
Quasi-conformal geometry and Mostow rigidity

Marc BOURDON

Let H
n be the real hyperbolic space with n ≥ 3. The aim of these

lectures is to present the basic tools of quasi-conformal geometry of the
standard (n − 1)-sphere, and to use them to prove the two classical rigidity
theorems below.

Theorem 0.1 (Mostow [M1], [M2]). Let Γ1, Γ2 be cocompact lattices in
Isom(Hn). Then any abstract isomorphism ϕ : Γ1 → Γ2 is a conjugation by
an element of Isom(Hn).

Theorem 0.2 (Sullivan [S] for n = 3, Tukia [T2] in general). Let Γ be
a finitely generated group quasi–isometric to H

n. Then there exists Φ a
cocompact lattice in Isom(Hn) and a surjective homomorphism of groups
Γ ։ Φ with finite kernel.

1 Quasi-conformal geometry

Let Z be the euclidean sphere Sn−1, of dimension n ≥ 3. In this chapter
we discuss local and global properties of quasi-conformal homeomorphisms
of Z. We also establish an equality between the conformal group of Z, the
Möbius group of Z, and the isometry group of H

n.

Definition 1.1. A homeomorphism f : Z → Z is called k-quasi-conformal if,
setting

Hf (x, r) :=
sup {‖f(x) − f(y)‖ ; ‖x − y‖ ≤ r}

inf {‖f(x) − f(y)‖ ; ‖x − y‖ ≥ r}
,

we have for all x ∈ Z

lim
r→0

Hf (x, r) ≤ k.

Example 1.2. For a linear homeomorphism f of R
n−1, the number Hf (x, r)

is the following. Let E be the ellipse in R
n−1 which is the image by f of

the unit sphere centered at the origin. Denote by L and l respectively the
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length of the largest and of the smallest axis of E. Then Hf (x, r) = L/l for
every x and f is k-quasi-conformal for k = L/l.

This linear situation generalises easily to diffeomorphisms of the sphere
: a diffeomorphism f of Z is k-quasi-conformal if and only if for every z ∈ Z
its differential is k-quasi-conformal from TzZ to Tf(z)Z.

The following theorem is due to Rademacher-Stepanov (see [V1] for a
proof). It is a deep result in geometric measure theory, it establishes strong
regularity properties for quasi-conformal homeomorphisms.

Theorem 1.3. Any k-quasi-conformal homeomorphism of Z is absolutely
continuous with respect to Lebesgue measure, and is differentiable almost
everywhere, with k-quasi-conformal differential.

We now turn our attention to global properties of quasi-conformal home-
omorphisms. For pairwise distinct points x, y, x′, y′ ∈ Z we denote their
crossratio by:

[xx′yy′] =
‖x − y‖· ‖x′ − y′‖

‖x − y′‖· ‖x′ − y‖
.

Definition 1.4. (i) A homeomorphism f of Z is called η-quasi-Möbius, where
η is an increasing homeomorphism of [0,∞), if

(∗) ∀x, x′, y, y′ ∈ Z,
[

f(x)f(x′)f(y)f(y′)
]

≤ η
(

[xx′yy′]
)

.

(ii) A homeomorphism which preserves the crossratio is called a Möbius
homeomorphism.

Note that switching y ↔ y′ leads to the other inequality in (∗) (with
another function η). Inverses of quasi-Möbius homeomorphisms and com-
positions of quasi-Möbius homeomorphisms are quasi-Möbius as well.

It is an exercice to prove that quasi-Möbius homeomorphisms are quasi-
conformal, and that Möbius homeomorphisms are conformal diffeomorphisms.
The following result establishes the converse.

Theorem 1.5. (i) Let f be a k-quasi-conformal homeomorphism of Z. Then
there exists η an increasing homeomorphism of [0;∞), which only depends
on n and k, such that f is a η-quasi-Möbius homeomorphism.

(ii) In addition, if Df is conformal a.e., then f is a Möbius homeomor-
phism.

We will give in the sequel some evidences about this theorem. We first
present an essential tool for the proof of theorem 1.5.
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Let A, B be disjoint continua (i.e. compact connected subsets of Z) not
reduced to a point. The modulus of the pair (A,B) is defined as

Mod(A,B) := inf
ρ

{
∫

Z
ρn−1 dm

}

,

where the infimum is taken over all ρ : Z → R+ which are measurable and
such that

∫

γ ρ ≥ 1 for every rectifiable curve γ joining A to B.

Lemma 1.6. (1) Let f be a K-quasi-conformal homeomorphism of Z. Then
for every A,B as above

1

K ′
Mod(A,B) ≤ Mod(f(A), f(B)) ≤ K ′ Mod(A,B),

where K ′ is a function of K. In addition, if Df is conformal a.e., then f
preserves moduli.

(2) Let B1, B2 be two closed balls in R
n−1 with same center and radii

r1 < r2. Then

Mod(B1, Z−
◦

B2) = ωn−2 log
(r2

r1

)2−n
,

where ωn−2 is the volume of the unit (n − 2)-sphere.

(3) There exist increasing homeomorphisms δ1, δ2 of [0;∞), such that
for all A,B as above, we have

δ1(∆(A,B)−1) ≤ Mod(A,B) ≤ δ2(∆(A,B)−1),

where ∆(A,B) is the relative distance between A and B, i.e.

∆(A,B) =
dist(A,B)

inf{diam A,diam B}
.

In the sequel we abreviate this last property by saying that Mod(A,B) ≈
∆(A,B)−1.

Sketch of proof of lemma 1.6. (1) For C1-diffeomorphisms of Z the property
follows from the formula of transformation of variables. For general quasi-
conformal homeomorphisms, the same line of proof works thanks to theorem
1.3, and to another regularity property called ”absolute continuity along
almost all rectifiable curves” (see [V1], [Vu] for more details).
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(2) Let r be the distance from x to the common center of the balls. By
letting

ρ(x) = (log r2/r1)
n−1r−1

if r1 < r < r2, and ρ(x) = 0 if not, one obtains that the left side of expected
formula is less than or equal to the right. The reverse inequality comes from
Hölder inequality (see [V1]).

(3) More difficult, see for example [V1], [Vu].

With the above lemma we can now give the

Proof of Theorem 1.5(i). Because [xx′yy′] = [x′xyy′]−1, it is enough to prove
that the crossratio [xx′yy′] of four distinct points of Z is small if and only
if [f(x)f(x′)f(y)f(y′)] is small, quantitatively. By lemma 1.6(3), the map f
quasi-preserves the relative distances between continua. Now on the sphere
Z the crossratio and the relative distances are related as follows (see [BK]
lemma 2.1) : there exist functions δ1, δ2 : R

+ → R
+, such that

i) If [xx′yy′] ≤ δ1(ǫ), then there exist two continua C and C ′ of Z with
x, y ∈ C, x′, y′ ∈ C ′ and ∆(C,C ′) ≥ 1/ǫ.

ii) If there exit two continua C,C ′ of Z with x, y ∈ C, x′, y′ ∈ C ′ and
∆(C,C ′) ≥ 1/δ2(ǫ), then [xx′yy′] < ǫ.

Thus we obtain that f is quasi-Möbius.

To prove the second part of theorem 1.5 we relate the crossratio on
Z = ∂ H

n with the hyperbolic distance in H
n, denoted by dH

n .

Lemma 1.7. For x, x′, y, y′ pairwise distinct points of Z and for a, a′, b, b′

in H
n, we have

[xx′yy′] = lim
a→x,a′→x′,b→y,b′→y′

exp
1

2

{

dH
n(a, b) + dH

n(a′, b′)

− dH
n(a, b′) − dH

n(a′, b)
}

.

Proof. In the ball model of H
n, let O be its center and let a ∈ [Ox), b ∈ [Oy)

with dH
n(O, a) = dH

n(O, b) = t. Let θ be the angle xOy. By standard
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trigonometry we get

‖x − y‖ = 2 sin(θ/2) = 2

(

1 − cos θ

2

)1/2

= 2

(

1

2
−

ch2 t − ch d(a, b)

2 sh2 t

)1/2

= 2

(

ch d(a, b)

2 sh2 t
−

1

2 sh2 t

)1/2

∼
t→∞

2 exp
1

2
{d(a, b) − d(O, a) − d(O, b)} .

We implement this equality in the definition of the crossratio, after cancel-
lations we obtain the expected formula.

Proof of theorem 1.5(ii). ∗ Recall that if f is a quasi-conformal homeomor-
phism of Z such that Df is conformal a.e., then f preserves moduli, (lemma
1.6(1)).

∗∗ Recall that if B1, B2 are balls in R
n−1 with same center and radii

r1 < r2, then Mod(B1, Z−
◦

B2) = ωn−2(log
r2

r1
)2−n, (lemma 1.6(2)).

We first compute moduli Mod(C1, C2) where C1, C2 are disjoint closed
balls in R

n−1. These two balls define two disjoint totally geodesic (n − 1)-
subspaces in the upper-half space model of H

n. Call them H1 and H2. Let
xi ∈ Hi such that dH

n(H1,H2) = dH
n(x1, x2). We claim that

Mod(C1, C2) = ωn−2 (dH
n(x1, x2))

2−n .

Indeed let g ∈ Isom(Hn) send [x1x2] to a vertical geodesic segment. It

transforms C1 to B1 and C2 to Z−
◦

B2, where B1 and B2 are concentric
balls in R

n−1, whose radii ri satisfy log r2/r1 = dH
n(x1, x2). By lemma

1.7, the isometry g acts on Z as a Möbius homeomorphism, so it preserves
moduli. Thus with the property (∗∗) above, we obtain the claimed result.

Now let f be a quasi-conformal homeomorphism of Z, such that Df is
conformal a.e. For x, x′, y, y′ pairwise distinct points in R

n−1, consider the
balls C1, C2, C3, C4 in R

n−1, of radius r, centered respectively at x, x′, y, y′.
By lemma 1.8 and with our claim we can express [xx′yy′] as the limit, when
r tends to 0, of an expression which involves only Mod(Ci, Cj). By property
(∗) above, Mod is f -invariant, so we get that f preserves the crossratio. The
details are left to the reader.

Here is an easy application of lemma 1.7 and theorem 1.5.
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Corollary 1.8. (i) Let respectively Conf(Z) and Möb(Z) be the group of
conformal diffeomorphisms and Möbius homeomorphisms of Z. Then

Conf(Z) =Möb(Z) = Isom(H
n).

(ii) Let {fn}n≥1 be a sequence of k-quasi-conformal homeomorphisms of
Z (for the same k). Assume that there exist a, b, c ∈ Z, pairwise distinct,
and fixed by each fn, n ≥ 1. Then, up to taking a subsequence, {fn}n≥1

converges uniformly on Z to a k-quasi-conformal homeomorphism f∞.

Proof. Part (ii) follows from theorem 1.5(i) and Ascoli theorem. The first
equality in part (i) follows from theorem 1.5(ii).

Lemma 1.7 implies that Isom(Hn) ⊂ Möb(Z). To prove the converse it
is enough to prove that a Möbius transformation of R

n−1 which stabilises ∞
extends as an isometry of the upper-half space model of H

n. This is indeed
the case because such a Möbius transformation is a similarity of R

n−1.

2 Quasi-isometries

This chapter will relate quasi-isometries of H
n with quasi-Möbius homeo-

morphisms of Z = ∂ H
n.

Definition 2.1. Let X and Y be two metric spaces. A map f : X → Y is
called a quasi-isometry if there exists C ≥ 1, D ≥ 0 such that

(i) ∀x, x′ ∈ X, C−1dX(x, x′) − D ≤ dY (f(x), f(x′)) ≤ CdX(x, x′) + D

(ii) ∀y ∈ Y , dist(y, f(X)) ≤ D.

Theorem 2.2 (Efremovich-Tihomirova [ET]). Any quasi-isometry f of H
n

extends to a η-quasi-Möbius homeomorphism of Z = ∂ H
n = Sn−1. More-

over, η depends quantitatively on the quasi-isometry constants of f .

Recall that a quasi-geodesic in a metric space X is a map γ : I → X,
defined on an interval I, such that there exists C ≥ 1, D ≥ 0, with the
following property

∀t, t′ ∈ I, C−1|t − t′| − D ≤ dX(γ(t), γ(t′)) ≤ C|t − t′| + D.

The proof of theorem 2.2 relies on the following lemma.

Lemma 2.3 (Morse lemma). Any quasi-geodesic γ in H
n lies within bounded

distance from a true geodesic of H
n. Morever the distance depends quanti-

tatively on the quasi-geodesic constants of γ.
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We refer to [K] for two different proofs of the above lemma. One of them
is an application of asymptotic cone technics. We now indicate how Morse
lemma implies theorem 2.2.

Proof of Theorem 2.2. Let O be an origin in H
n. In order to extend the

quasi-isometry f to a map ∂f : Z → Z, consider x ∈ Z and the geodesic
ray [Ox). Its image by f is a quasi-geodesic ray. By Morse lemma it lies
within bounded distance from a geodesic ray [f(O)y), with y ∈ Z. Define
∂f(x) = y. It is easy to see that ∂f is bijective.

We now prove that ∂f is quasi-Möbius. We claim that there exists a
constant C such that for every x, x′, y, y′ pairwise distinct points in Z, we
have

dH
n

(

(xy′), (x′y)
)

− C ≤ max
{

0, log[xx′yy′]
}

≤ dH
n

(

(xy′), (x′y)
)

+ C

To this end recall that by lemma 1.7,
(∗)

log[xx′yy′] = lim
a→x,a′→x′,b→y,b′→y′

1

2

{

d(a, b) + d(a′, b′) − d(a, b′) − d(a′, b)
}

.

First assume both d ((xy′), (x′y)) and d ((xy), (x′y′)) are smaller than 1.
Then one can find a point Ω in H

n whose distance from each of the four
geodesics (xy′), (x′y), (xy), (x′y) is smaller than an universal constant. With
the formula (∗) we get that log[xx′yy′] is bounded by an universal constant;
the claim follows.

Assume now that d ((xy′), (x′y)) ≥ 1. Let A ∈ (xy′) and B ∈ (x′y) such
that d(A,B) = d ((xy′), (x′y)). Consider

T = (xy′) ∪ (x′y) ∪ [AB],

and equip it with the length metric induced by the hyperbolic one. By stan-
dard trigonometry in H

n and because d(A,B) ≥ 1, there exists a universal
constant C0 such that distances in T differ from the hyperbolic ones by an
additive factor which is less than C0. For distances in T , the right side of
(∗) is precisely equal to d ((xy′), (x′y)). So using (∗) we get that log[xx′yy′]
is equal to d ((xy′), (x′y)) up to 4C0; the claim follows.

Finally assume that d ((xy′), (x′y)) ≤ 1 and that d ((xy), (x′y′)) ≥ 1.
Switching y and y′ and applying the previous case we get that log[xx′y′y]
is equal to d ((xy), (x′y′)) up to 4C0. In particular it is larger than −4C0.
Thus we obtain

log[xx′yy′] = − log[xx′y′y] ≤ 4C0,
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which implies our claim.
So in every case we have proved the claim. By combining it with Morse

lemma, one obtains immediatly that ∂f is quasi-Möbius. Finally observe
that a map which qusi-preserves the crossratio is automatically continuous.

3 Mostow rigidity (proof)

The theorem is stated in the introduction. Start with ϕ : Γ1
∼= Γ2 of the

statement.
We construct first a quasi-isometry F : H

n → H
n out of ϕ, as follows.

Choose an origin O in H
n whose stabiliser in Γ1 is trivial. Define F on the

Γ1-orbit of O by F (g·O) = ϕ(g)·O. Extend arbitrarily F to all of H
n as a

quasi-isometry.
Applying theorem 2.2, the quasi-isometry F extends to f = ∂F as a

quasi-Möbius homeomorphism of Z = ∂ H
n. Note that f is ϕ-equivariant,

namely the restriction of F to Γ1·O is.
We want to prove that f is a Möbius homeomorphism of Z. This will

imply the theorem because Möb(Z) = Isom(Hn) by corollary 1.8. To this
end consider the bundle E which is the projectivisation of the tangent bundle
of Z. Its elements are the lines in R

n which are tangent to Z. Because E is
homogeneous under Isom(Hn), we write it as E = G/H with G = Isom(Hn),
and H is the stabiliser in G of a fixed element in E. Observe that H is non-
compact.

For τ a non zero tangent vector to Z, denote by [τ ] the line generated
by τ . Then define h : E → R as follows : for non-zero τ ∈ TzZ, let

h([τ ]) =
‖Dzf(τ)‖

‖τ‖· ‖Dzf‖
,

(recall that f is differentiable a.e., thanks to theorem 1.3). Because f is ϕ-
equivariant, and because the groups Γi act conformally on Z, one can check
that h is Γ1-invariant. Now, here is a general theorem, due to Moore (see
[Z] for a proof) :

Theorem 3.1. Let G be a non-compact, connected simple Lie group, with
finite center. Let H < G be a closed non-compact subgroup of G. Let
Γ < G be a lattice. Then Γ acts ergodically on G/H, i.e. any measurable
Γ-invariant function on G/H is constant a.e.

We get that h is constant a.e.; this implies that Df is conformal a.e., so
f is a Möbius homeomorphism by theorem 1.5(ii).
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4 Sullivan-Tukia’s theorem (proof)

The theorem is stated in the introduction. Consider the isometric action
of Γ on itself by left translations. Because Γ is quasi-isometric to H

n, each
element of Γ induces a quasi-isometry of H

n, which is unique up to bounded
distance, and with uniform quasi-isometry constants. Thus by theorem 2.2,
we get a Γ-action on Z = ∂ H

n by K-quasi-conformal homeomorphisms
(with K uniform). The kernel of this action is finite, we still denote by Γ
its quotient by the kernel.

Definition 4.1. A measurable field of ellipses on Z is a measurable map
which assigns to a.e. z ∈ Z an ellipse centered at 0 in TzZ.

We are only concerned with non degenerate ellipses, up to homothety,
and centered at 0. The space of those ellipses in R

n−1 is the symmetric
space

X := SLn−1(R)/SO(n − 1).

Any quasi-conformal homeomorphism f of Z acts on the left on the space
of measurable fields of ellipses, as follows : if ξ = {ξz}z∈Z is a measurable
field of ellipses, then we set

(f∗ξ)z := Df−1(z)f(ξf−1(z)).

Thus we get a Γ-action on the set of measurable fields of ellipses.

Lemma 4.2. There exists a measurable field of ellipses {ξz}z∈Z which is
Γ-invariant.

Proof. For every z ∈ Z, let

Ez =
{

Dγ−1(z)γ(Sγ−1z); γ ∈ Γ
}

,

where Sx is the unit sphere in TxZ. By choosing a measurable trivialisation
of the orthonormal frame bundle of Z, each set Ez identifies with a subset
of the symmetric space X defined above. In addition we have for γ ∈ Γ, and
z ∈ Z

Eγ(z) = Dzγ(Ez),

where Dzγ acts on X by isometry (indeed SLn−1(R) does). The eccentricity
of ellipses in Ez is bounded by K, the quasi-conformal constant of the Γ-
action on Z. Thus Ez is a bounded subset in X. A bounded set A in
a complete, simply connected, non-positively curved, riemannian manifold,
has a well-defined barycenter, namely the center of the unique smallest ball

9



containing A. Define ξz to be the barycenter of Ez. The field {ξz}z∈Z

posseses the expected properties.

Let ξ = {ξz}z∈Z be a Γ-invariant measurable field of ellipses. Our goal
is now to find a quasi-conformal homeomorphism h of Z such that h∗ξ = S,
where S is the field of round spheres. This will imply that hΓh−1 stabilizes
S, hence we will get

hΓh−1 < Conf(Z) = Isom(H
n).

For n = 3, existence of h follows from Ahlfors-Bers theorem (see [A]). When
n ≥ 4, Ahlfors-Bers theorem is not valid, instead Tukia has proposed the
following argument.

The field ξ is measurable, so it is approximately continuous a.e., i.e. for
a.e. z ∈ Z, and for every ε > 0, we have

lim
r→0

m
{

x ∈ B(z, r); dX(ξz, ξx) < ε
}

/m(B(z, r)) = 1,

where m denotes the Lebesgue measure on Z.
In the upper half-space model of H

n, let 0 be the origin and let en be
the point whose euclidean coordinates are (0, ..., 0, 1). Up to conjugating Γ
by a affine map, we may assume that ξ is approximately continuous at 0,
and that ξ0 is a round sphere.

Let {gk}k≥1 be a sequence in Γ, such that gk ·en →
k→∞

0 and such that the

distances dH
n(gk · en, [0∞)) are uniformly bounded (existence comes from

the fact that Γ and H
n are quasi-isometric).

Let {λk}k≥1 be a sequence of positive numbers such that the distances
dH

n

(

λkgk · en, en

)

are uniformly bounded. The maps λkgk, k ≥ 1, are
quasi-isometries of H

n with uniformly bounded quasi-isometry constants,
and which almost stabilise en. Thus, by Ascoli theorem we get, up to a sub-
sequence, that {λkgk}k≥1 converge uniformly on Z to a K-quasi-conformal
homeomorphism h. ( Note that corollary 1.8(ii) gives another way of estab-
lishing this convergence). It follows that

(∗) h∗ξ = lim
k→∞

(λkgk)∗ξ = lim
k→∞

(λk)∗ξ.

In addition, because ξ is approximately continuous at 0, up to a subsequence,
the sequence {(λk)∗ξ}k≥1 tends a.e. to the constant field equal to ξ0 (namely
convergence in measure implies convergence a.e. of a subsequence). Finally
we obtain that h∗ξ = S, which implies that hΓh−1 is contained in Isom(Hn).
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Remark : The first equality in (∗) is not at all obvious. Indeed one doesn’t
know anything about convergence of the differentials of the λkgk. At this
stage one needs a more delicate argument based on approximations of h∗ξ
by (λkgk)∗ξ on subsets with complementary measure arbitrary close to 0.
We refer to Tukia’s paper [T2] for details.

It remains to prove that hΓh−1 is a cocompact lattice of Isom H
n. By

reusing the quasi-isometry between Γ and H
n, one can see that hΓh−1 acts

properly discontinuously and cocompactly on H
n. So it is a cocompact

lattice in Isom(Hn).

Notes : Quasi-Möbius homeomorphisms have been defined first by Väisälä
[V2]. Equivalence between quasi-conformal and quasi-Möbius homeomor-
phisms (theorem 1.5(i)) is due to Gehring [G1] for R

2, and to Gehring-
Väisälä for R

n (see [V1]). Note that this result is false for general domains
in R

n (see [V2]). The statement (ii) in theorem 1.5 is also true for domains
in R

n with n > 2, see [G2] and [R]. This is a generalisation of Liouville the-
orem which requires the mappings to be sufficiently smooth (C3 is enough).
The fact that moduli depend only on the relative position of the continua
(lemma 1.6(3)), was known to Grötzsch and Teichmüller for R

2. For R
n it

was first observed by Loewner [Lo]. For general domains in R
n it is false.

Morse lemma was first stated and used by Mostow in [M2]. Theorem
2.2 and its proof generalises to Gromov-hyperbolic spaces. Tukia [T1] has
proved the converse of theorem 2.2, namely quasi-Möbius homeomorphisms
of Z extend to quasi-isometries of H

n. Again this phenomenon generalizes
to most of the Gromov-hyperbolic spaces (see [Pau], [BHK]).

The proof of Mostow theorem we gave is taken from [GP]. In [K], M.
Kapovich gives a more elementary proof which does not make use of Moore
ergodic theorem. For the proof of Sullivan-Tukia theorem, we have followed
rather closely Tukia’s paper [T2].

Mostow theorem is the first rigidity result based on connections between
hyperbolic geometry and quasi-conformal geometry. This circle of ideas
is still an active domain of research, see [GP], [BP] for surveys of further
developments. Recently J. Heinonen and P. Koskela [HK] have extended the
euclidean theory of quasi-conformal homeomorphisms to a much larger class
of metric spaces, called Loewner spaces. In [C], J. Cheeger has developped
a differential calculus on Loewner spaces. These new ideas seem promising.

Acknowledgements. Thanks to Laurent Bessières, Anne Parreau and
Bertrand Rémy for the organisation of the summer school, and for editing
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patible with a Möbius group, Acta Math. 154 (1985), 153-193.

[T2] P. Tukia, On quasiconformal groups, J. Analyse Math. 46 (1986),
318-345.
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