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1 Introduction

1.1 Definition

A very natural question in Riemannian goemetry is the following : given a C∞ manifold M ,
is there a best metric or a distinguished metric on M ? One way to seek at this question is
to consider some geometric functional on the space or a subspace of all riemannian metrics
of M and look for an extremum of this functional. Here we are interested in the minimal
volume, which was introduced by M. Gromov.

Definition 1 (Gromov [Gro], Volume and Bounded Cohomology, IHES 56, 1981).
Let M a C∞ manifold. Consider on M all complete riemannian metrics with sectional
curvature bounded in absolute value by one

|Kg| ≤ 1

The minimal volume is the infimum of the volume of those metrics

Minvol(M) = inf
|Kg|≤1

volg(M)

Remarks: 1) We recall that the sectional curvature assigns to each vectorial plane P ⊂ TxM
of the tangent space a real number K(P ). Its geometric meaning is the following. Let C(r)
be the circle of radius r tangent to P , i.e. C(r) is the set of all expx(rv) where v is a unit
vector o in P . Then the length of this circle is given by

!(C(r)) = 2πr

(
1 − K(P )

6
r2 + o(r2)

)
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and K(P ) measures the defect of the perimeter to be euclidian.

2) When one scale a metric g into λg, one has

V olλg(M) = λn/2volg(M)

and

Kλg =
1

λ
Kg

Thus, if the sectional curvature is not idendically null, one can seek the minimal volume of
M among metrics where the supremum of the absolute value of the sectional curvature is
+1. It is equivalent to consider the infimum of

volg(M)sup|Kg|n/2

(which is scale invariant) among complete metrics g with bounded curvature or to consider

inf
volg(M)=1

sup |Kg|n/2

Questions about this functional (see Marcel Berger [Ber], A panoramic view in Rieman-
nian Geometry, question 266)

1. Is Minvol(M) zero or positive? Try to classify manifolds for which Minvol(M) = 0
and those for which not.

2. If Minvol(M) $= 0, is it attained by a metric? When those best metrics exists, try to
classify them.

3. Compute Minvol(M) for various manifolds. Can we say something about the set of
values when M runs through compact manifolds? Is zero an isolated point of the set?

1.2 The 2-dimensional case

Compact surfaces

Suppose M is a nice surface, i.e. compact, oriented, without boundary. We can see Kg a
function on M . Suppose −1 ≤ Kg ≤ 1. The Gauss-Bonnet formula gives

|χ(M)| =

∣∣∣∣
1

2π

∫

M

Kg(x) dvg(x)

∣∣∣∣

≤ 1

2π

∫

M

|Kg(x)| dvg(x)

≤ volg(M)

2π
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where χ(M) is the Euler characteristic. If you prefer the genus g(M) of the surface,
χ(M) = 2 − 2g(M). The surface of genus one, the torus, has zero minimal volume be-
cause he has flat metrics. In other cases, the minimal volume is positive and attained by
metrics where |Kg| = 1. If the genus is 0 (the manifold is a sphere), the curvature is +1 and
the metric is the round one. If g(M) ≥ 2, the metric has curvature −1 thus is hyperbolic.
Conevrsely any hyperbolic realizes the minimal volume. It is a classical result that the space
of all hyperbolic metrics, quotiented by isometries, of a surface of genus g has dimension
6g− 6, thus is huge. It is called the Teichmuller space. Note that the set of minimal volume
is discrete set in R: minvol(M) ∈ 4πN when M describes all compact surfaces.

Non-compact surfaces

The Gauss-Bonnet formula holds for complete surface with bounded curvature and finite
volume. Thus hyperbolic metric of finite volume are again mimimal for surfaces with χ(M) <
0 and Minvol(M) = −2πχ(M). Moreover, the surface of infinite genus has infinite minimal
volume.

For the plane R2, we have the following (Ch. Bavard and P. Pansu [Ba-Pa], Ann. Sci. Ec.
Norm. Sup., 1986)

Minvol(R2) = 2π(1 +
√

2)

with an extremal C1 metric obtained by pasting a spherical disk of curvature 1, which
boundary has length π

√
2, with an hyperbolic cusp which boundary has same length. The

metric is not C2 through the pasting as curvature values change from +1 to −1.

an extremal metric on R2

The cylinder S1 × R has zero minimal volume.

Proof: Indeed, consider a warped product metric g = f 2(t)dθ2 + dt2, with an hyperbolic
cusp of finite volume at each end. That is f(t) = e−t for large t > 0 and f(t) = et for large
t < 0.
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K = −1

−1 ≤ K ≤ 1

The formula for the sectional curvature is

Kg = −f ′′

f

Thus g can be choosed complete with finite volume and −1 ≤ Kg ≤ 1. Consider now any
ε > 0 and the new metrics

gε = ε2f 2(t)dθ2 + dt2

Clearly, the sectional curvature of gε is unchanged and vol(gε) is arbitrary small. !

We will see below large generalizations of this trick.

From now, unless specified, M will be oriented, compact with dimension ≥ 3

1.3 Manifolds with Minvol = 0

Here we give some examples of manifolds M with Minvol(M) = 0.

1. M admits a flat Riemannian metric.

2. M admits a free action of the cercle S1. Trivial examples are the torus or the cylinder.
A non trivial example is given by the Hopf’s fibration S3 → S2. Thus consider any
Riemannian metric g on M . After average by the S1 action, we can suppose the S1

action isometric. At each point x of M , the tangent space TxM decomposes orthogo-
nally in a vertical part tangent to the S1 orbit and in a horizontal part. Thus, one can
write g = gv + gh. As above, consider for any ε > 0 the new metrics

gε = ε2gv + gh

Using O’Neill formulas on the riemannian submersion (M, g) → (M/S1, gh) (see Besse,
Einstein manifolds, chapter 9 or the Technical Chapter in Berger) one can show that
sectional curvature remains bounded. The main idea is that the shrinking is one di-
mensional. On the other hand, the volume can be made arbitrary small.
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3. A broader generalization of the S1 action is performed by Cheeger and Gromov with
the definition of T-structure and F-structure. With their words, an F -structure on
a space M is a generalization of a torus action. Different tori (possibly of different
dimension) act locally on finite covering spaces of subsets of M . These actions satisfy
a compatibility condition, which insures that M is partitionned in different orbits. The
F -structure is said to have positive dimension if all orbit have positive dimension. The
definition is quite technical. Here I give the formulation given by Fukaya in his survey
on Hausdorff convergence ([Fu], definition 19.1, 19.2). A T-structure on M is a triple
(Ui, T ki,ϕi) such that

1) {Ui} is an open covering of M ,

2) T ki is a ki-dimensional torus.

3) ϕi : T ki → Diff(Ui) is an effective and smooth action.

4) When Ui ∩ Uj $= ∅, Ui ∩ Uj is (T ki,ϕi) and (T kj ,ϕj) invariant and the two actions
commute.

Now for the F-structure, we have to consider finite covering Ũi of Ui and natural action
of torus T ki on the cover Ũi instead of Ui. By natural we means that the orbits are
well defined in Ui even if the action does not descend.

The existence of a F-structure of positive dimension (that is, the orbit have positive
dimension) on M is related to the collapsing of M . One says that M is ε-collapsed
if there is a Riemannian metric gε with −1 ≤ Kgε ≤ 1 and injectivity radius ≤ ε at
each point. Recall that the injectivity radius at x is the supremum of the radius r > 0
such that expx : B(0, r) ⊂ TxM −→ B(x, r) ⊂ M is a diffeomorphism. For metrics
with sectional curvature between −1 and +1, a bound below of the volume of the unit
ball B(x, 1) is equivalent to a bound below of the injectivity radius at x. Thus if the
minimal volume is zero, the manifold is ε-collapsed for any ε > 0. On the contrary,
a manifold can be ε-collapsed and have a not so small volume. For example, a torus
S1 × S1 where one of the circle has length ε and the other 1/ε is ε-collapsed but has
volume (2π)2. A fundamental result of Cheeger and Gromov ([Ch-Gr1], [Ch-Gr2]) is

(
M has a F-structure
of positive dimension

)
⇐⇒
(

M is ε-collapsed
for any ε > 0

)

To prove ⇒, start with metrics gε defined on the Ui, shrinked in certains directions
tangent to the orbit. The problem is how to patch them on Ui ∩ Uj . If the shrinking
directions are different, you have to expand the metric in directions normal to both
orbits to keep curvature bounded. Maybe the volume is going to infinity. They prove a
strenghtened version of the converse ⇐. They prove the existence of a universal εn > 0
such that εn-collapse implies the existence a F-structure of positive dimension. For the
vanishing of the minimal volume, they have the following

(
M has a polarized F-structure
of positive dimension

)
⇐⇒ Minvol(M) = 0

Roughly speaking, a F-structure is polarized if there is a collection of connected (non
trivial) subgroups Hi ⊂ T ki whose action is locally free and such that the Hi-orbit of
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p ∈ Ui ∩ Uj either contains or is contained in the Hj-orbit of p. Cheeger and Gromov
prove also that in dimension 3, if M has a F -structure of positive dimension, it has a
polarized one. Thus, il the minimal volume of a three-manifold is below some εn, it
must be zero. X. Rong ([R]) has proved this true for n = 4 but it remains in higher
dimensions

4. Any product M × N where M is one of the above example and N is arbitrary.

2 A criterion for Minvol(M) > 0

Via the generalization of the Gauss-Bonnet formula, the Euler characteristic provides, in
even dimension, an obstruction to the vanishing of the minimal volume:

Minvol(M) ≥ c(n)χ(M)

M. Gromov defines in [Gro] another invariant, the simplicial volume, as follows.

Definition 2. The fondamental class [M ] ∈ Hn(M, R) can be write

[M ] =
∑

i

aiσi

where ai are reals and σi are singular simplices. Then the simplicial volume is

||M || = inf

{
∑

i

|ai| : [M ] =
∑

i

aiσi

}

Some useful properties:

1. If f : M → M ′ is a continuous map of degree d, then

||M || ≥ d||M ′||

In particular, if M has a self mapping of degree d ≥ 2 then ||M || = 0.

2.
a(n)||M ||||N || ≤ ||M × N || ≤ b(n)||M ||||N ||

where a(n) > 0, b(n) > 0 depends only on n = dim(M × N).
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3. The connected sum satisfies

||M)N || = ||M || + ||N ||

Now we state a fundamental result of M.Gromov. Recall that the Ricci curvature is a
symetric bilinear form on TM , which can be defined as follows. Given v ∈ TxM ,

Ricci(v, v) =
∑

i=1

n − 1K(Pvei,

where (ei) is an orthonormal basis of the v⊥ ∈ TxM and Pvei = vect(v, ei). Then,

Theorem 2.1. If (M, g) satisfies

Ricg ≥ −(n − 1)g

then

volg(M) ≥ 1

(n − 1)nn!
||M ||

Corollary 2.2.

Minvol(M) ≥ 1

(n − 1)nn!
||M ||

Indeed, Kg ≥ −1 implies Ricg ≥ −(n − 1)g.

As a consequence, if ||M ′|| > 0 and M has a non zero degree map onto M ′, f : M → M ′,
then Minvol(M) > 0. If ||M ′|| > 0 and M is another manifold, Minvol(M)M ′) > 0.

Related to the isolation problem, we have the following

Theorem 2.3 (Gromov’s isolation theorem). There exists εn > 0 such that the following
holds. If Ricg ≥ −(n − 1)g and volg(B(p, 1)) ≤ εn for each p ∈ M then

||M || = 0

So if the minimal volume is sufficiently small, the simplicial volume is zero. In dimension
3 (Cheeger-Gromov) and 4 (Rong [R]), small minimal volume implies zero minimal volume.
The question is open in higher dimensions.

It’s time to give manifolds for which ||M || > 0.

Theorem 2.4 (Thurston’s inequality). If Kg ≤ −1 then

||M || ≥ C(n)volg(M)
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With the properties of the simplicial volume, one can produce some manifolds with non-
zero simplicial volume. For example, a product of negative curvature manifolds has non-zero
simplicial volume whereas it has a lot of zero curvature. But other examples are very hard to
find. Only recently, J-F Lafont and B. Schmidt [LS] have shown that closed locally symetric
spaces of non-compact type have non zero simplicial volume.

If the metric is hyperbolic, the Thurston’s inequality is strenghtened in

Theorem 2.5 (Gromov). If (M, g0) is hyperbolic, then

||M || =
volg0(M)

Vn

where Vn is the volume of any ideal regular simplex of the n-hyperbolic space Hn.

3 Best metrics

Now we turn to the question of the best metrics. The stronger result is the following

Theorem 3.1 (Besson, Courtois and Gallot, 1995 [BCG]). Let (M, g0) an hyperbolic
manifold and g a Riemannian metric such that

Ricg ≥ −(n − 1)g

Then
volg(M) ≥ volg0(M)

with equality if and only if g is isometric to g0.

In particular, the minimal volume is attained by the hyperbolic metric only. In fact, this
result is corollary of the more general:

Theorem 3.2 (BCG). let (M, g0) a locally symmetric compact manifold of negative cur-
vature and (N, g) another riemannian manifold. Suppose there is a map f : N → M with
degree d > 0. Then

h(g)nvolg(N) ≥ d.h(g0)
nvolg0(M)

where h(g) and h(g0) are the volume entropy of the metrics g and g0. Moreover, there is
equality if and only if f is homotopic to a Riemannian covering.

Definition 3. the volume entropy h(g) of a compact riemannian manifold (Y, g) is defined
as follows. Let Ỹ the universal covering of Y , y ∈ Ỹ and g̃ the lift metric. Then one defines

h(g) = lim
r→∞

1

r
ln(volg̃(Bg̃(y, r))

= inf

{
c > 0,

∫

Ỹ

e−c.ρ(y,z) dvolg̃(z) < ∞
}

(see Manning - Ann.of Math. 110, 1979)
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For example, the volume of hyperbolic balls satisfy

volHn(B(r)) ∼ e(n−1)r

as r → ∞ thus h(g0) = n − 1. For other locally symmetric spaces with negative curva-
ture, that is the complex hyperbolic space, the quaternionic hyperbolic space or the Cayley
hyperbolic space with curvatures normalized to be pinched as −4 ≤ K ≤ −1, one has
h(g0) = (n + d − 2), with d = 2, 4 or 8, and n is the real dimension of the space. With the
normalisation −1 ≤ K ≤ −1

4 , one has for these spaces h(g0) = n+d−2
2 . To obtain 3.1 from

3.2, one applies the Bishop inequality which says: if Ricg ≥ −(n − 1)g, then

volHn(B(r)) ≥ volg̃(Bg̃(y, r))

thus h(g0) ≥ h(g). Now the equality case in 3.1 implies also h(g) = h(g0).

Remark

1. the theorem 3.2 gives a proof of the Mostow rigidity theorem. Indeed, suppose that
N and M are compact locally symmetric of negative curvature and f is an homotopy
equivalence. Then inequality holds in both directions and from the equality case, f is
homotopic to an isometry.

2. An interesting consequence of the inequality in 3.2 is, when g0 is hyperbolic,

Minvol(N) ≥ d.volg0(M)

In my thesis, I prove that

Theorem 3.3 (Bes). If (M, g0) is hyperbolic, f : N → M a degree d > 0 map and

Minvol(N) = d.volg0(M)

then f is homotopic to a differentiable covering.

It has surprising consequences. First, the minimal volume is non additive by connected sum

Corollary 3.4 (Bes). Let (M, g0) hyperbolic. Then

Minvol(M)M) > 2volg0(M)

Indeed, M)M cannot have an hyperbolic metric. In fact, it cannot have a metric with
nonpositive curvature for then, the universal covering would be Rn and this contradicts
πn−1(M)M) $= 1.

Secondly, the minimal volume depends on the differentiable structure of the manifold. To
see this, one take a differentiable manifold which is homeomorphic to an hyperbolic manifold
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but is not diffeomorphic. Such exotic differentiable structures had been constructed by Farell
and Jones ([Fa-Jo]). Their idea is to do the connected sum of an hyperbolic manifold M , or
a finite covering of it, with an exotic sphere Σ (a manifold homeomorphic to the standard
sphere but not diffeomorphic). Then M)Σ is homeomorphic but not diffeomorphic to M .
The existence of exotic spheres follows from the work of Kervaire and Milnor, Smale, with
a dimension condition. The lower dimension is n = 7 where there is 28 exotic spheres.
Moreover, for any ε > 0, Farell and Jones can construct such manifold M)Σ with pinched
negative curvature metric

−1 − ε ≤ K ≤ −1 + ε.

Corollary 3.5 (Bes). For these manifolds,

Minvol(M)Σ) > volg0(M)

Jeff Boland, Chris Connell and Juan Souto ([BCS]) have extended BCG’s theorem 3.2 for
complete hyperbolic manifold of finite volume, with the hypothesis that the map f is proper.
But there are counter-examples for the rigidity of the minimal volume in the complete case.

4 Proofs

of the inequality in 3.2 and of 3.3. For simplicity, we suppose that f has degree one. The main
tools are the natural maps of BCG and the Gromov theory of convergence of riemannian
manifolds. Before going inside the proof, we give some ideas.

4.1 Ideas of proofs

Natural maps

Suppose given (X, g0) an hyperbolic manifold (or locally symmetric space of negative curva-
ture), (Y, g) a riemannian manifold, a map f : Y → X of degree one and a constant c > h(g),
where h(g) is the volume entropy. Then there exist a map

Fc : Y → X

with the following properties. The map is C1, homotopic to f and for all y ∈ Y ,

|Jac Fc(y)| ≤
(

c

h(g0)

)n

(1)

Moreover, there is equality at one point if and only if dyFc is an homothety of ratio c
h(g0)

.
This map is called the natural map.
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We explain briefly how to use it. For the inequality, one has

volg(X) = deg(Fc).volg(X) =

∫

Y

F ∗
c (dvolg0)(y)

=

∫

Y

Jac(Fc) dvolg(y)

≤
∫

Y

|Jac(Fc)| dvolg(y)

≤
(

c

h(g0)

)n

volg(Y ) (2)

Let c → h(g), this gives

volg0(X) ≥
(

h(g)

h(g0)

)n

volg(Y ).

If Ricg ≥ −(n − 1)g and g0 is hyperbolic, recall that h(g) ≥ h(g0) thus volg0(X) ≤ volg(Y ).

We give also the ideas of the proof of the equality in [BCG], which are used in [Bes]. One
can normalize such that volg(Y ) = volg0(X) and h(g) = h(g0). As c → h(g0) one sees that
Jac(Fc) converge to 1 in L1 norm. One shows that Fc has a uniform lipschitz bound for
c − h(g0) small enough. Then a subsequence Fck

converge to a 1-lipschitz map F : Y → X.
The map F is injective, differentiable almost everywhere and the derivative dyF is isometric
almost everywhere. If the map was C1, one could conclude by the local inversion theorem.
Instead, we use Federer theory of local degree to show that F is a local homeomorphism
whose reciprocal is 1-lipschitz, and then F is an isometry.

If Minvol(Y ) = volg0(X), we have a sequence of riemannian metrics (gk), such that |K(gk)| ≤
1 and volgk

(Y ) → volg0(X). One consider ck > h(gk) and natural maps Fck
: Y → X. We

have h(gk) → h(g0) and one can suppose ck → h(g0). The estimates on Fck
depends of

the metric gk, thus we need a reference metric. So we consider the limit of the Riemannian
manifolds (N, gk). The relevant compactness result, due to Gromov ([Gro2]) says for any
n ∈ N, D > 0, v > 0, the set

M(n, D, v) =






M | |K| ≤ 1
n-riemannian | diam(M) ≤ D

compact manifold | vol(M) ≥ v






is relatively compact, for the Gromov-Hausdorff or the bilipschitz topology, in the space of n-
riemannian compact manifolds with metric of regularity C1,α. Gromov proved this theorem
with regularity C0,α and Peters ([Pet]) improve it to C1,α. Unfortunately, we don’t have a
bound on the diameter of gk, even with the help of the natural maps, so we cant’t apply
directly this theorem. However,

||Y || ≥ deg(f)||X|| > 0,

thus, by the Gromov’s isolation theorem 2.3, there exists for each k a point pk ∈ Y such that

volgk
(Bgk

(pk, 1)) ≥ εn (3)
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This allows to use the pointed version of the compactness theorem. Then there exists a
n-dimensional manifold Z with a complete metric g∞ of class C1,α, and a point p ∈ Z such
that the following holds. For any R > 0, there exists diffeomorphisms ϕR,k : B(p, R) →
ϕR,k(B(p, R)) ⊂ Y such that ||ϕ∗

R,kgk − g∞||C1,α → 0 on B(p, R) as k → ∞. Needless to say,
ϕR,k(p) = pk and ϕR,k(B(p, R)) ∼ B(pk, R) for k big enough relatively to R. One consider
maps Fk ◦ ϕR,k as R and k goes to ∞. One shows that a subsequence converge to a map
F : Z → X. Then one shows that this map is an isometric embedding, which give a bound
on the diameter of Z. One can conclude that Z is compact, diffeomorphic to Y and isometric
to X.

4.2 BCG’s natural maps

4.2.1 Construction

Up to homotopy, one can suppose f : Y → X smooth. Consider the universal covering
Ỹ , X̃ with the the lift metrics g̃, g̃0. Given c > h(g), we will define f∗-equivariant maps
F̃c : Ỹ −→ X̃, i.e. such that

F̃c(γ.y) = f∗(γ).F̃c(y),

where f∗ : Π1Y ⊂ Isom(Ỹ ) −→ Π1X ⊂ Isom(X̃) is the isomorphism induced by f .

The construction has three main steps. We begin with the lift f̃ : Ỹ → X̃. Denote M(Ỹ )
the space of finite positive measures on Ỹ and M(∂X̃) the space of finite positive measure
on ∂X̃. We will use the model of the disk Dn for the hyperbolic space X̃, thus ∂X̃ will be
identified with its boundary Sn−1. Fix some c > h(g). In the first step, we assigns to each
y ∈ Ỹ a measure νc

y ∈ M(Ỹ ). In the second step, this measure is push forward to a measure

on X̃, then to a measure µc
y ∈ M(∂X̃) by convolution with visual measures of X̃. We will

recall some properties of visual measures and Buseman functions useful later. In the third
step, we’ll define the barycenter map from M(∂X̃) to X̃. Finally, F̃c(y) = bar(µc

y). As the
construction is equivariant, we have downstairs a map Fc : Y → X. Here is a picture :

νc
y ∈ M(Ỹ ) −→ µc

y ∈ M(∂X̃)

↑ ↓

y ∈ Ỹ
f̃ ,F̃c−→ x = bar(µc

y) ∈ X̃

↓ ↓
Y

f∼Fc−→ X

step 1 For each y ∈ Ỹ , one define a finite positive measure νc
y on Ỹ as follows. For each

z ∈ Ỹ ,
dνc

y(z) = e−c.ρ(y,z)dvolg̃(z)
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step 2 This measure is pushed on a finite positive measure f̃∗νc
y on X̃ defined by

f̃∗ν
c
y(U) = νc

y(f̃
−1(U)),

for any Borel set U in X̃. Then one defines a finite measure µc
y on ∂X̃, by doing a convolution

with all probability visual measures Px of ∂X̃:

µc
y(U) =

∫

X̃

Px(U) d(f̃∗ν
c
y)(x)

=

∫

Ỹ

Pf̃(z)(U) dνc
y(z)

Recall that the probability visual measure at x is defined as follows. For each x ∈ X̃, the
unit tangent bundle UxX̃ is identified with the boundary ∂X̃ by the map

v ∈ UxX̃
Ex−→ γv(∞) ∈ ∂X̃

where γv(t) = expx(tv). The visual probability measure Px is the push-forward by Ex of
the canonical probability measure of UxX̃, i.e. Px(U) is the measure of the set of vectors
v ∈ UxX̃ such that γv(+∞) ∈ U .

x

U

We ’ll use the following facts:

Lemma 4.1. i) Px has no atoms on ∂X̃ .
ii) For each γ ∈ Isom(X̃),

Pγx = γ∗Px

iii) For any x, o ∈ X̃, the density of the measures satisfy

dPx(θ)

dPo(θ)
= e−h(g0)B(x,θ)

where B(., θ) is the Busemann function on X̃ with base point o (see bellow).
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We recall the definition and some properties of the Busemann functions on X̃.

The Busemann fonctions (see Ballman-Gromov-Schroeder [BGS] and Ballman[Bal])

They are defined in any Hadamard space, i.e. complete simply connected riemannian mani-
fold of nonpositive curvature. We will use some properties that holds only if the space has
negative curvature.

Fix a base point o ∈ X̃ and consider a geodesic ray c(s) from c(0) = o to θ. For each
x ∈ X̃, the function s → d(x, c(s))−d(c(0), c(s)) is monotone and bounded (use the triangle
inequality) thus one define

B(x, θ) = lim
s→∞

d(x, c(s)) − d(c(0), c(s))

By definition, B(o, θ) = 0 for any θ. The following properties are relatively easy to show.

1. For each θ ∈ ∂X̃ , the Buseman function x 3→ B(x, θ) has regularity C1 and ∇B(x) =
−ċ(0) where c is a unit speed geodesic such that c(0) = x and c(+∞) = θ. In fact, one
can show that the regularity is C2 (Heintze- Im Hof).

2. The Buseman function is convex on X̃. This follows from the convexity of the distance
function in space of nonpositive curvature. Thus the sets BC = {B(., θ) ≤ C}, which
are called horoballs, are convex. The level sets SC = {B(., θ) = C}, which are called
horospheres, are hypersurfaces orthogonal to all geodesic rays which ends in θ. One
can see SC as the limit, when s → +∞ of spheres S(c(s), s + C).

∂X̃

θ

B(., θ) = 0

o

Note that if x /∈ BC , then

B(x, θ) = d(x, BC) + C = d(x, SC) + C.

In negative curvature, the distance function t → d(x(t), p) is strictly convex if x(t) is
a geodesic non colinear to the gradient of q 3→ d(q, p). The same holds for the the
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function t → d(x(t), W ) if W is a convex set ( disjoint from x(t)). It follows that
in negative curvature x 3→ B(x, θ) is strictly convex along geodesics which are not
orthogonal to the horospheres. As a consequence, the horoballs are strictly convex.
This implies that the restrictions of DdB to ∇B⊥, which is the second fondamental
form of the horospheres, are strictly positive. In the hyperbolic case, one can compute
that

DdB = g0 − dB ⊗ dB.

3. If x → θ radialy, then B(x, θ) → −∞. In pinched negative curvature, if x → θ0 $= θ,
then B(x, θ) → +∞. Indeed, in this case, x escapes from any horoball based at θ.

Proof of lemma 4.1: Exercice. Hint: show that dPx(θ)
dPo(θ) is constant on horospheres based at

θ and then consider a dilation with axis the ray oθ.

Notations: from now, we consider Po as a fixed probability measure on ∂X̃
and we just note dθ its density.
We note p0(x, θ) := e−h(g0)B(x,θ) the density of Px.

Some interesting facts about Px and p0(x, θ)

1. p0(., θ) is harmonic and p0 is the Poisson kernel, i.e. the function

x −→
∫

∂X̃

ϕ(θ)p0(x, θ) dθ

is harmonic and coincide with ϕ on the boundary.

2. Let x ∈ X̃ and γ ∈ Isom(X̃) such that x = γ−1(o)), then

p0(x, θ) = Jac(γ)(θ)

where Jac(γ) is the jacobian of γ acting on ∂X̃ by diffeomorphism.
Proof: For each Borel U ⊂ ∂X̃, Px(U) = Po(γU), thus

∫

U

p0(X, θ) dθ =

∫

γU

dθ =

∫

U

Jac(γ)(θ) dθ

3. Px is a probability measure which converge weakly to the Dirac mass δθ0 as x → θ0

along a geodesic.
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We go back to the construction of natural maps. One can verify that µc
y has finite measure

on ∂X̃ , with norm
||µc

y|| = νc
y(Ỹ ) = ||νc

y||
Indeed, by Fubini
∫

∂X̃

∫

Ỹ

p0(f̃(z), θ)e−c.ρ(y,z) dvolg̃(z) dθ =

∫

Ỹ

e−c.ρ(y,z)

∫

∂X̃

p0(f̃(z), θ)dθ dvolg̃(z)

=

∫

Ỹ

e−c.ρ(y,z) dvolg̃(z)

Moreover, one has

Lemma 4.2. The map y → µc
y is f∗ equivariant for f∗ : π1Y → π1X. That is for γ ∈ π1Y ⊂

Isom(Ỹ ), f∗γ ∈ Isom(X̃) acts on M(∂X̃) by the push-forward action

µc
γy = (f∗γ)∗µ

c
y

Proof of the lemma 4.2: Let U ⊂ ∂X̃ a measurable set. One computes

µc
γy(U) =

∫

Ỹ

Pf̃(z)(U)e−c.ρ(γy,z) dvolg̃(z)

=

∫

Ỹ

Pf̃(z)(U)e−c.ρ(y,γ−1z) dvolg̃(z)

=

∫

Ỹ

Pf̃(γz′)(U))e−c.ρ(y,z′) dvolg̃(z
′) (4)

with the variable change z′ = γ−1(z) and the fact that Jac(γ)(z) = 1 as γ acts by isometry.
Now using ii) of lemma 4.1 with β = f∗γ,

(4) =

∫

Ỹ

(Pβf̃(z)(U)dνc
y(z)

=

∫

Ỹ

Pf̃(z)(β
−1U)dνc

y(z)

= µc
y(β

−1(U))

= (f∗γ)∗µ
c
y(U)

by the definition of the push-forward action !.

step 3 Now we take the barycenter of this measure. Recall the definition. Let µ ∈ M(∂X̃)
a finite positive measure, without atoms. Consider the function on X̃

B(x) =

∫

∂X̃

B(x, θ) dµ(θ)

Lemma 4.3. We have the two following facts:
i) B is strictly convex.
ii) B(x) → ∞ as x → θ0 ∈ ∂X̃ along a geodesic.
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Proof of the lemma 4.3: i) is clear because given a geodesic x(t), B(x(t), θ) is convex for
all θ ∈ ∂X̃ , and stricly convex for a set of θ of full µ-measure.
ii) suppose x → θ0. Then B(x, θ) → +∞ for a set of full µ-measure and B(x, θ) → −∞ on a
µ-negligeable set. But we need a more quantitative argument. We consider x → θ0 radially.
Let x1 ∈ oθ0 and x ∈ x1θ0. By convexity of B(., θ), we have for each θ ∈ ∂X̃

B(x, θ) ≥ d(o, x)

d(o, x1)
B(x1, θ)

Note J(x) = {θ ∈ ∂X̃ : B(x, θ) ≤ 0}. Clearly, µ(J(x)) → 0 as x → θ0. Let K a compact
of ∂X̃ , such that µ(K) > 0 and θ0 /∈ K. Suppose x1 sufficiently close of θ0 such that
B(x1, θ) ≥ C > 0 for each θ ∈ K. Now one compute

B(x) ≥
∫

J(x)

B(x, θ) dµ(θ) +

∫

K

B(x, θ) dµ(θ)

≥ d(o, x)

d(o, x1)

∫

J(x)

B(x1, θ) dµ(θ) +
d(o, x)

d(o, x1)

∫

K

B(x1, θ) dµ(θ)

≥ d(o, x)

d(o, x1)
inf
∂X̃

{B(x1, θ)}µ(J(x)) +
d(o, x)

d(o, x1)
Cµ(K)

=
d(o, x)

d(o, x1)

(
inf
∂X̃

{B(x1, θ)}µ(J(x)) + Cµ(K)

)

≥ d(o, x)

d(o, x1)

Cµ(K)

2
−→ ∞ as x → θ0 !.

Thus, B(x) has a unique minimum in X̃, which is called the barycenter of µ and noted
bar(µ).

Lemma 4.4. i) For any γ ∈ Isom(X̃), bar(γ∗µ) = γ(bar(µ)).
ii) In particular, bar(Px) = x.

Proof of lemma 4.4: i) the barycenter x = bar(µ) is the unique solution of vectorial
equation ∫

∂X̃

dB(x,θ).u dµ(θ) = 0, ∀u ∈ TxX̃

As γ acts on X̃ by isometry, g0(∇B(x,θ), u) = g0(Dxγ.∇B(x,θ), Dxγ.u) = g0(∇B(γx,γθ), Dxγ.u).
Thus, ∀v ∈ TγxX̃,

0 =

∫

∂X̃

dB(γx,γθ).v dµ(θ)

=

∫

∂X̃

dB(γx,α).vJac(γ−1)(α) dµ(α)

=

∫

∂X̃

dB(γx,α).v d(γ∗µ)(α)
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thus γx is the barycenter of γ∗µ !.
ii) By symmetry, it’s clear for x = o. Apply i) !.

Now one define Fc(y) = bar(µc
y) from Ỹ to X̃.

Lemma 4.5. Fc

i) is C1,
ii) is equivariant under action of π1Y and π1X
iii) descend in a map Fc : Y −→ X homotopic to f .

Proof of lemma 4.5: i) see [BCG] proposition 2.4 and 5.4.
ii) Apply lemmas 4.2 and 4.4 i)
iii) Consider an (equivariant) homotopy between µc

y and p0(f̃(y), θ)dθ and apply lemma 4.4
ii) !.

4.2.2 Jacobian and derivative estimates

To compute the jacobian of Fc, we’ll use two positive definite symmetric bilinear forms of
trace 1. For any y ∈ Ỹ , v ∈ TFc(y)X̃,

hc
y(v, v) =

∫

∂X̃

(
dB(Fc(y),θ)(v)

)2 dµc
y(θ)

||µc
y||

= g0(H
c
y.v, v)

For any y ∈ Ỹ , u ∈ TyỸ ,

h′
y
c(u, u) =

∫

Ỹ

(
dρ(y,z)(u)

)2 dνc
y(z)

||νc
y||

= g(H ′
y
c.u, u)

Lemma 4.6. For any y ∈ Ỹ , u ∈ TyỸ , v ∈ TF (y)X̃, one has

∣∣g0((I − Hc
y)dyF.u, v)

∣∣ ≤ c.g0(H
c
y.v, v)1/2.g(H ′

y
c.u, u)1/2 (5)

Proof of the lemma 4.6: From the definition of Fc(y), one has for each v ∈ TFc(y)X̃,

0 = DFc(y)B.v =

∫

∂X̃

dB(Fc(y),θ)(v) dµc
y(θ) (6)

Let V is a parallel vector field on TX̃, and pick u ∈ TyỸ . Differentiating equation (6) with
v = Vy, one has

0 =

∫

∂X̃

DdB(F (y),θ)(dyF (u), V )dµc
y(θ)+

∫

∂X̃

dB(F (y),θ)(v).

∫

Ỹ

p(f̃(z), θ)(−cdρ(y,z)(u))dνc
y(z) dθ

18



Thus, using Cauchy-Schwarz in the second term, one has

∣∣∣∣
∫

∂X̃

DdB(F (y),θ)(dyF (u), V )dµc
y(θ)

∣∣∣∣ ≤
∫

∂X̃

|dB(F (y),θ)(v)|
(∫

Ỹ

p(f̃(z), θ)dνc
y(z)

)1/2(∫

Ỹ

p(f̃(z), θ)|cdρ(y,z)(u)|2dνc
y(z)

)1/2

dθ = (E)

Using again Cauchy-Schwarz,

(E) ≤ c

(∫

∂X̃

|dB(F (y),θ)(v)|2
∫

Ỹ

p(f̃(z), θ)dνc
y(z)dθ

)1/2(∫

∂X̃

∫

Ỹ

p(f̃(z), θ)|dρ(y,z)(u)|2dνc
y(z)dθ

)1/2

= c

(∫

∂X̃

|dB(F (y),θ)(v)|2dµc
y(θ)

)1/2(∫

Ỹ

|dρ(y,z)(u)|2 dνc
y(z)

)1/2

= c||νc
y||1/2||µc

y||1/2g0(H
c
y.v, v)1/2g(H ′

y
c.u, u)1/2

Now using DdB = g0 − dB ⊗ dB, the term in DdB can be computed as

g0(dyF (u), v)||µc
y||−
∫

∂X̃

(dB(Fc(y),θ)(dyFu)(dB(Fc(y),θ)(v) dµc
y(θ)

= g0((I − Hc
y)dyF (u), v))||µc

y||

and dividing by ||µc
y|| = ||νc

y||, we obtains the lemma. !

Thus dyFc is controled by Hc
y. Let 0 < λc

1(y) ≤ ... ≤ λc
n(y) < 1 the eigenvalues of Hc

y.

Proposition 4.7. There exists a constant A > 0 such that, for any y ∈ Y ,

|JacFc(y)| ≤
(

c

h(g0)

)n
(

1 − A
n∑

i=1

(λc
i(y) − 1

n
)2

)
(7)

Thus if c is close to h(g0) and |JacFc(y)| close to 1, the eigenvalues are close to 1/n.

Proof of the proposition 4.7: The proof follows from two lemmas:

Lemma 4.8. At each y ∈ Ỹ ,

|Jac(Fc)(y)| ≤
(

c√
n

)n det(Hy
c)1/2

det(I − Hy
c)

Proof of lemma 4.8: Let (ui) an orthonormal basis of TFc(y)X̃ which diagonalizes H ′
y
c. We

can suppose dyFc invertible thus let v′
i = [(I − Hy

c) ◦ dyFc]
−1 (ui). The orthonormalization
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process of Schmidt applied to (v′
i) gives an orthonormal basis (vi) at TyỸ . The matrix of

(I − Hy
c) ◦ dyFc in the base (vi) and (ui) is triangular so

det(I − Hy
c)Jac(Fc)(y) =

n∏

i=1

g0((I − Hy
c) ◦ dyFc.vi, ui)

Thus, with (5),

det(I − Hy
c)|Jac(Fc)(y)| ≤ cn

(
n∏

i=1

g0(Hy
cvi, vi)

)1/2( n∏

i=1

g(H ′
y
cui, ui)

)1/2

≤ cndet(Hy
c)1/2

[
1

n

n∑

i=1

g(H ′
y
cui, ui)

]n/2

and we have the desired inequality with tr(H ′
y
c) = 1 !.

Lemma 4.9. Let H a symmetric positive definite n × n matrix whose trace is equal to one
then, if n ≥ 3,

det(H1/2)

det(I − H)
≤
(

n

h(g0)2

)n/2
(

1 − A
n∑

i=1

(λi −
1

n
)2

)

for a constant A(n) > 0.

Proof of lemma 4.9: see Appendix B5 in [BCG]. This is the point where the rigidity of
the natural maps fails in dimension 2. This completes the proof of the proposition !.

Thus we have obtained the inequality (1) of theorem 3.2 . Before continuing the proof of
the theorem 3.3, we give useful lemmas.

Lemma 4.10. Suppose that |Jac Fc(y)| =
(

c
h(g0)

)n
. Then dyFc is an homothety of ratio

c
h(g0)

.

We have Hc
y = Id

n . From lemma 4.6, we deduce that

||dyFc.u||2 ≤ n

(
c

n − 1

)2

g(H ′
y
cu, u)

thus with tr(H ′
y
c) = 1 we find

tr(F ∗
c g0)(y) ≤ n

(
c

n − 1

)2

(8)

Now
(

c

h(g0)

)2n

= det(F ∗g0) ≤
[

1

n
tr(F ∗g0)

]n

=

(
c

n − 1

)2n
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thus det(F ∗g0) =
[

1
ntr(F ∗g0)

]n
and we must have Fc

∗g0(y) =
(

c
h(g0)

)2
gy !.

The same arguments shows that

Lemma 4.11. For ε > 0, there exists α(ε) > 0 , going to zero with as 0 such that if
(

c

h(g0)

)n

− |Jac(Fc)(y)| ≤ ε

then for any u ∈ TyỸ ,

(1 − α(ε))
c

h(g0)
||u|| ≤ ||dyFc.u|| ≤ (1 + α(ε))

c

h(g0)
||u||

We shall call Yc,ε =
{
y ∈ Y,

(
c

h(g0)

)n
− |Jac(Fc)(y)| ≤ ε

}
. Of course, it depends also of the

metric g. Now we continue the proof of the theorem 3.3. Note (Y, gk, yk) the sequence of
pointed riemannian manifolds and suppose that yk satisfies the inequality 3

Lemma 4.12. If volgk(Y ) → volg0(X) and ck → h(g0), then

volgk
(Y ) − volgk

(Yck,ε) → 0

Proof of lemma 4.12: Suppose ε > 0 small and let εk =
(

ck
h(g0)

)n
− 1. Suppose k big

enough such that

|JacFck
(y)| ≤ 1 − ε

2
on Y − Yck,ε. We have

volg0(X) ≤
∫

Y

|JacFck
(y)| dvolgk

(y) (9)

=

∫

Yck,ε

|JacFc(y)| dvolgk
(y) +

∫

Y −Yck,ε

|JacFck
(y)| dvolgk

(y) (10)

≤ (1 + εk)volg(Yck,ε) + (1 − ε

2
)volgk

(Y − Yck,ε) (11)

= volgk
(Y ) + εkvolgk

(Yck,ε) −
ε

2
volgk

(Y − Yck,ε) (12)

Thus,

volgk
(Y − Yck,ε) ≤ 2

ε
(volgk

(Y ) − volg0(X) + εkvolgk
(Yα)) (13)

−→ 0 (14)

as k → ∞ !.

If we make εk → 0, ck → h(g0) for appropriate sequences, those results says that on sets of
arbitrary large relatively volume, dyFck

tends to be isometric. We need a litle more. Suppose
that ck is close to h(g0), say ck

h(g0)
≤ 1, 001. We have the following.
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Lemma 4.13. There exists r(n) > 0, ε(n) > 0 such that if y0 ∈ Yc,ε(n), ε ≤ ε(n) then for
each y ∈ Bg(y0, r(n)), one has

||dyFc|| ≤ 2
√

n

Proof of lemma 4.13: Name g = gk, c = ck. The equation (5) allows us to controll ‖dyFc‖
with λc

n(y), the maximal eigenvalue of Hc
y. Indeed, let u a normal vector in TyỸ , v = dyFc.u,

(5) gives
(1 − λc

n(y)) |g0(dyFc.u, dyFc.u)| ≤ c. (λc
n(y).g0(dyFc.u, dyFc.u))1/2 (15)

thus

‖dyFc.u‖g0 ≤
c
√
λc

n(y)

1 − λc
n(y)

(16)

Fix some η(n) > 0 such that if λc
n ≤ 1

n + η , the quotient above is lower ≤ 2
√

n. We will
show that λc

n ≤ 1
n + η on some Bg(y0, r(n)). From proposition 4.7 , we know that for ε(n) is

sufficiently small, λc
n(y0) ≤ 1

n + η
2 . We want to controll λc

n along small rays from y0. Recall
that Hc

y is defined by

hc
y(u, v) =

∫

∂X̃

dB(Fc(y),θ)(u)dB(Fc(y),θ)(v) dσc
y(θ) = g0(H

c
y.u, v)

Let u, v two orthonormal vectors at Fc(y0), and U ,V parallel extensions in a neighbourhood

of Fc(y0). We compute the derivative of hc
y(U, V ) in a direction w ∈ TyY . Note dσc

y(θ) =
dµc

y

||µc
y||

.

w.hc
y(U, V ) =

∫

∂X̃

DdB(F (y),θ)(dyF (w), U)dB(Fc(y),θ)(V )dσc
y(θ) +

∫

∂X̃

dB(Fc(y),θ)(U)DdB(F (y),θ)(dyF (w), V )dσc
y(θ) +

∫

∂X̃

dB(Fc(y),θ)(U)dB(Fc(y),θ)(V )w.dσc
y(θ)

Thus |w.hc
y(U, V )| ≤ 2‖DyFc.w‖g0 +

∣∣∫
∂X̃ w.dσc

y(θ)
∣∣ because ‖DdB‖ ≤ 1 and ‖dB‖ ≤ 1.

Recall that

dσc
y(θ) =

dµc
y

µc
y(∂X̃)

=

∫
Ỹ p(f̃(z), θ)e−cρ(y,z) dVg̃(z) dθ∫

Ỹ e−cρ(y,z) dVg̃(z)

Thus,

w.dσc
y(θ) =

∫
Ỹ p(f̃(z), θ)(−c.dρ(y,z)(w))e−cρ(y,z) dVg̃(z) dθ

µc
y(∂X̃)

−

dµc
y

µc
y(∂X̃)2

.

∫

Ỹ

(−c.dρ(y,z)(w))e−cρ(y,z) dVg̃(z) (17)

As |c.dρ(y,z)(w)| ≤ c.‖w‖g, we have

∣∣∣∣

∫

∂X̃

w.dσc
y(θ)

∣∣∣∣ ≤
∫

∂X̃

2c.‖w‖gdσ
c
y(θ) = 2c.‖w‖g (18)
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Thus,
∣∣w.hc

y(U, V )
∣∣ ≤ 2‖DyFc.w‖g0 + 2c.‖w‖g. Now suppose w is normal and use (16):

∣∣w.hc
y(U, V )

∣∣ ≤ 2c

( √
λc

n(y)

1 − λc
n(y)

+ 1

)
(19)

Suppose there exists y ∈ Y such that λc
n(y) ≥ 1

n + η. Take a point y such that λc
n(y) = 1

n + η
and r = d(y0, y) > 0 is minimal. Let γ a unit speed geodesic from y0 to y. Let U(t) a parallel
vector field along Fc(γ) such that U(r) is an unit eigenvector for λc

n(γ(r)). Then with (19),

|λc
n(γ(r)) − λc

n(γ(0))| ≤
∣∣hc

γ(r)(U(r), U(r)) − hc
γ(0)(U(0), U(0))

∣∣ (20)

≤ 2c.

∫ r

0

√
λc

n(γ(t))

1 − λc
n(γ(t))

+ 1 dt (21)

≤ 2cr.





√
1
n + η

1 − ( 1
n + η)

+ 1



 (22)

Thus

η

2
≤ 2cr.





√
1
n + η

1 − ( 1
n + η)

+ 1





and we have a uniform bound below for r(n).

We deduces

Lemma 4.14. For any R > 0, for any k ≥ k(R), the inequality

||dyFck
|| ≤ 2

√
n (23)

holds on B(yk, R).

Proof of lemma 4.14: by 4.13, (23) holds on the r(n)-neighborhood of Yck,ε. On the other
hand, by lemma 4.12 volgk

(Y ) − volgk
(Yck,ε) → 0 as k → +∞. Thus if we have a uniform

lower bound for the volume of the r(n)-balls of B(yk, R), the r(n)-neighborhood of Yck,ε

covers B(yk, R) for k large enough. Recall that volgk
(B(yk, R)) is uniformly bounded below

by (3). By Bishop-Gromov ’s theorem [Gro], for any y ∈ B(yk, R),

volgk
(B(y, r(n)) ≥ volgk

(B(y, 2R)
V−1(r(n))

V−1(2R)
≥> volgk

(B(yk, R)
V−1(r(n))

V−1(2R)

is uniformly bounded below. !.

Considering R → ∞ and the maps Fck
◦ ϕR,k : B(p, R) ⊂ Z → X, one obtain uniform

convergence on compact sets to a map

F : (Z, g∞) → (X, g0)
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Proposition 4.15. F is 1-lipschitz, injective and Jac(F ) = 1 almost everywhere.

Proof: By construction, this map is 2
√

n-lipschitz. Consider y1, y2 ∈ B(pk, R) and δ > 0.
We claim that for k big enough,

dg0(Fck
(y1), Fck

(y2)) ≤ (1 + δ)dgk
(y1, y2) + δ

Consider a tube of gk-geodesics of radius δ
6
√

n from y1 to y2.

y2

y1

δ
6
√

n

≤ δ
6
√

n

We have a uniform lower bound for the volume of this tube. As volgk(Y − Yck,εk
) → 0, for

k big enough, there are geodesics γ whose intersection with Y − Yck,εk
has length ≤ δ

6
√

n .

Hence Fck
(γ) has length ≤ δ

3 + (1 + δ)!(γ). Thus F is 1-lipschitz. By Rademacher theorem,
F is differentiable almost everywhere and |Jac(F )| ≤ 1. To show that Jac(F ) = 1 almost
everywhere, we argue as follows.

Lemma 4.16. For any measurable B ⊂ Z, one has

volg0(F (B)) = B

Proof: Suppose B compact and let Bk = ϕk,R(B) ⊂ B(pk, R) ⊂ Y . We use the fact that
it is almost true for Fck

. We know that |Jac(Fck
)| is close to one on sets Yck,εk

of arbitrarly
large relative volume. Moreover, we have that the set of points in X which have exactly one
antecedent by Fck

has also arbitrarly large relative volume in X. More precisely, for x ∈ X,
let N(x, ck) the number (possibly infinite) of y ∈ Y such that Fck

(y) = x. Using the aira
formula ( Morgan, Geometric Measure Theory, 3.7)

∫

Y

|Jac(Fck
)|dvolgk

=

∫

X

N(x, ck) dvolg0(x),

one shows that ∫

N(x,ck)>1

N(x, ck) dvolg0(x) → 0

as k → ∞. Thus one can show that Jac(Fck
) is close to 1 on sets of relatively large volume

and
lim
k→∞

volg0(Fck
(B)) = lim

k→∞
volgk

(Bk) = volg∞(B)

and the proof of the lemma is easily finished. !.
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To see that F is an injective map, consider z1 $= z2 ∈ Z and suppose x = F (z1) = F (z2). Thus
F (B(z1, r) ∪ B(z2, r)) ⊂ B(x, r). As r → 0, the volume of the balls approches c(n)rn, the
euclidian one (recall that g∞ has regularity C1,α). By the previous result, volg0(F (B(z1, r)∪
B(z2, r)) = volg∞(B(z1, r)) + volg∞(B(z2, r)) ∼ 2c(n)rn ≤ volg0(B(x, r)) ∼ c(n)rn and we
have a contradiction for r small. !.

Proposition 4.17. F is an isometric embedding.

Proof: We have that F injective and dzF is almost everywhere an isometry. If F was C1,
we could conclude by the local inversion theorem. The main step is to show that F is a local
homeomorphism. We use Federer theory of local degree for lipschitz map. Let x = F (z) and
B = Bg∞(z, r). We note FB the restriction of F to B. The local degree is defined by

deg(FB)(x′) =
∑

FB(z′)=x′

signJac(F )(z′)

for almost all x′ ∈ X and deg(FB) is constant on each connected component of X − F (∂B)
([Fed], corollary 4.1.26). As F is injective, x /∈ F (∂B). As F (∂B) is compact, the connected
component of X − F (∂B) which contains in x has a set of point where deg(FB) = 1 of
non-zero volume. Thus deg(FB) = 1 on this component and F is surjective. Thus F is an
homeomorphism from a neighbourhood of z to a neighbourhood of x. Now we show that F
is locally isometric. As Z is a complete manifold of same dimension than X, it will imply
that F is an isometric imbedding. It suffices to show that F−1 is locally lipschitz. For then
F−1 is differentiable almost everywhere and the derivative is an isometry. To show that F−1

is locally 2-lipschitz, one can argue by contradiction. If not, there are points z,z′ arbitrarly
close such that dg0(F (z), F (z′)) ≤ 2dg∞(z, z′). Considering balls centered in z, z′ and with
radius half the distance d(z, z′), one gets a contradiction in showing that the overlapping of
the images decreases sufficiently the volume.!
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