ζj) ∈ U × V
such that f(mj , ζj) = φjη. But φjη is the center of its Weyl chamber thus so is ζj , i.e. ζj = ζ
for all j. Hence for all j there exists γj = γmjζ joining ζ to φjη. Since γj −→ γ we may
assume that the geodesics γj are regular.

Therefore, for all j, φ−jγj is a regular geodesic joining ζ to η. By the �at strip theorem, these
geodesics, being regular and parallel, must all lie in the same maximal �at F . Thus η ∈ ∂∞F .
Now, φ−jmj ∈ F for all j. Since the sequence (mj)j∈N is bounded and φ−jx −→ γv(−∞) as
j −→∞ for all x ∈M , we have φ−jmj −→ γv(−∞) as j −→∞. Hence ξ = γv(−∞) belongs
to ∂∞F and we are done. �
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