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Résumé. — Katok’s theorem on C1+ε smooth surface diffeomorphisms shows that

their dynamics can be approximated in entropy by uniformly hyperbolic invariant

sets in contrast to the case of homeomorphisms in dimension 2 or diffeomorphisms
in higher dimensions. The proof which we explain in some details, rests on Pesin’s

theory of non-uniformly hyperbolic dynamics which allows the application of results

about (sequences of) uniformly hyperbolic diffeomorphisms.
There are no formal prerequisites beyond the most basic knowledge of dynamical

system theory up to the Birkhoff ergodic theorem but some prior contact with entropy

theory and uniform hyperbolic theory will certainly help.
These notes were intended for the audience of the Institut Joseph Fourier Summer

School in Mathematics (Grenoble, July 2006) organized by L. Guillou and F. Le Roux.
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The goal of these lectures is to present the proof of Katok’s theorem on C1+ε-
smooth surface diffeomorphisms. This theorem says that the entropy (or “complex-
ity”) of such dynamical systems is essentially explained by (uniformly) hyperbolic
dynamics. In particular,

Mots clefs. — surface diffeomorphisms; entropy; periodic points; Lyapunov exponents; Pesin the-

ory; shadowing.
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Theorem 1 (Katok (1980)). — A C1+ε diffeomorphism of a compact surface with
nonzero topological entropy has infinitely many periodic points. More precisely, the
topological entropy(1) provides a lower bound for their numbers:

lim sup
n→∞

1
n

log #{x : fnx = x} ≥ htop(f).

One can compare with the much simpler situation on the interval - see Appendix.
Remark that this is obviously false in dimension 3 or higher. It is also false for
surface homeomorphisms by a celebrated construction of Rees [16]. For now let us
just state that a main open problem is to decide whether the above result holds for
C1 diffeomorphisms.

Remark 1. — Though we emphasize here the fundamental case of surfaces, Ka-
tok’s theorem is in fact a statement in arbitrary dimension about hyperbolic
measures, i.e., invariant and ergodic probability measures with no zero Lyapunov
exponents.

We present a proof which is a very slight variant of the original proof of Katok
(we construct true stable/unstable manifold instead of considering the maybe more
general case of s, u-admissible manifolds). The ingredients are:

1. the computation of topological and measure-theoretic entropy à la Bowen, i.e.,
through counts of (ε, n)-separated or covering sets;

2. linear non-uniform hyperbolic theory due to Oseledets;
3. non-linear Pesin theory (especially Pesin construction of Lyapunov charts);
4. shadowing of pseudo-orbits by pseudo-orbits for globally hyperbolic diffeomor-

phisms.
We give complete proofs for points (3) and (4) on surfaces.
We conclude the lectures by stating the main corollaries of Katok’s theorem and

presenting various open problems and counter-examples.

We wish to thank the organizers of the Grenoble Ecole d’été, L. Guillou and F. Le
Roux, for the opportunity to present this beautiful result of Katok. We also wish to
thank the participants for their interests and questions.

The author will be grateful for any comments and/or corrections.

1. Entropy theory

We recall some well-known fact about so-called topological and metric entropies.
See, e.g., [20] or [9].

Topological entropy was introduced for continuous maps of compact spaces by
Adler, MacAndrew and Konheim [1] by mimicking the earlier measure-theoretic no-
tion recalled below. We use Bowen’s formulation.

(1)The definition of entropy is recalled in section 1.
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Definition 2. — For a map T of a metric space (X, d) one considers the following.
The (ε, n)-Bowen ball centered at x ∈ X is:

B(x, ε, n) := {y ∈ X : ∀0 ≤ k < n d(T ky, T ky) < ε}

The r(ε, n, Y ) covering number of Y ⊂ X is:

r(ε, n, Y ) := min{#R : Y ⊂
⋃

x∈C

B(x, ε, n)}

The entropy of T wrt to d is:

hd(T ) := lim
ε→0+

hd(T, ε) where hd(T, ε) := lim sup
n→∞

1
n

log r(ε, n, X)

Lemma 3. — 1. One can replace the lim sup by a lim inf in the definition of hd(T )
without modifying the values of hd(T );

2. If T is Lipschitz and M is a compact d-dimensional manifold, then hd(T ) ≤
d · log lip(T );

3. hd(T ) is an invariant of uniform topological conjugacy (T ◦Ψ = Ψ ◦ T ′ with Ψ
a bijection which is, together with its inverse, uniformly continuous). Thus one
can indeed speak meaningfully of topological entropy in the setting of continuous
self-maps of compact spaces and write htop(f) := hd(T ) for any distance d.

4. If T is uniformly continuous, hd(T k) = |k|hd(T ) for k ∈ N (or k ∈ Z if T is
invertible)

Exercise 1. — Prove this Lemma. Hint for (i): Remark that:

r(ε, n + m,X) ≤ r(ε/2, n,X)r(ε/2,m, X)

Find an example of a continuous map for which hd(T 2) 6= 2hd(T ).

Exercise 2. — Show that (1) in the space of continuous self-maps of [0, 1], the en-
tropy is generically infinite; (2) in the space of homeomorphisms of [0, 1], it is always
zero.

Question 1. — If one replaces (ε, n)-Bowen balls by subsets S ⊂ X such that ∀0 ≤
k < n diam(T kS) < ε, it is easy to see that n 7→ r(ε, n,X) becomes sub-multiplicative
and that therefore the lim sup becomes a limit in the definition of hd(T, ε). But is the
original lim sup a true limit in fact?

Instead of considering covering sets one can use separated sets: S is (ε, n)-separated
if

x 6= y ∈ S =⇒ ∃0 ≤ k < n d(T kx, T ky) ≥ ε

s(ε, n, Y ) is the maximum cardinality of an (ε, n)-separated subset of Y .

Lemma 4. — Substituting s(ε, n, Y ) for r(ε, n, Y ) in the above definitions of entropy
does not change hd(T ). More precisely,

s(2ε, n, Y ) ≤ r(ε, n, Y ) ≤ s(ε, n, Y )
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Proof: To see the first inequality, let C be an (ε, n)-cover of Y with #C = r(ε, n, Y ).
Let S be a (2ε, n)-separated subset of Y . Let c : S → C be such that for every
x ∈ S, x ∈ B(c(x), ε, n). If c(x) = c(x′) then d(T kx, T kx′) ≤ d(T kx, T kc(x)) +
d(T kc(x′), T kx′) < 2ε, a contradiction. Hence c : S → C is one-to-one, proving the
first inequality.

For the second, observe that if S is an (ε, n)-separated subset of Y with #S =
s(ε, n, Y ), then for any x ∈ Y \ S, Y ∪ {x} is not separated, i.e., x ∈ B(y, ε, n) for
some y ∈ S. Thus, S is an (ε, n)-cover of Y , proving the second inequality. �

We turn to the measure-theoretic entropy defined by Kolmogorov in 1958 as a new
invariant for classification problems in abstract ergodic theory. We use the formulation
given by Katok in a metric setting.

Definition 5. — Let T be a Borel map of the metric space (X, d). Let µ be a prob-
abily measure. Let 0 < λ < 1. The (ε, n, µ, λ)-cover number is:

r(ε, n, µ, λ) := min

{
#R : µ

(⋃
x∈C

B(x, ε, n)

)
> λ

}
If µ is a T -invariant and ergodic probability measure, the entropy of (T, µ) wrt to d
is:

hd(T, µ) := lim
ε→0+

hd(T, µ, ε) where hd(T, µ, ε) := lim sup
n→∞

1
n

log r(ε, n, µ, λ)

Lemma 6. — 1. hd(T, µ) is independent of 0 < λ < 1;
2. One can replace the lim sup by lim inf in the definition of hd(T, ε) without mod-

ifying hd(T );
3. hd(T, µ, ε) ≤ hd(T, ε);
4. hd(T ) is an invariant of measure-preserving conjugacy;
5. hd(T k, µ) = |k|hd(T ) for k ∈ N (or k ∈ Z if T is invertible).

As for topological entropy, we can use s-numbers defined as follows:

s(ε, n, µ, λ) := inf
µ(Y )>λ

s(ε, n, Y )

Indeed, s(ε, n, Y ) ≤ r(ε/2, n, Y ) ≤ s(ε/2, n, Y ) (see above) and r(ε/2, n, Y ) = infµ(E)>λ r(ε/2, n, Y )
so that

s(ε, n, µ, λ) ≤ r(ε/2, n, λ) ≤ s(ε/2, n, λ)
proving the claim.

Question 2. — One can make the same remark and the same question here as we
made for hd(T ).

Theorem 2 (Variational principle). — If T is continuous and X is compact then

hd(T ) = sup
µ∈Prob(T )

hd(T, µ) = sup
µ∈Probe(T )

hd(T, µ)

where Prob(T ) is the set of T -invariant probability measures on X and Probe(T ) is
the subset of those who are ergodic.
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Remark 7. — Measure-theoretic entropy can be (and was first) defined in a purely
measure-theoretic setting. The variational principle then indicates the relevant ”topo-
logical” notion (which in fact depends only on the Borel structure), eg, the right
distance to use to compute the topological entropy in the above formalism (see the
important example of Markov shifts with countably many states [5]).

2. Non-uniform hyperbolic theory

2.1. Linear theory. — Note: Complete proofs can be found in [11] for the King-
man and Oseledets theorems and [9] for the ε-reduction theorem (which we prove in
the main case of interest to us).

Theorem 3 (Kingman’s subadditive ergodic theorem)
Let T be an endomorphism of a probability space (X,A, µ). Let a : Z×X → R be

subadditive:
a(m + n, x) ≤ a(m,x) + a(n, Tmx)

with max(a(1, ·), 0) ∈ L1(µ). Then

a∗(x) := lim
n→∞

1
n

a(n, x)

exists a.e. and satisfies: a∗(Tx) = a∗(x) and
∫

a∗ dµ = infn≥1
1
n

∫
a(n, x) dµ(x).

Exercise 3. — Show that this theorem easily implies the existence of the Lyapunov
exponents for a diffeomorphism f of a surface M :

λ±(x) := lim
n→±∞

1
n

log ‖Tfn
x ‖ exists a.e.

More precisely, for a.e. x ∈ M , there exists non-zero vectors v± ∈ R such that:

λ±(x) := lim
n→±∞

1
n

log ‖Txfn.v±‖ exists.

Exercise 4. — Show that if f is a C1 map on a compact manifold and µ is an
invariant and ergodic probability measure with only strictly negative exponents, then
µ is carried by a periodic orbit.

In fact, much more is true. First, going forward in time, one gets:

Theorem 4 (Oseledets). — Let T be an endomorphism of a probability space (X,A, µ).
Let A : X → M(d, R) be a measurable map such that:

max(log ‖A‖, 0) ∈ L1(µ)

Then there exists a measurable flag:

Rd = F 1
x ) F 2

x ) · · · ) F r(x)
x = {0}

and measurable functions λ1
x > · · · > λ

r(x)
x with the following properties for all x in a

subset of X of full measure:
– the functions r(x), dim F i

x, λi
x are T -invariant;

– A(x).F i
x ⊂ F i

x;
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– for all v ∈ F i
x \ F i+1

x ,

lim sup
n→∞

1
n

log ‖A(Tn−1x) . . . A(x).v‖ = λi
x

Going both ways, it yields:

Theorem 5 (Oseledets). — Let T be an automorphism of a probability space (X,A, µ).
Let A : X → GL(d, R) be a measurable map such that:

max(log ‖A‖, log ‖A−1‖, 0) ∈ L1(µ)

Then there exists a measurable decomposition:

Rd = E1
x ⊕ E2

x ⊕ · · · ⊕ Er(x)
x = {0}

and measurable functions λ1
x > · · · > λ

r(x)
x with the following properties for x in a set

of full measure:

– the functions r(x), dim F i
x, λi

x are T -invariant;
– A(x).Ei

x = Ei
x;

– for all v ∈ Ei
x \ {0},

lim sup
n→±∞

1
n

log ‖A(n, x).v‖ = λi
x

where A(n, x) := A(Tn−1x) . . . A(x) and A(−n, x) := A(n, T−nx)−1 for n ≥ 0.
– the angles don’t close too fast: for all i 6= j,

lim
n→∞

1
n

log∠(Ei
T nx, Ej

T nx) = 0

Exercise 5. — Deduce Theorem 5 from Theorem 4 (in dimension 2). Hint: Apply
the previous theorem to both (T,A) and (T̃ , Ã) = (T−1, A−1◦T−1). First show that the
Lyapunov exponents of Ã are the opposite of those of A: λi

x = λ̃
r(x)−i+1
x , r̃(x) = r(x).

Then consider Ei
x = F i

x ∩ F̃
r(x)−i+1
x . Finally compute limn→∞

1
n log det A(n, x) both

by using these results and Birkhoff’s ergodic theorem.

2.2. Ruelle-Margulis Inequality. — The following is the Ruelle-Margulis in-
equality [18].

Theorem 6. — Let f : M → M be a C1-map of a compact d-dimensional mani-
fold and let µ be a f-invariant and ergodic probability measure with a.e. Lyapunov
exponents µ1 ≥ µ2 ≥ · · · ≥ µd (repeated according to multiplicities). Then

h(f, µ) ≤
d∑

i=1

max(µi, 0)

We need the following consequence of Oseledets theorem:
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Fact 8. — Let f : M → M be a C1 map and µ an invariant and ergodic probability
measure with log+ ‖Txf‖ ∈ L1(µ) and Lyapunov exponents µ1 ≥ µ2 ≥ · · · ≥ µd

(repeated according to multiplicities). For any ε > 0, there exists N < ∞ and a
measurable subset MN with µ(Mn) > 1− ε such that for all x ∈ MN ,

TxfNB1 ⊂ K


e(µ1±ε)N 0 . . .

0 e(µ2±ε)N 0 . . .

. . . 0 e(µ3±ε)N 0 . . .
. . .

. . . 0 e(µd±ε)N

B1

where B1 is the unit ball and K(x) is some orthogonal map, depending on x.

Proof: Let An := Txfn (we assume M = Td to avoid charts, etc.). The polar
decomposition says that An = OnPn where On is orthogonal and Pn is the positive
matrix (A∗

nAn)1/2. Pn = Q−1
n DnQn with Qn orthogonal and Dn diagonal, so that

An = KnDnQn with Kn := OnQ−1
n . In particular, An(B1) = KnDn(B1).

Let d1
n ≥ d2

n ≥ · · · ≥ dd
n be the diagonal coefficients of Dn. We have to show that,

for µ-a.e. x ∈ M , 1
n log di

n → λi.
We do it for d = 2. Observe that d1

n = ‖An‖, which grows like e(λ1±ε)n. Now
|detAn| = d1

nd2
n from the above formula but it is equal to e(λ1+λ2±2ε)n by the Os-

eledets theorem 4. This solves the problem for i = 2.
The general case (d > 2) can be solved similarly by using ‖An ∧ An‖ = d1

nd2
n,

‖An ∧An ∧An‖ = d1
nd2

nd3
n, etc. �

Remark 9. — The above is in fact the first step of the proof of Oseledets theorem
(see [11]), rather than its consequence.

Proof of Theorem 6: For simplicity, we assume that M = Td. Let ε > 0.
Let N < ∞ and MN be given by the previous Fact.
As f is C1, there exists ρ1 > 0 such that, for every x ∈ M , 0 < r < ρ1, every

y ∈ B(x, r),
fN (B(y, r)) ⊂ TxfNB(y, 2r)

By Birkhoff ergodic theorem, there exist Λ ⊂ M with µ(Λ) > 0 and n0 < ∞ such
that for all x ∈ Λ, all n ≥ n0,

1
n

#{0 ≤ k < n : fkx ∈ MN} > 1− ε.

Thus, for each x ∈ Λ, there exists 0 ≤ i(x) < N such that for all n ≥ n0,

1
n

#{0 ≤ k < n : fkN+i(x)x ∈ MN} > 1− ε.

Note that i(x) is necessary as µ is not necessarily ergodic for fN .
Let 0 < ρ0 < ρ1 be arbitrarily small. Let 0 < ρ < ρ0/2 be small enough so that

d(x, y) < ρ =⇒ ∀0 ≤ i < N d(fkx, fky) < ρ0/2
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Notice the chain of dependence:

ε N,MN  ρ1  ρ0  ρ

We are going to bound r(ρ, n,Λ) and hence h(f, µ, ρ).
Let Mρ satisfy: for all x ∈ M , 1 ≤ #(B(x, ρ/2) ∩ Mρ) ≤ C(M), with C(M)

depending only on M . We give each x ∈ Λ the following description. Let c(x) = y ∈
Mρ such that x ∈ B(y, ρ) and

cn(x) := (i(x), c(x); c(x′), c(fNx′), . . . , c(f (n−1)Nx′)) where x′ = f i(x)x

In(x) := (i0(x), . . . , in(x)) with ik(x) = 1MN
(fkNx′)

Observe that
{y ∈ M : cn(y) = cn(x)} ⊂ B(x, ρ0, nN)

Hence it is enough to bound the number of distinct descriptions for n ≥ 1, i ∈ {0, 1}m,
m ≥ n:

C(n, i) = {cn(x) : x ∈ Λ and In(x) = i}
The previous Fact is easily seen to imply:

Claim 10. — Let Cρ(S) be a set of ρ/2-balls from Mρ covering S ⊂ M with #Cρ(S)
minimum.

If B is a ball of radius ρ and x ∈ MN :

#C1(TxfN (B)) ≤ C(M) expN
d∑

i=1

max(µi, 0).

where C(M) is a number depending only on M .
On the other hand, for any x ∈ M ,

#C1(fN (B)) ≤ C(M)lip(f)dN

Therefore for i ∈ {0, 1}n, for all x ∈ M :

#C(k + 1, i) ≤ #C(k, i)C(M)lip(f)N

If ik = 1, then

#C(k + 1, i) ≤ #C(k, i)C(M) expN

d∑
j=1

max(µj , 0).

For x ∈ Λ,
∑n−1

k=0(1− ik) ≤ εn, therefore:

#C(n, i) ≤ N(#Mρ)2 · C(M)n · lip(f)εdNn · expnN

d∑
j=1

max(µj , 0).

Observe that #{i(x) : x ∈ Λ} ≤ εn
(

n
εn

)
. Therefore, taking 1

nN log and letting n →∞:

hd(f, µ, ρ0) ≤
d∑

j=1

max(µj , 0) + εd log lip(f) +
1
N

log C(M) +
1
N

φ(ε)
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with φ depending only on ε with limε→0 φ(ε) = 0. We then let ρ0 → 0, then N →∞,
then ε → 0. The theorem is proved. �

2.3. Lyapunov charts. — By making a non-autonomous (linear) change of coor-
dinates, we can make the hyperbolicity appear uniform:

Theorem 7 (Pesin ε-reduction). — Assume the hypothesis of Theorem 5: Let T
be a measure-preserving self-map of a probability space (X,A, µ). Let A : X →
GL(d, R) be a measurable map such that:

max(log ‖A‖, log ‖A−1‖, 0) ∈ L1(µ)

For any ε > 0, there exists a measurable map Cε : X → GL(n, R) with the following
properties:

– limn→±∞
1
n log(‖Cε(Tn)‖+ ‖Cε(Tnx)−1‖) = 0;

– Cε(Tx)−1A(x)Cε(x) has the following form:
A1

ε(x) 0 . . .
0 A2

ε(x) 0 . . .
. . .

. . . 0 A
r(x)
ε (x)


where Ai

ε(x) is a dim Ei
x × dim Ei

x-matrix satisfying:

eλi
x−ε‖v‖ ≤ ‖Ai

ε(x).v‖ ≤ eλi
x+ε‖v‖

– writing (e1, . . . , ed) for the canonical basis of Rd,

Cε(x)
〈
ek, ek+1, . . . , ek+dim Ei

x−1

〉
= Ei

x

if k = dim E1
x + · · ·+ dim Ei−1

x .

Problem 1. — Can one have log ‖Cε(x)−1‖ /∈ L1(µ)?

The following simple reasoning will be used repeatedly for uniformization:

Exercise 6. — Let (an)n∈Z be some sequence of numbers satisfying: limn→∞
1
nan =

0. Then for every ε > 0, setting Am := supn∈Z am+n − ε|n| < ∞, we have:

am+n ≤ Am + ε|n| and − ε ≤ Am+1 −Am ≤ ε

Proof of Theorem 7: We restrict ourselves to the case r = d = 2, dim E1
x =

dim E2
x = 1. In this case, the Oseledets theorem gives two measurable unit vectors

v1
x, v2

x (unique up to sign). For i = 1, 2, define

M i
ε,x :=

∑
n∈Z

‖A(n, x).vi
x‖e−λin−ε|n|

and let:

Cε(x).ei =
vi

x

M i
ε,x
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So that

Cε(T (x))−1A(x)Cε(x).ei = Cε(T (x))−1.
±‖A(x).vi

x‖vi
T (x)

M i
ε,x

= ±
M i

ε,T (x)

M i
ε,x

‖A(x)vi
x‖ei

But (using A(x).vi
x = ‖A(x).vi

x‖vi
T (x)):

‖A(x).vi
x‖ ·M i

ε,T (x) =
∑
n∈Z

‖A(x).vi
x‖ · ‖A(n, T (x)).vi

T (x)‖e
−λin−ε|n|

=
∑
n∈Z

‖A(n + 1, x).vi
x‖e−λin−ε|n| = eλi±ε

∑
n∈Z

‖A(n, x).vi
x‖e−λin−ε|n| = eλi±εM i

ε,x

So that the above yields:

Cε(T (x))−1.A(x).Cε(x).ei =: Ai
ε(x).ei with Ai

ε(x) = eλi±ε.

Let us prove that Cε(x) is tempered. Observing that M i
ε,x ≥ 1 yields:

‖Cε(x)‖ ≤ 1

On the other hand,

Cε(x)−1 =
(

M1
ε,x 0
0 M2

ε,x

)
W (x)−1

where W (x).(ae1 + be2) = av1
x + bv2

x. So

‖Cε(x)−1‖ ≤ ‖W (x)−1‖max(M1
ε,x,M2

ε,x)

Setting w(x) := ∠(v1
x, v2

x), we have

‖av1
x + bv2

x‖2 = a2 + b2 + 2ab cos w(x) = (a− b cos w(x))2 + b2 sin2 w(x)

= (b− a cos w(x))2 + a2 sin2 w(x) ≥ a2 + b2

2
sin2 w(x)

Hence, ‖W (x)−1‖ ≤ 1
sin w(x) , and, by Theorem 5

lim
|m|→∞

1
m

log w(fmx) = 0

So it is enough to prove that M i
ε,x is tempered. This is a delicate point(2), which

requires another application of Oseledets theorem (and of Poincaré recurrence) as
follows.

Observe that the cocycle Ai
ε (which satisfies the assumptions of Oseledets theorem

as it is bounded with bounded inverse) must also have exponent λi since:

λi = lim
|n|→∞

1
n

log ‖A(x, n).vi
x‖ = lim

|n|→∞

1
n

log
(
M i

ε,x(M i
ε,T nx)−1Ai

ε(n, x)
)

and, by Poincaré recurrence M i
ε,x ≈ M i

ε,T nx for arbitrarily large n. Now the same
identity gives:

M i
ε,fnx = ‖A(x, n).vi

x‖−1Ai
ε(n, x)−1Mε,x

(2)Though M i
ε,T (x)

= e±εM i
ε,x is immediate.
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so that
lim

n→∞

1
n

log M i
ε,fnx = −λi

x + λi
x = 0

�

Pesin’s Lyapunov charts extends the above linear uniformization to the non-linear
map.

Theorem 8 (Pesin’s Lyapunov Charts). — Let M be a a compact d-dimensional
manifold with a Riemannian structure defining exp : TM → M . Let f : M → M be a
C1+α-diffeomorphism, α > 0. Let µ be an ergodic and invariant probability measure.

For all ρ0 > 0 and ε > 0 small enough, there exist a measurable function ρ : M →
(0, ρ0) and a measurable family of linear isomorphisms C(x) : Rd → TxM satisfying
the following properties. Setting χx : B(0, ρ(x)) → M , z 7→ expx(C(x).z),

1. limn→∞
1
n log ρ(fnx) = 0 and ρ(fx) = e±ερ(x);

2. χ−1
fx ◦ f ◦ χx : B(0, ρ(x)/2 max eµi) → B(0, ρ(fx)) coincides with the restriction

to B(0, ρ(x)/2) of a diffeomorphism of R2 of the following form:

(2.1) z 7→ Aε(x).z + βx(z)

with Aε(x) as in the ε-reduction theorem and βx(0) = 0 and for some constant
K(f):

‖Tzβx‖ ≤ K‖C(Tx)‖−1ρ(x)α ≤ ε

Proof: For simplicity, we assume that M = T2. In particular, exp(x, v) = x+v. We
fix some invariant and ergodic probabilty measure µ ∈ Probe(T ) with two Lyapunov
exponents of distinct signs (as it is the most interesting case), i.e., r = 2 and

λ := eλ1
> 1 > µ := eλ2

and let
ε :=

1
100

min{λ− 1, 1− µ}

The ε-reduction theorem 7 applied to A(x) = Txf yields a linear change of coordinates
Cε : M → GL(n, R) inducing χx : R2 → R2 by χx(z) = x + Cε(x)z. Let

Fx(z) = Cε(fx)−1(f(x + Cε(x)z)− f(x))

F ′
x(0) = Cε(fx)−1 ◦ Txf ◦ Cε(x) is therefore of the form Aε(x) in the notations of

Theorem 7. Thus

Fx(u, v) = ((λ± ε/10)u + α̃1(u, v), (µ± ε/10)v + α̃2(u, v))

where α̃i(0, 0) = 0, T0α̃i = 0 and (u, v) 7→ T(u,v)α̃i is α-Hölder with constant bounded
by

k(x) := K‖Cε(Tx)−1‖ · ‖Cε(x)‖α

where K is the α-Hölder constant of x 7→ Txf on M . Observe that k(x) is tempered
(limn→∞

1
n log k(Tnx) = 0).

We have to show that Fx extends to a globally hyperbolic diffeomorphism of R2 in
the sense of (2.1).
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Observe first that it is the case for Fx restricted to B(0, r(x)) with

r(x) := min(ρ0, (ε/2k(x))1/α))

has the form (2.1). Let b : R2 → [0, 1] be a C∞ function with b(t) = 1 for ‖t‖ ≤ 1,
b(t) = 0 for ‖t‖ ≥ 2. Let ρ(x) := infn∈Z r(fnx)eε|n|/10 and define

(2.2) Global(f, x, f(x), ρ(x))(z) := b(z/ρ(x))Fx(z) + (1− b(z/ρ(x))T0Fx.z

It is enough to see that TzGlobal(f, x, f(x), ρ(x))− T0Fx has small norm (as a linear
operator in R2). We have

TzGlobal(f, x, f(x), ρ(x))− T0Fx = b(z/ρ(x))TzFx+

(1− b(z/ρ(x))T0Fx + ρ(x)−1(Fx(u, v)− T0Fx(u, v))b′(z/ρ(x))− T0Fx

= −b(z/ρ(x))Tzαx + ρ(x)−1αx(z)b′(z/ρ(x))

The first term is smaller than k(x)·(2ρ(x))α. The second term is bounded by r(x)−1×
k(x)r(x)1+α × C ≤ Ck(x)r(x)α. Both bounds are less than ε/2 by the definition of
ρ(x) ≤ r(x). �

Remark 11. — Observe that what forces the Pesin charts to be small is the linear
distortion ‖C(x)−1‖. This is only known to be subexponential along orbits. A mod-
ulus of continuity weaker than Hölder would not allow to control this with r(x) also
subexponentially small. Thus the C1+α is essential to the techniques involved.

The known counter-examples [15] are however very restrictive, thus it is not im-
possible that a similar theory would exist for less smooth diffeomorphisms.

3. Shadowing by Hyperbolic Sequences

3.1. Statement. — Recall that ‖ · ‖0 is the sup norm in the relevant space of
functions.

Definition 12. — Let 0 < µ < 1 < λ, ε > 0 and d > 0. A (λ, µ, ε, d)-hyperbolic
sequence is a sequence of C1-diffeomorphisms fm : R2 → R2, m ∈ Z, of the form:

fm(x, y) = (x0
m + λx + α(x, y), y0

m + µy + β(x, y))

with α(0, 0) = β(0, 0) = 0 and ‖α′‖0 and ‖β′‖0 bounded by ε and max(|x0
m|, |y0

m|) ≤ d.
Let F(λ, µ, ε, d) be the space of such sequences endowed with the product topology.

Theorem 9. — For all 0 < µ < 1 < λ < ∞ and any 0 < ε < ε0(λ, µ) there exists

γ0 :=
3ε

λ− µ− 2ε
< γ1 :=

√
3ε

λ− 10ε
< 1 and δ0 :=

2
1− µ− 2ε

with the following property.
Let γ0 < γ < γ1, d > 0, δ ≥ δ0d and ∆ ≥ 1+ε(δ/d)

λ−1−2ε d. Let f = (fm)m∈Z ∈
F(λ, µ, ε, d). Then there exists a unique sequence of Lipschitz maps gm : [−∆,∆] → R
satisfying:

(i) |gm(0)| ≤ δ;
(ii) lip(gm) ≤ γ;
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(iii) fm(graph(gm)) ⊃ graph(gm+1).
The underlying map f ∈ F(λ, µ, ε, d) 7→ g0 ∈ C0([−∆,∆]) is continuous.

We use the notations vn = C±1(λ± ε)n for:

C−1(λ− ε)n ≤ |vn| ≤ C(λ + ε)n

and fn
m = fm ◦ fm+1 ◦ · · · ◦ fn−1 if m ≤ n and fn

m = (fm
n )−1 otherwise.

Theorem 10. — For all 0 < µ < 1 < λ < ∞, 0 < ε < ε1(λ, µ), there exists
R0 := R0(λ, µ, ε) < ∞ with the following property.

For any d > 0 and f ∈ F(λ, µ, ε, d), there exists a unique sequence (zm)m∈Z of
points in R2 satisfying:

(i) supm∈Z ‖zm‖ < ∞;
(ii) fm(zm) = zm+1;

Additionally:
(iii) supm∈Z ‖zm‖ < R0d
(iv) z is uniformly hyperbolic: there exist C > 1 and a sequence of independent unit

vectors vs
m, vu

m ∈ R2 such that f ′m(zm).vσ
m = vσ

m+1 for σ = u, s and:

‖(fn
m)′(zm).vs

m‖ = C±1(µ± 5ε)n−m, ‖(fn
m)′(zm).vu

m‖ = C±1(λ± 5ε)n−m

Moreover, if f ′m = fm for m = 0, . . . ,M define two sequences of points zm and z′m
respectively, then

‖zm − z′m‖ ≤ R0d
(
(λ− 5ε)−(M−m) + (µ + ε)m

)
We call this exponential shadowing.

Remark 13. — The following is a variant of standard material. We have freely used
the textbook [9] (chapter 6).

3.2. Invariant cone. —

Definition 14. — The γ-horizontal cone is:

Hγ := {(u, v) ∈ R2 : |v| ≤ γ|u|}.

Lemma 15. — There exists 0 < γ′ < γ such that, for all m ∈ Z, (x, y) ∈ R2,

f ′m(x, y).Hγ ⊂ Hγ′ ⊂ Hγ .

Also for all w ∈ Hγ ,

(λ− 5ε)‖w‖ ≤ ‖f ′m(x, y).w‖ ≤ (λ + ε)‖w‖

Proof: Let (u′, v′) := f ′m(x, y).(u, v). Compute:

|u′| = |λu + α′x.u + α′y.v| ≥ (λ− ε− εγ)|u|.
Also:

|v′| = |µv + β′x.u + β′y.v| ≤ (µ + ε)|v|+ ε|u| ≤ ((µ + ε)γ + ε)|u| ≤ µγ + 2ε

λ− 2ε
|u′|
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But γ ≥ γ0 implies:

γ′ :=
µγ + 2ε

λ− 2ε
< γ.

We turn to the growth of the norm of w = (u, v) ∈ Hγ . Obviously, writing w′ =
f ′m(x, y).w,

‖w′‖2 = (u′)2 + (v′)2 ≤ (λ + ε)2u2 + (µ + ε)2v2 ≤ (λ + ε)2‖w‖2

proving the upper bound. On the other hand,

‖w‖ ≤
√

1 + γ2|u| ≤ (1 + γ2)|u|

Also,

‖f ′m(x, y).w‖ ≥ |u′| ≥ (λ− 2ε)|u| ≥ λ− 2ε

1 + γ2
‖w‖ ≥ (λ− 5ε)‖w‖

where the last inequality holds because γ ≤ γ1. �

3.3. The Graph Transform is Well-Defined. — Let

L(γ, δ) := {g ∈ lip([−∆,∆]) : lip(g) ≤ γ and ‖g(0)‖ ≤ δ}.

We are going to define a sequence of graph transforms Γm : L(γ, δ) → L(γ, δ) such
that:

graph(Γmg) = fm(graph(g)) ∩ [−∆,∆]× R.

fm and g ∈ L(γ, δ) induce the following mapping Gm : [−∆,∆] → R:

Gm(x) := π1 ◦ fm(x, g(x))

where π1(x, y) = x. Thus, where it makes sense:

(Γmg)(Gm(x)) = π2 ◦ fm(x, g(x)).

Claim 16. — (here as in other places we pretend that g is C1 and not only Lipschitz
for simplicity)

|Gm(0)| ≤ d + εδ(3.1)

G′
m(x) ≥ λ− 2ε for all x ∈ [−∆,∆].(3.2)

As ∆ ≥ (d + εδ)/(λ− 1− 2ε),

(λ− 2ε)∆− (d + εδ) ≥ ∆

so the claim will imply that G−1
m : [−∆,∆] → [−∆,∆] is well-defined. The proofs are

simple computations:

|Gm(0)| = |π1 ◦ fm(0, g(0))| ≤ |x0
m|+ |α′y| · |g(0)| ≤ d + εδ

and:
|G′

m(x)| = |λ + α′x + α′y.g′(x)| ≥ λ− ε− εγ ≥ λ− 2ε.

Thus, Γm : L(γ, δ) → lip([−∆,∆]) is well-defined with:

(3.3) Γmg(x′) = π2 ◦ fm(G−1
m x′, g(G−1

m x′)).
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To see that Γm : L(γ, δ) → L(γ, δ) is well-defined we have to check the following.
First, as fm preserves the γ-horizontal cone,

lip(Γmg) ≤ γ

Second, |g(x∗)| ≤ δ + γ|x∗| and

Gm(x∗) = x0
m + λx∗ + α(x∗, g(x∗)) = 0

=⇒ λ|x∗| ≤ |x0
m|+ ε|x∗|+ ε(δ + γ|x∗|) =⇒ |x∗| ≤

d + εδ

λ− 2ε

therefore (using µ ≤ λ− 4ε)

|(Γmg)(0)| ≤ |y0
m|+ |π2 ◦ fm(x∗, g(x∗))− π2(fm(0, 0))|

≤ |y0
m|+ (µ + ε)|g(x∗)|+ ε|x∗| ≤ |y0

m|+ (µ + ε)(δ + γ|x∗|) + ε|x∗|

≤ d+(µ+ε)δ+((µ+ε)γ+ε)
d + εδ

λ− 2ε
≤ (µ+2ε)δ+

(
1 +

µγ + 2ε

λ− 2ε

)
d ≤ (µ+2ε)δ+2d ≤ δ

by the assumption δ ≥ δ0d. This completes the proof that Γmg ∈ L(γ, δ).

3.4. The Graph Transform is a Contraction. — The previous results show
that there are orbits remaining close to the origin for any finite time segment [n, m]:
the pre-images by fn ◦ . . . fm−1 of Γm−1 ◦ · · · ◦Γn(0) where 0 ∈ L(γ, δ). To extend this
to infinite time segments we shall find a sequence of gm ∈ L(γ, δ) with Γmgm = gm+1

by establishing contraction properties of the Γm’s.

For n ≤ m, let Γm
n = Γn ◦ Γn+1 ◦ · · · ◦ Γm−1 : L(γ, δ) → L(γ, δ).

Proposition 17. — Let m ≤ n be two integers. Then, for any g, h ∈ L(γ, δ),

(3.4) ‖Γn
m(g)− Γn

m(h)‖0 ≤ (µ + 2ε)n−m‖g − h‖0

Proof: It enough to show (3.4) for n = m + 1. Let Gm be defined by fm and g as
above and let Hm be defined likewise by fm and h. Let x ∈ G−1

m ([−∆,∆]) ⊂ [−∆,∆].
Observe that:

|Gm(x)−Hm(x)| = |π1(fm(x, g(x))− fm(x, h(x)))| ≤ ε|g(x)− h(x)|

Hence, using that lip(Γh) ≤ 1:

|Γmg(Gm(x))−Γmh(Gm(x))| ≤ |Γmg(Gm(x))−Γmh(Hm(x))|+|Γmh(Hm(x))−Γmh(Gm(x))|
≤ |π2(fm(x, g(x))− fm(x, h(x)))|+ |Hm(x)−Gm(x)|

≤ (µ + ε)|g(x)− h(x)|+ ε|g(x)− h(x)| ≤ (µ + 2ε)‖g − h‖0

�
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3.5. Proof of the Theorem. — Observe that the properties (i)-(iii) of the gm’s
announced in the statement of the Theorem are equivalent to gm ∈ L(γ, δ) and
Γmgm = gm+1.

Remark that, in the norm ‖ · ‖0,

diamL(γ, δ) ≤ 2δ + 2γ∆.

Existence of the sequence (gm)m∈Z. — For n ∈ Z, let g
(n)
n be an arbitrary element of

L(γ, δ) and for all k > n, let:

g
(n)
k = Γk

n(g(n)
n )

Observe that, for each m ∈ Z:

gm := lim
n→−∞

g(n)
m exists in L(γ, δ).

Indeed, for any p ≤ q ≤ m:

‖g(p)
m − g(q)

m ‖0 = ‖Γm
q (g(p)

q )− Γm
q (g(q)

q )‖0 ≤ (µ + 2ε)q−mdiamL(γ, δ)

which goes to zero as q = max(p, q) → −∞. Thus we have a Cauchy sequence in the
Banach space (lip([−∆,∆]), ‖ · ‖0). L(γ, δ) is a closed subset of this space, hence gm

belongs to it.
As Γm is continuous, g

(p)
m+1 = Γmg

(p)
m goes to the limit: Γmgm = gm+1.

Uniqueness of the sequence. — If (g′m)m∈Z is another such sequence, then, for any
m ∈ Z, for all n ≥ 0,

‖g′m − gm‖0 ≤ (µ + 2ε)n‖g′m−n − gm−n‖0 ≤ (µ + 2ε)ndiamL(γ, δ)

so that g′m = gm.

Continuous dependence. — Let a > 0 and f ∈ F(λ, µ, ε, d). Let n ≥ 0 be an integer
large enough so that (µ + 2ε)ndiam(L(γ, δ)) < a/2. Let b > 0 be so small that

(3.5) ∀k ∈ [−m,n]‖fk − f ′k‖0 < b

imply:

‖Γ0
−ng−n − Γ′0−ng−n‖0 < a/2

where Γ and Γ′ are defined by f and f ′ respectively. Let U be a neighborhood of f
in F(λ, µ, ε, d) such that every f ′ ∈ U satisfies (3.5). Thus, for any such f ′ ∈ U ,

‖g0 − g′0‖0 = ‖Γ0
−n(g−n)− Γ′0−n(g′−n)‖0

≤ ‖Γ0
−n(g−n)− Γ′0−n(g−n)‖0 + ‖Γ′0−n(g−n)− Γ′0−n(g′−n)‖0

<
a

2
+ (µ + 2ε)n‖g−n − g′−n‖0 < a

This concludes the proof of Theorem 9.

3.6. Proof of Theorem 10. —
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Existence. — Let τ : R2 → R2 be the symmetry wrt x = y. Under the assumptions
of the theorem, one can apply Theorem 9 both to f := (fm)m∈Z and f−1 := (τ ◦f−1

−m◦
τ)m∈Z. Indeed, f−1 is a (µ−1, ε̂, d̂)-hyperbolic sequence for d̂ := 2µ−1d, ε̂ := 2λµ−1ε
(assuming ε small enough).

Thus, for 0 < ε < ε1(λ, µ) small enough, we can define, with obvious notations:

0 < γ̂0 := max(γ0(f), γ0(f−1)) < γ̂1 := min(γ1(f), γ1(f−1)) < 1

Also let λ̂ := min(λ, µ−1), µ̂ := max(µ, λ−1), δ̂0 := 2
1−µ̂−ε̂ and

∆̂ :=
1 + ε̂δ̂0

λ̂− 1− 2ε̂
d̂.

From now on, we drop the hats.
In this way we obtain maps gm and g̃m in L(γ, δ). We claim that (1) graph(gm) ∩

τ(graph(g̃−m)) is a single point zm and that (2) this sequence zm satisfies properties
(i)-(iv).

To see (1), observe that ‖gm‖0 ≤ δ+γ∆ ≤ ∆, hence graph(gm) is a line contained in
the square [−∆,∆]2 and joining its left side to its right side. Similarly, τ(graph(gm))
is a line contained in the same square joining its top side to its bottom side. The
two lines must obviously intersect (apply the Brouwer fixed point theorem –or just
elementary continuity arguments– to gm ◦ g̃−m : [−∆,∆]).

(2) easily follows from (1) upon remarking that τgraph(gm) is a stable manifold.

Uniqueness. — Let (z′m)m∈Z be another solution satisfying ‖z′m‖ ≤ δ for all m ∈
Z. We prove that z′m ∈ graph(gm) in the above notation. To see this, repeat the
construction of the gm’s starting with g

(n)
n := y′n, the y-coordinate of z′n, for each

n ∈ Z. It follows that z′n ∈ graph(g(n)
n ) hence z′m ∈ graph(g(n)

m ) for all m ≥ n. Letting
n → −∞ we obtain the claim.

Additional properties. — Clearly the above proof implies sup ‖zm‖ ≤ 2
√

2∆, hence
we can take

R0 := 8
1 + ε̂δ̂0

λ̂− 1− 2ε̂
µ−1.

yielding property (iii).
To establish property (iv) we sketch the proof of the existence of an unstable

direction with the stated properties.
First, the fact that f maps the cone Hγ strictly into itself (Lemma 15) implies

that the projective version of the differentials f ′(zm) are uniformly contracting in
the Birkhoff metric of the projectivization of Hγ (see [12]) and this allows one to
easily construct the invariant direction vu

m ∈ Hγ (in fact this argument shows that
the functions gm are differentiable). The second part of the same Lemma gives the
statement about the rate of expansion.

Exponential shadowing. — Let f, f ′ ∈ F(λ, µ, ε, d) and M ≥ 1 be as in the statement
of the theorem. Let gm, g̃m, g′m, g̃′m be the maps in L(γ, ∆) associated respectively
to f, f−1, f ′, f ′

−1 defined as above. Define Wu
m := graph(gm), W s

m := τ(graph(g̃m))
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and define W ′u,W ′s similarly. Let zm = Wu
m ∩W s

m and z′m = Wu′
m ∩W s′

m be the
associated points.

Let wm be the unique intersection point of W ′u
m and W s

m for m = 0, . . . ,M (this
is well-defined by the same arguments as those given above for zm).

wm and z′m are both on W ′u
m whose tangent vectors are expanded by a factor at

least λ− 5ε under fm. Thus,

d(wM , z′M ) ≥ 1
1 + γ

(λ− 5ε)M−md(wm, z′m)

that is, as both wM and z′m belong to [−∆,∆]2 and γ < 1:

d(wm, z′m) ≤ 4
√

2∆(λ− 5ε)−(M−m)

Using that wm and zm are both on W s we obtain:

d(wm, zm) ≤ 4
√

2∆(µ−1 − 5ε)−m

The triangular inequality yields the claim about d(zm, z′m) for m = 0, . . . ,M .
This concludes the proof of Theorem 10.

4. Katok Non-Uniform Shadowing Lemma

Theorem 11. — Let f : M → M be a C1+α (α > 0) diffeomorphism of a compact
manifold possessing a hyperbolic measure(3) µ. There exists a compact set Λ such that
µ(Λ) > 0 and for all r1 > 0, there exist a number r2 > 0 such that if x ∈ Λ ∩ f−nΛ
and d(x, fnx) < r2, then there exists a periodic point z ∈ M such that:

– fn(z) = z;
– d(fkz, fkx) < r1 for all k = 0, . . . , n− 1.

Exercise 7. — Show that if µ above is not reduced to a periodic orbit then f has
infinitely many periodic orbits.

We give as usual the proof for the two dimensional case. We further assume that
M = Td for simplicity.

Let µ be some hyperbolic measure of f . Let λ > 0 > µ be the exponents of µ. Let
L := eλ > 1 > K := eµ and 0 < ε < min(λ/100,−µ/100, ε2(L,K)) where ε1 > 0 is
defined in Theorem 10.

Recall that Pesin’s theory defines linear charts χx(z) = x + Cε(x).z on B(0, ρ(x))
— see Theorem 8. Now, let’s use some of measure theory’s magic (see [17], Theorems
2.18 and 2.23):

Theorem 12 (Lusin’s Theorem). — Let X be a locally compact Hausdorff space
such that every open set is σ-compact and µ be a Borel positive measure which is finite
on compact subsets. Then µ is regular and for every measurable function f : X → R
such that µ({x : f(x) 6= 0}) < ∞ and every ε > 0, there exists a continuous fonction
g : X → R with bounded support satisfying:

µ({x : g(x) 6= f(x)}) < ε

(3)This means ergodic, invariant probability measure with no zero Lyapunov exponent.
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In particular, there is a compact subset of measure arbitrarily close to 1 on which the
restriction of f is continuous.

Applying this to the functions ρ and Cε (eg, the values of the coefficients), we
obtain a compact subset Λ1 ⊂ M such that:

– µ(Λ1) > 0;
– Cε(x) and ρ(x) are continuous on Λ1.
Recall that Theorem 10 has defined a number R0 > 0. Let

d :=
min(r1,minΛ1 ρ)

R0
.

Let r2 > 0 be small enough so that for arbitrary x ∈ Λ1, y ∈ f−1Λ1, we have:

d(fx, y) < r2 =⇒ Global(f, x, fy, ρ(x)) is (L,K, ε, d)-hyperbolic.

where Global(·) has been defined in the proof of Theorem 8, eq. (2.2).
We now define a hyperbolic sequence f = (fm)m∈Z ∈ F(L,K, ε, d) as:
– fm = Global(f, fmx, fm+1x, ρ(fmx)) for 0 ≤ m < n− 1;
– fn−1 = Global(f, fn−1x, x, ρ(fn−1x));
– fk+qn = fk for k ∈ [0, n− 1] and q ∈ Z.
Applying Theorem 10, we get a periodic sequence (zm)m∈Z, zm+n = zm which is

close to the origin. Indeed, the last claim of Theorem 10 for the sequences f and f ′

defined by the Lyapunov charts around the true orbit of x gives, for 0 ≤ m < n:

‖zm−0‖ ≤ R0d((L−5ε)(n−m)+(K+ε)m) ≤ max(ρ(x)e−εm, ρ(fnx)e−ε(n−m)) ≤ ρ(fmx)

Hence, (zm)m∈Z stays in the domains of the charts χfm mod nx and therefore gives a
f -orbit on M ,

z = χx(z0)
Finally, for 0 ≤ m < n,

d(fmz, fmx) ≤ sup
m
‖zm‖ < R0d < r1.

as claimed, finishing the proof of the Shadowing Theorem.

5. Existence of Hyperbolic Horseshoes

5.1. Statements. — Katok applied the previous idea to get not only a periodic
orbit but a whole horseshoe.

Theorem 13. — Let f : M → M be a C1+ε diffeomorphism of a compact manifold.
Let µ be a hyperbolic, ergodic invariant probability measure. For any h < h(f, µ),
there exists a hyperbolic invariant compact set Λ ⊂ M such that

h(f |Λ) ≥ h.

Moreover,

lim sup
n→∞

1
n

log #{x ∈ M : fnx = x is hyperbolic} ≥ sup
µ∈Probhyp(f)

h(f, µ)
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5.2. Proof of the Theorem. — We proceed basically as in the proof of the Shad-
owing Theorem 11, but for many orbits at once.

Let r0 > 0 small enough so that, according to the relevant variant of Katok’s
formula:

lim inf
n→∞

1
n

log s(r0, n, µ) > h.

Let Λ and r2 > 0 be the compact set and positive number defined in the proof of
Theorem 11 for r1 = r0/4. Maybe after reducing it (but keeping positive measure),
we can assume that Λ ⊂ B(x∗, r2), for some x∗ ∈ Λ.

As µ(Λ) > 0,

s(r0, n,Λ) ≥ s(r0, n, µ) = inf
µ(Y )≥µ(Λ)

s(r0, n, Y )

so,

lim inf
n→∞

1
n

log s(r0, n,Λ) > h.

For each n take an (r0, n)-separated set Cn ⊂ Λ with maximum cardinality. Observe
that

Λ ⊂
⋃

x∈Cn

B(x, r0, n)

(otherwise the cardinality wouldn’t be maximum).
A simple application of Birkhoff ergodic theorem yields:

Claim 18. — Maybe after reducing Λ by an arbitrarily small measure, for any δ > 0,
there exists n1 < ∞ such that for all x ∈ Λ and n ≥ n1,

∃(1− δ)n ≤ k < n s.t.fkx ∈ Λ.

Therefore one can find an integer n′ ∈ [(1 − δ)n, n] and a subset C ′
n ⊂ Cn with

#C ′
n ≥ #Cn/n ≥ e(h+ε)n such that all x ∈ C ′

n satisfy fn′
x ∈ Λ.

We claim that one can find an (ε, n′)-separated (and not just (ε, n)-separated) sub-
set C ′′

n ⊂ C ′
n with #C ′′

n ≥ ehn′
. To this end, partition C ′

n according to (c(x, k))n′<k<n.
This partition has at most Ce(n−n′)(htop(T )+ε) elements, hence contains a set C ′′

n with
cardinality at least en(h+ε)−δn/C > enh, proving the claim.

For simplicity we pretend now that n′ = n and C ′′
n = Cn.

Now define a basic sequence to be a finite sequence of maps fx := (fx
0 , . . . , fx

n−1)
for each x ∈ Cn by setting

fx
m := Global(f, fmx, fm+1x, ρ(fm(x))) (0 ≤ m < n− 1)

fx
n−1 := Global(f, fn−1x, x∗, ρ(fn−1x∗))

Claim 19. — Each fx
m is (L,K, ε, d)-hyperbolic.

Therefore, given (xi)i∈Z, an arbitrary sequence of points of Cn, the concatenation
f of the basic sequences fxi belongs to F(L,K, ε, d) and hence, as in the proof of the
Shadowing Theorem 11, defines a sequence (zm)m∈Z. These points are close enough
to the origins of the charts so as to correspond to the f -orbit on M of the point
z = χx0(z0).
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Let S1 be the union of points obtained in this way. Let S :=
⋃n

k=0 fkS1 be the
union of the corresponding orbits. S1 is the image by a continuous map of a compact
set, hence it is compact. Thus S is a compact and invariant set.

Note that, as a consequence of the Shadowing Theorem,

d(fm+inz, fmxi) < r1/2

so that S is r1/2 separated: if z and z′ are obtained from two distinct sequences
then there exists some k ∈ Z such that d(fkz, fkz′) > r0/2. In particular, fn|S1 is
topologically conjugate to the full shift {1, . . . ,#Cn}Z.

Finally Theorem 10 (iv) also shows that S satisfies uniform hyperbolicity estimates
which can be carried to the manifold.

This concludes the proof of the theorem.

5.3. Corollaries. —

Remark 20. — It is not difficult to ensure the following additional property (”weak
star closeness” of Λ to µ). Given any number of continuous functions φ1, . . . , φN and
ε > 0, one can choose Λ so that for some n0 < ∞, for all x ∈ Λ and all n ≥ n0, for
all i = 1, . . . , N , ∣∣∣∣∣ 1n

n−1∑
k=0

φi(fkx)− µ(φi)

∣∣∣∣∣ < ε.

Let us give three especially interesting corollaries.

Corollary 21. — Let f : M → M be a C1+ε diffeomorphism of a compact surface.
Then

lim sup
n→∞

1
n

log #{x ∈ M : fnx = x is hyperbolic} ≥ htop(f).

Remark 22. — It has been shown by Chung and Hirayama [3] that the inequal-
ity above is an equality provided that one counts only ”uniformly hyperbolic periodic
points”, i.e., x ∈ M with fnx = x and

‖Txfk(fmx)‖ ≥ γeλk

for arbitrary γ > 0 and 0 < λ < htop(f).
It is on the other hand easy to construct examples such that fn has infinitely

many fixed points and V. Kaloshin [6] has shown that there is an open subset of
C2 diffeomorphisms for which, generically, the number of hyperbolic periodic points
grows arbitrarily fast (see also [7] for which an ”prevalent” upper bound is proved by
controlling the above number γ as n →∞).

Corollary 23. — (of the proof) Let f : M → M be a C1+ε diffeomorphism of a
compact manifold. If f has a hyperbolic measure which is not periodic then htop(f) >
0.

In particular, on surfaces, zero topological entropy implies that all ergodic invariant
probability measure have a zero exponent, except possibly for the periodic ones.
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Exercise 8. — 1. Find an example where the hyperbolic measure itself has zero
entropy.

2. Prove the above corollary. Hint: Construct two distinct periodic points by
applying the shadowing theorem 11 to two returns xi, f

nixi (i = 0, 1) to the compact
set (use the exponential shadowing). Check that for p ≥ 1 large enough, the following
map is one-to-one: π : {0, 1}Z → M defined by π(α) is the point shadowing:

(. . . , xαn
, f(xαn

), . . . , fpn1n2−1(xαn
, . . . ).

Question 3. — Find a C1+ε-surface diffeomorphism with zero entropy, infinitely
many periodic points, all of them hyperbolic. Can you ensure that the Lyapunov
exponents are bound away from zero?

Corollary 24. — For any compact surface M2, the map

htop : Diff1+ε(M2) → [0,∞)

is lower semi-continuous. Also, htop : Diff∞(M2) → [0,∞) is continuous.

We now give the proofs of the Corollaries.

The first corollary is a consequence of Ruelle-Margulis Inequality (Theorem 6).
Let µ be an ergodic and invariant probabiltiy measure with non-zero entropy and
exponents µ1 ≥ µ2. We must have 0 < h(f, µ) ≤ max(λ1, 0). Hence λ1 > 0. On the
other hand, µ is also invariant by f−1 with exponents −µ2 ≥ −µ1 and the previous
reasoning applied to it yields −µ2 > 0. Thus, µ is hyperbolic. Hence:

sup
µ∈Probhyp(f)

h(f, µ) = sup
µ∈Probe(f)

h(f, µ) = htop(f)

by the Variational Principle Theorem 2.
The first assertion of the second corollary is a consequence of the structural stability

of uniformly hyperbolic dynamics (see Theorem 18.2.1 of [9]). The second assertion
follows now from Yomdin’s theory [19, 2]:

f ∈ C∞(M) 7→ htop(f)

is upper semi-continuous.

6. Conclusion - Comments

6.1. Counterexamples. — In higher dimensions: it is not true that there are in-
variant hyperbolic sets with entropy approximating the entropy of the whole. Indeed,
just consider the product of your favorite nonzero topological entropy system with
the identity on the circle. To kill all periodic points without modifying the entropy,
replace the identity with an irrational rotation.

For homeomorphisms: Rees [16] has built surface homeomorphisms with nonzero
topological entropy which are minimal, hence without any periodic points. She ob-
tains these dynamics as limits of zero entropy transformations. Hence the topological
entropy is not lower semicontinuous on Homeo(M2).
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It is a major open problem to decide if C1 surface diffeomorphisms are like home-
omorphisms or C1+α diffeomorphisms in this respect (see [10] for a ”combinatorial”
distortion control for C1 interval maps).

6.2. Global results. — Stronger results are known for interval maps, which go
beyond approximating to give a global structure:

Theorem 14 (B 1995, B 2000, B-Ruette 2001). — Let f : [0, 1] → [0, 1] be a
C1+ε map. If htop(f) > 0 then f is entropy-conjugate to a countable Markov shift.

If, additionally, f has a measure of maximum entropy (which is the case if f is Cr

with r large enough), then, for some positive integer p:

lim inf
n→∞

#{x : fpnx = x}
epn·htop(f)

≥ 1

On surfaces we have the same result for a class of models:

Theorem 15 (B). — Let f be a piecewise affine homeomorphism of a compact sur-
face (say T2). If htop(f) > 0, then f has finitely many ergodic invariant probability
measures with maximum entropy (for short maximum measures. Moreover, we
have a multiplicative lower bound for the periodic points: for some positive
integer p:

lim inf
n→∞

#{x : fpnx = x}
epn·htop(f)

≥ 1

The above results motivate the:

Conjecture 1. — Any C1+ε diffeomorphism of a compact surface with nonzero topo-
logical entropy has an at most countable, possibly empty, collection of maximum mea-
sures.

If there exists a maximum measure, then a multiplicative lower bound for the peri-
odic points holds.

Conjecture 2. — Any C∞ diffeomorphism of a compact surface with nonzero topo-
logical entropy has a finite collection of maximum measures, non-empty by Newhouse’s
result. In particular, a multiplicative lower bound for the periodic points holds.

Appendice A
On the Interval

Theorem 16 (Misiurewicz (1979)). — If f : [0, 1] → [0, 1] is a continuous map
then

lim sup
n→∞

1
n

log #{x : fnx = x} ≥ htop(f).

Exercise 9. — Let f : [0, 1] → [0, 1] be continuous. Let P be a finite partition of
[0, 1]. A P -graph is a finite graph which satisfies the following properties:

– its set of vertices includes P ;
– if U → U1 → · · · → Un → V with U, V ∈ P and Ui /∈ P for all 1 ≤ i ≤ n, then

fn+1(U) ⊃ V and fk(U) 6⊃ W for all 1 ≤ k ≤ n and W ∈ P ;
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– if some vertex U has a successor not in P then it is its only successor;
– each vertex has some successor.
Show that there exists c > 0 such that if P is a fine enough partition of [0, 1] into

subintervals and any P -graph has entropy, defined as lim supn→∞
1
n log N(n) if N(n)

is the number of paths of length n, at least htop(fM )− c.(4) and compare with a graph
with more arrows.

Prove the above Misiurewicz theorem.
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