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Quasi-isometric rigidity of 3-manifold groups.

2 Introduction

One of the central goals of the geometric group theory is to see how much algebraic
information about a group could be recovered from the geometric information about
it Cayley graph.

The prototypical examples go back to Stallings’s work on the ends of groups in
late 1960-s:

Theorem 2.1. (J.Stallings) A (finitely generated) group G splits nontrivially as an
amalgam over finite groups if and only if G has infinitely many ends. In particular,
if groups G, G are quasi-isometric then G splits if and only if G' does.

This theorem has a further refinement: Quasi-isometries of G preserve its decom-
position as an amalgam (over finite groups) in the following sense:

Suppose that a finitely generated group G is isomorphic to (I, Gy, G.), the
fundamental group of a graph of groups where each edge group is finite and each
vertex group has at most 2 ends.



Theorem 2.2. Suppose that f : G — G is a quasi-isometry. Then f sends each
1-ended vertex group G, of G to a subset f(G,) C G so that there ezists a 1-ended
vertex subgroup G, and its conjugate ¢G,g ' in G so that the Hausdorff distance
between f(G,) and gG,g " is finite.

This result was very recently generalized by Panos Papasoglou [7] to the case of
decompositions of 1-ended groups over 2-ended subgroups.

The goal of these lectures is to explain another generalization of this theorem,
namely in the context of 3-manifolds. Since freely decomposable 3-manifold groups
are already covered by Stallings’ theorem (and the groups with < 2 ends are easy to
understand), we will concentrate on the freely indecomposable ones. They are funda-
mental groups of aspherical 3-manifolds, i.e. 3-manifolds with contractible universal
covers. According to Thurston’s Geometrization Conjecture (GC), such manifolds
are geometrizable, i.e. admit a geometric decomposition which will be defined in the
next section.

Theorem 2.3. (M.Kapovich, B.Leeb, [5]) Let M be a closed aspherical 3-manifold
satisfying GC. Then the geometric decomposition of the universal cover of M s pre-
served by quasi-isometries.

Corollary 2.4. (M.Kapovich, B.Leeb, [5]) Suppose that G is the fundamental group
of a manifold M which appears in the above theorem and which is not a Sol-manifold.
Let G' be a group which is quasi-isometric to G. Then there is a short exact sequence

1-K—=G —-G—1,

with K a finite group and G the fundamental group of a geometrizable 3-dimensional
orbifold. E.g., G contains a finite index subgroup which is the fundamental group of
a closed geometrizable aspherical 3-manifold.

There are many words in this section which are probably unfamiliar to many of
you, see the next section for the explanations.

3 Geometric decomposition of 3-manifolds

Throughout the rest of these notes we will consider only aspherical 3-manifolds.

Definition 3.1. A manifold is said to be closed if it is compact and has empty bound-
ary.

Most of what I say will hold for compact 3-manifolds whose boundary consists of
tori and Klein bottles, but I will stick to closed manifolds to simplify the language.

In dimension 3 TOP=PL=DIFF (Moise), i.e. each topological 3-manifold admits
a unique PL/smooth structure. Hence throughout I will be working in the category
of differentiable manifolds, assuming for simplicity that all 2- and 3-manifolds are
orientable.

Loosely speaking, the goal of the Geometrization Conjecture (GC) is to generalize
the classification of surfaces by their genus.
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Definition 3.2. A geometry is a simply-connected homogeneous unimodular Rie-
mannian manifold X . Unimodularity means that X admits a discrete group of isome-
tries with compact quotient.

A 14 Felix Klein we will be identifying geometry with its group of isometries.

Definition 3.3. A compact manifold M is called geometric if int(M) = X /T has
finite volume, where X 1is a geometry and ' is a discrete group of isometries of X
acting freely.

3-dimensional geometries (the first 5 are symmetric spaces):

o 53 3 H?, are the constant (sectional) curvature geometries.
e 5?2 x R,H? x R are the product geometries.

e Nil, Sol, Sf’\L/g(]R) are the twisted product geometries.

Note that only the spherical geometry is compact. The hyperbolic geometry is
the most interesting one. See [10] for a detailed discussion of these geometries.

Decomposition of 3-manifolds:

Assume that M is closed (compact, no boundary).

Step 1: Connected sum decomposition of M into prime pieces (closed manifolds
which cannot be decomposed further).

Step 2. If M is prime, consider a toral decomposition of M along incompressible
! tori into simple pieces (the ones which cannot be decomposed further). Note that
simple pieces typically have nonempty toral boundary.

Both decomposition processes terminate (Kneser, Haken: theory of normal sur-
faces).

Uniqueness of the decompositions: (1) Components of the connected sum decom-
position are uniquely determined by M (Milnor). (2) The toral decomposition is
unique up to isotopy if we consolidate simple pieces into maximal geometric pieces
(Jaco, Shalen; Johannson).

Similar decompositions exist for compact manifolds with boundary.

Thurston’s Geometrization Conjecture (GC): Fach prime closed 3-manifold M
s either geometric or its simple pieces are geometric.

A similar conjecture can be stated (and is proven by Thurston!) if M has
nonempty boundary.

A restatement of the GC: Each closed prime 3-manifold is either geometric or
it splits along disjoint incompressible tori as M;picr U Mipin, where Mypiqr, is a disjoint

T.e. m-injective.



union of hyperbolic manifolds, and M,;, is a graph-manifold, i.e. a manifold obtained
by gluing along boundary tori of geometric 3-manifolds which are not modeled on

H.

Graph-manifolds are interesting and well-understood objects, they appear for in-
stance in theory of complex surface singularities. Example of a graph-manifold: let
¥ be a surface of genus > 1 with one boundary circle, M;, M, are copies of ¥ x S*.
Now glue M;, M, along their boundary tori.

Omnibus Theorem (Thurston et al.):

(1) GC is equivalent to the conjunction of PC (Poincare conjecture), SSFC (spher-
ical space form conjecture) and HC (Hyperbolization conjecture).

(2) (Thurston) GC holds if M is prime but not simple.

(3) (Thurston) GC holds for Haken manifolds®. (For proofs of this theorem, which
includes (2) as a special case, see [6], [3].)

(4) If M is (prime) aspherical then GC holds for M <= GC holds for all
manifolds finitely covered by M <= GC holds for all (prime) manifolds which are
homotopy-equivalent to M.

(5) GC holds if 71 (M) contains Z X Z or has infinite center.

Explanation:

PC: If M is homotopy-equivalent to the sphere then it is diffeomorphic to the
sphere. Equivalently, if M is (closed) simply-connected, then M = S3.

SSFC: If the universal cover of M is the 3-sphere then M admits a metric of
(positive) constant curvature, i.e. it is geometric, modeled on S3.

HC: If M is prime, aspherical (i.e. its universal cover is contractible) and 7y (M)
does not contain Z X Z then M is hyperbolic.

HC is the most interesting (although, not the most famous) of the 3 parts of the
geometrization conjecture.

A confidence-building exercise: GC implies PC. Indeed, suppose that M is
closed and simply-connected. Consider connected sum decomposition of M into prime
components M, ..., M. Then each M; is also closed and simply-connected. Since
m1(M;) is trivial, M; contain no incompressible tori, hence, by GC, M; is geometric.
Since the only compact 3-dimensional geometry is spherical, we conclude that M; =
S3 for each i. Hence M = S3 as well.

The above described the status of the GC until November of 2002, when Grisha
Perelman announced a proof of the GC.

Definition 3.4. A compact (aspherical) 3-manifold is called Seifert if any of the
following equivalent properties hold:

1. M admits a foliation by circles.

2I.e. M is prime and contains an incompressible surface: a 7 -injective surface which is not S2.
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2. M admits a finite cover which is a circle bundle over a surface.

3. M is irreducible and there is a short exact sequence
1-Z—-m(M)—F—1,

where F is a discrete isometry group of H2.
4. M admits a geometric structure modelled on B>, Nil,H? x R or SLy(R).

Example 3.5. Let S be a surface and ¢ : S — S be a finite order diffeomorphism.
Then the mapping torus M = S x [0,1]/¢ is a Seifert manifold. To see the foliation
by circles consider the projections to M of the segments {x} x [0, 1]: Since ¢ has finite
order, finite union of such projections is a circle in M.

The geometric decomposition of M lifts to a geometric decomposition of the uni-
versal cover X = M of the manifold M: The tori and Klein bottles lift to 2-planes in
X which split X into geometric components of either hyperbolic or Seifert type. We
will refer to the above planes as splitting planes.

Definition 3.6. Suppose that X, X' are universal covers of geometrizable 3-manifolds.
We say that an (L, A)—quasi-isometry f : X — X' preserves the geometric decompo-
sition if there exists a number C = C(L, A) such that:

For each geometric component Y of X (resp. a splitting plane) there exists a
unique geometric component Y' of X' (resp. a splitting plane) such that Hausdorff
distance between f(Y) and Y' is < C.

We observe that a quasi-isometry f which preserves the geometric decomposi-
tion, induces an isomorphism f, : T — T’ of the trees T, T’ dual to the geometric
decompositions of X, X'.

Definition 3.7. A graph-manifold is a closed geometrizable 3-manifold M without
hyperbolic components, i.e. all its geometric components are Seifert or Sol-manifolds.

M is called a proper graph manifold if it is not geometric (i.e if it neither Seifert nor
Sol-manifold).

Conjecture 3.8. Fundamental groups of all proper graph-manifolds are quasi-isometric
to each other.

A closed geometrizable manifold M is called a flip-manifold if the following holds:

Each Seifert component M; of M is a product of a compact orientable surface
and a circle: M; = S; x S'. This decomposition defines a two circle foliations on the
boundary of M into horizontal circles (contained in 8S; x {t}, t € S') and vertical
circles (of the form the {z} x S', z € 8S;). We now require that each gluing map
between boundary tori of Seifert components of M interchanges (flips) vertical and
horizontal foliations.

The first step towards proving Theorem 2.3 is the following



Theorem 3.9. ([4]) Let M be a closed geometrizable manifold which is not a Sol or
Nil manifold. Then there exists a flip-manifold M' and a quasi-isometry f : M — M’
which preserves the geometric decomposition.

The most basic special case of this theorem is the following, which was indepen-
dently observed by Epstein, Gersten and Mess in late 1980-s:

Proposition 3.10. H2 x R and SLy(R) are quasi-isometric.

Proof: Note that H? x R and SL,(R) are cyclic isometric covers of H2 x ' and of the
unit tangent bundle UH?, respectively. I will describe a bilipschitz homeomorphism
h : UH? — H? x S' which then will lift to a quasi-isometry between the universal
covers.

Given a pair of points z,y € H? let Il,, : U,H* — U,H? denote the parallel
transport of the unit tangent spaces along the unique geodesic from z to y.

Pick a base-point o € H? and define the map h by sending
(z,v) = (, gz (v)),

where v € U, H?. Let’s check that this map is Lipschitz. Let (z,v), (y, w) be nearby
points in UH?:

d((z,v), (y, w)) = d(z,y) + £(v, Hys(w)),

where a = Z(v, I, (w)) stands for the angle in the unit circle U,H?. (This ad hoc
metric is invariant under isometries and thus is as good as any.) Then the angle

between the vectors
My (v), Iy (w) € U,H?

is at most «+ 0, where § is the angle deficit of the geodesic triangle A = A(ozy), i.e.
the difference between 7 and the sum of the angles of this triangle. However, by the
Gauss-Bonnet formula,

§ = Area(A).
Moreover, there exists a constant C' such that if one side of A is < d then

Area(A) < Cd.

Therefore the mapping A is Lipschitz.

4 Metrics of non-positive curvature on geometriz-
able 3-manifolds

Not all geometrizable 3-manifolds admit metrics of non-positive curvature. First of

all, by Cartan-Hadamard theorem the universal cover of such a manifold has to be

contractible, which is yet another reason to stick to aspherical manifolds. There are
however more interesting obstructions. Suppose that ¢t € m;(M) = G is a nontrivial
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element whose centralizer in GG is a subgroup H C . Consider the isometric action of
G on X = M. Since M is compact, g has an azis, i.e. an invariant geodesic [. Recall
that the union of axes of ¢ is a closed convex subset which splits as a product Y x [.
This set has to be preserved by the group H, since for each h € H, h(l) is an axis
of hth™! = t. For the same reason, the action of H on Y x [ preserves the splitting
as well as the orientation on [. Thus each element of the commutator subgroup of
H acts trivially on the [-factor. Note also that ¢ acts trivially on Y (since ¢ is a
translation along each of its axes). To be more specific, assume now that Q@ = H/(g)
is the fundamental group of a closed oriented surface, and hence H is a finite index
subgroup in 71 (M) has the presentation

<a'1; bla '-'aa'nabnaﬂ[a’iat] = 17 [b’wt] = la H[a’hbz] = tm>
i=1

However the action of [a;, b;] is trivial on [, the action of t™ is trivial on Y. Therefore
t™ = 1. Since G is torsion-free, it follows that m = 0 and hence H splits as a direct
product of Z and the surface group.

We therefore conclude that Nil and S’EQ(R) manifolds do not admit metrics of
non-positive curvature. A minor variation on the above argument shows that Sol
manifolds do not admit metrics of non-positive curvature either.

Once you understand the above example you should have no difficulty generalizing
it to

Example 4.1. Suppose that Si, Sy are closed oriented surfaces (of genus > 1) each
having one boundary component; let M; := S; x St. Consider graph-manifolds M
obtained by gluing My, My along the boundary tori. Then M admits a metric of non-
positive curvature if and only if it is either product of a surface and a circle or it
15 a flip-manifold. ILe., if and only if the gluing map either matches horizontal and
vertical foliations of the boundary tori (possibly reversing their orientation) or it flips
them.

Hint: 1. Let t; € w1 (M) be the generator of the center of 71(M;) and let h; €
m1 (M) be the element corresponding to the boundary circle of S;. Suppose that M
does admit a metric of non-positive curvature and l;, m; are axes of ¢;, h; in M which
happen to belong to a common 2-flat. Then /; is orthogonal to m,.

2. Let T? be flat torus with the “rectangular” metric of product of two circles.
Then each isometry of 72 preserves the product structure of the torus or ”flips” it
interchanging the factors.

More generally one has

Theorem 4.2. Suppose that M is a flip-manifold. Then M admits a metric of non-
positive curvature.

It turns out that one can completely classify geometrizable 3-manifolds M which
admit metrics of non-positive curvature:



Theorem 4.3. (B. Leeb, [8]) Suppose that M contains at least one hyperbolic com-
ponent. Then M admits a metric of non-positive curvature.

The situation in the case of graph-manifolds is more subtle, I refer you to the
paper of Buyalo and Kobelsky [1].

In any case, Theorems 3.9 and 4.2 reduce Theorem 2.3 to the case when M admits
a metric of non-positive curvature.

5 Asymptotic cones

We first have to figure out how asymptotic cones of geometric components look like.

Case 1. Let M be an H? x R-Seifert manifold, possibly with nonempty boundary.
Then each asymptotic cone X, of X = M is isometric to the product of a tree T
with R. The tree 7" branches at every point. By abusing language we will refer to
the cone X, as ”Seifert”.

Proposition 5.1. Fach topological 2-flat F' in X, is a flat.

Proof: Pick a point z € F, then z € {y} x R, where y € T. Then, since L = {y} xR
separates T x R, it has to separate F' as well. On the other hand, if L is not entirely
contained in Y x R, the intersection L N F' is a proper subset of the straight line.
Therefore

H(LNF)=0.

Now, Alexander-Poincare duality implies that L N F' cannot separate F. Therefore,
if P is the projection of F' to T, then F' = P x R. It is now clear that P is a line and
thus F' is a flat. O

Case 2. Suppose that M is a compact manifold with nonempty boundary, whose
interior admits a complete hyperbolic metric. Then M admits a metric of non-
positive curvature with flat totally-geodesic boundary. Then each asymptotic cone
X, of X = M is a "tree of flats”:

1. If p,, pp are the nearest-point projections to Fy, Fj then po(F3) = {z4}, pp(Fo) =
{zs}-

2. Every continuous path in X, connecting F,, to Fj passes through the points
To € Fy, x5 € Fp.

3. Each flat F,, € F is represented by a sequence of peripheral planes of X.

By abusing language we will refer to the cone X, as "hyperbolic”.

Proposition 5.2. Fach topological 2-flat F' in X, is one of the flats F,.
Proof: Otherwise there exists a point x € X such that F' intersects two distinct
connected components of X, \ {z}. However a point cannot separate a plane. O

Corollary 5.3. There are no topological embeddings to Seifert asymptotic cones into
hyperbolic asymptotic cones.



Global picture: Geometric components of X, are ultralimits of sequences of
geometric components of X. Splitting flats in X, are ultralimits of sequences of
splitting flats in X.

The ultralimits F,, of sequences of splitting flats in X come equipped with coori-
entation: X, \ F, splits into positive and negative sides.

A subset A C X, is essentially split by F,, if it contains points which lie in the
opposite sides. Similarly one defines essential splitting by geometric components of
Xo-

Lemma 5.4. Suppose that A C X,, is not essentially split by any splitting flat. Then
A is contained in a single geometric component of X,,.

Lemma 5.5. Fach 2-flat in X, is contained in a single geometric component and
appears as ultralimit of a sequence of flats in X.

Similar assertion fails for bilipschitz 2-flats. However we have

Lemma 5.6. Let B C X, is a bilipschitz 2-flat. Then the following are equivalent:
1. The intersection of B with each bilipschitz 2-flat B' contains at most 1 point.

2. B s a splitting flat which is not contained in any Seifert component.

Lemma 5.7. Suppose that B C X,, is a bilipschitz flat. Then
1. B is contained in a finite union of flats F;,i =1,...,m, in X,,.

2. Each F; C X;, where X;, are consecutive Seifert components.

Corollary 5.8. A bilipschitz flat in X, is not contained in the sublevel set of any
Busemann function on X,,.

We have a better control on behavior of bilipschitz embeddings of 7" x R:

Lemma 5.9. Suppose that T is a geodesically complete tree which branches at each
point. Then for each bilipschitz embeddings f : T x R — X, the image of f is
contained in a single Seifert component and the map f preserves fibration of T x R
by lines.

We now can prove rigidity of bilipschitz homeomorphisms of X,:

Theorem 5.10. Let X, X' be universal covers of geometrizable nonpositively curved
3-manifolds. Suppose that f : X, — X/, is a bilipschitz homeomorphism. Then:

1. Each splitting flat which is not contained in a Seifert component is mapped to
a splitting flat of the same kind.

2. The image of each Seifert component of X, is again a Seifert component.
3. f maps flats to flats.



Proof: 1. Suppose that F' C X, is a splitting flat which is not contained in any
Seifert component. Then it follows from Lemma 5.7 that F' intersects each bilipschitz
flat in at most 1 point. This property is clearly preserved by f. Hence, according to
Lemma 5.6, the image f(F) is a splitting flat which is not contained in any Seifert
component.

2. By Lemma 5.9, the image of each Seifert component of X, is contained in a
Seifert component in X!. By applying the same argument to f~' we see that the
image is the entire Seifert component of X/ .

3. If F'is a splitting flat which is not contained in any Seifert component of X,
then the f(F) is a splitting flat by (1).

Otherwise F' is contained in a Seifert component Y, C X,,. By (2), the mapping
f sends Yw onto a Seifert component Y. However each bilipschitz flat in a geometric
component of X/ is again a flat. O

Observe that at this stage we do not know if the image of a hyperbolic compo-
nent of X, is a hyperbolic component of X/. The reason for this is quite simple:
Our technique was mostly topological. However topologically we cannot tell apart a
hyperbolic component of X, from a union of two such adjacent components.

6 Down to earth

Commercial of the day:

Never underestimate the power of asymptotic cone. Buy infinitely many for the
price of one!

It’s time now to get back from asymptotic cones to the geometry of universal
covers X of 3-manifolds.

The main problem in deriving information about the properties of X from the
properties of the asymptotic cones X, is the nature of the transition from X to X,:
It is obtained by rescaling. If something is constant in the ultralimit, it may be far
from being constant in X. Consider for instance the graph of the function /¢ in R?:
It is not contained within finite distance from any geodesic ray in R%. However, if
we pass the asymptotic cone of R?, the sublinear function /¢ becomes constant, so
its graph degenerates into a geodesic ray. At the first glance it spells real trouble:
How could we hope to control quasiflats in X using its asymptotic cones if we cannot
do it for R?? However, by picking an appropriate rescaling and using the fact that
asymptotic cones of X contain no 3-flats one gets:

Lemma 6.1. (Divergence lemma) Suppose that an (L, A)- quasi-flat Q in X diverges
sublinearly from a flat F'. Then the Hausdorff distance between () and F' is at most
C(L,A).

Combining this lemma with Theorem 5.10 we obtain:
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Theorem 6.2. Suppose that f : X — X' is an (L, A)-quasi-isometry. Then f maps
each flat in X within distance < C(L, A) from a flat f(F)* in X.

To conclude from this that f preserves the geometric decomposition of X we use

Lemma 6.3. Suppose that F, Fy, Fy are splitting flats in X which do not separate
each other. Then the flats f(F;)* C X' do not separate each other either.

This implies Theorem 2.3.

One can also classify quasi-flats in X using classification of bilipschitz flats in X,
we will discuss this if the time permits...

7 Quasi-isometric rigidity of 3-manifold groups

Suppose that M is a non-positively curved geometrizable 3-manifold with nontrivial
geometric decomposition, G = m (M), and suppose that G’ is a group quasi-isometric
to G, in particular it is quasi-isometric to X = M via a quasi-isometry f : X' — X,
where X' is a Cayley graph of G'. Let f : X — X’ denote a quasi-inverse to f. Using
this one defines a quasi-action of G' on X, a map ¢ : G' — QI(X) to the set of
quasi-isometries of X given by

¢(g)=fogof.
The map ¢ satisfies

d($(9192), #(g1) 0 #(g2)) < Const, Vg1, 9, € G'.

Moreover, since the action of G’ on X' is isometric, the elements ¢(g),g € G’ are
(L, A)-quasi-isometries of X for uniform constants L, A.

Although the quasi-action of G’ is not an action, using the main theorem from
previous section, we get an actual action of G’ on the simplicial tree 7" dual to the
geometric decomposition of X. This determines a structure of a fundamental group
of a graph of groups on G”:

G =mT,G,G.)
where the edge groups are ”quasi-stabilizers” of the splitting flats in X and the vertex
groups are quasi-stabilizers of the geometric components of X.

Therefore each edge group is commensurable to Z? and each vertex group is quasi-
isometric to the fundamental group of the corresponding geometric component of M.
The key now is the following

Theorem 7.1. (R. Schwartz, [9]) Suppose that M is a complete noncompact hyper-
bolic n-manifold of finite volume and G is a group quasi-isometric to m (M). Then
there is a short exact sequence

1 K—>G—->G—1
where K is finite and G is a nonuniform lattice in Isom(H") which is commensurable

to m(M).
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A similar (and easier) result holds when M is a Seifert 3-manifold with nonempty
boundary, it is essentially due to E. Rieffel (who proved such statement in the case
of manifolds without boundary).

By applying these results to the group G’ as above we obtain

Corollary 7.2. There is a short exact sequence
1-K—-G —=G—1,

with K a finite group and G the fundamental group of a geometrizable 3-dimensional
orbifold.

Problem 7.3. Suppose that G is a group quasi-isometric to Sol. Then G is commen-
surable to a lattice in Sol.

Note that virtual solvability is not a quasi-isometry invariant, see [2].
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