
CALABI-WEIL RIGIDITY

Gérard BESSON

We based these lectures on the approach developed by Raghunatan ([Rag]).
The reader can also see the original papers by A. Weil (see [We1], [We2]).
The text which follows is neither intended to be original nor exhaustiv.
It aims at presenting in a very elementary way the theory of infinitesimal
rigidity as described in [Rag].

Introduction

A trivial example The group Z can be viewed as a subgroup of the group
of translations of the real line R, and of infinitely many ways. More precisely
let t ∈ R and let us call Tt the translation defined by

Tt(x) = x + t for x ∈ R.

Translations are isometries of the euclidean structure on R, so that we can
define a family of morphisms

ρt : Z ↪→ Isom(E)
n #−→ T n

t (x #→ x + nt).

Such morphisms are called representations of Z as isometries of R. We thus
get a deformation of the canonical representation ρ1.

This deformation is not trivial in the sense that there does not exist, for t
close to 1, an isometry gt of R such that

∀n ∈ Z , ρt(n) = gtρ1(n)g−1
t .
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Another trivial example Again Z2 can be viewed as a subgroup of the
group of translations of R2, the quotient space being a torus R2/Z2. The
translations of R2 are isometries with respect to the usual euclidean struc-
ture.

The orbit of the origin is a lattice in R2 generated by two vectors which
are image of the origin by the two translations associated to the generators
(1, 0) and (0, 1) of Z2.

There is more flexibility here since one can play with the length of these
vectors as well as with the angle between them.

The manifolds R2/Z2 are endowed with the metric coming from the eu-
clidean metric of R2 and are thus flat riemannian manifolds. The existence
of non trivial deformations corresponds to the existence of many non iso-
metric flat tori. The following basis generated by unit length vectors gives
rise to

90◦ 87◦

non isometric tori.

Another remark coming from these trivial examples is that all tori are dif-
feomorphic but nevertheless metrically different.

The purpose of all courses on Rigidity in this school is to exhibit situations
where the opposite results occur. Instead of flexibility as above we shall
exhibit rigidity: rigidity of deformations (this course), situation in which
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diffeomorphic manifolds (and even less) are isometric and more.

1 Deformations and cohomology

A general reference for this chapter is [Br], see also [Rag].

Let Γ be a finitely generated group and G a Lie group. We call R(Γ, G) the
set of homomorphisms of Γ in G endowed with the topology of pointwise
convergence. Let ρt, t > 0 be a deformation of a representation ρ0, which
we assume C1 in t.

Let us define, for γ ∈ Γ,

dρ0(t, γ) = ρt(γ)ρ0(γ)−1 and hρ0(γ) =
∂

∂t
∣∣t=0

dρ0(t, γ)

dρ0(t, γ) is, for each γ ∈ Γ, a path in V .

Now, for γ, γ′ ∈ Γ,

dρ0(t, γγ
′) = ρt(γγ′)ρ0(γγ′)−1

the inverse being taken in G.

dρ0(t, γγ
′) = ρt(γ)ρt(γ′)ρ0(γ′)−1ρ0(γ)−1

=
(
ρt(γ)ρ0(γ)−1

) (
ρ0(γ)ρt(γ′)ρ0(γ′)−1

)

and
hρ0(γγ

′) = hρ0(γ) + ρ0(γ)hρ0(γ
′)ρ0(γ)−1 (∗)

where the second part is Ad(ρ0(γ))(hρ0(γ′)), so that h satisfies

hρ0(γγ
′) = hρ0(γ) + (Ad ◦ρ0)(γ) · hρ0(γ

′).

A particular case of deformations, as mentioned before, consists in taking a
C1-path gt ∈ G with g0 = e and defining

ut(γ) = gtρ0(γ)g−1
t for all γ ∈ Γ .

Then,

du0(t, γ) = gtρ0(γ)g−1
t ρ0(γ)−1

hu0(γ) = X − ρ0(γ)Xρ0(γ)−1

= X − (Ad ◦ρ0)(γ) · X (∗∗)
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where X = d
dtgt

∣∣t=0
∈ g, the Lie algebra of G.

We call this last type of deformations, trivial deformations. So that if there
exists a non trivial deformations of the representation ρ0, then there exists
a function h : Γ → G satisfying (∗) for all γ ∈ Γ and not of the type (∗∗),
at least in spirit.

2 Cohomology of groups

See [Br] for a quite complete description of cohomology of groups.

We consider the elementary case of this theory. Let V be a vector space (an
abelian group) on which Γ acts, that is, there is a representation ρ of Γ in
GL(V ). We consider the following complex

· · · −→ Λk(Γ, V ) d−→ Λk+1(Γ, V ) −→ · · ·

where C0(Γ, V ) = V and Ck(Γ, V ) =
{
f : Γ× · · · × Γ︸ ︷︷ ︸

k-times
−→ V

}
and d is

given by

dρf(γ1, . . . , γk) = ρ(γ1)f(γ2, . . . , γk) +
k∑

i=2

(−1)i−1f(γ1, . . . , γi−1γi, . . . , γk)

+ (−1)nf(γ1, . . . , γk−1)

This is the non homogeneous version of group cohomology. For p = 0, 1, we
have

i) for v ∈ V = C0(V ), dv(γ) = ρ(γ)v − v, for all γ ∈ Γ,

ii) for f ∈ C1(V ),

df(γ1, γ2) = f(γ1) + ρ(γ1)f(γ2) − f(γ1γ2)

for all γ1, γ2 ∈ Γ.

A 1-cocycle with value in ρ (or in V ) is a map

ρ : Γ −→ V
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such that, for all γ, γ′ ∈ Γ ,

ρ(γγ′) = f(γ) + ρ(γ)ρ(γ′) .

As usual we define

H1(Γ, ρ) =
Ker{d : C1 → C2}
Im{d : C0 → C1}

.

3 Local rigidity

Let us describe the topology of R(Γ, G). Since Γ was supposed to be finitely
generated (we can even assume it to be finitely presentable), let S be a finite
generating system then one can write G = F (S)/H where F (S) is the free
group generated by S and H is the normal subgroup of F constituted by
the relations. More precisely if

p : F (S) −→ Γ

is the natural “projection”, then H =kernel(p).

Let S = {s1, . . . , sN}, for x ∈ H with x = sε1
i1
· · · sεk

ik
, sij ∈ S, we consider

the map

fx :
∏

S

G = {h = (gs1 , . . . , gsN )} −→ G

h #−→ gε1
si1

· · · gεk
sik

and for ρ ∈ R(Γ, G), we define hρ ∈
∏
S

G by

hρ = (ρ(s1), . . . , ρ(sN )) ,

we then have

Lemme 3.1. The map ϕ : R(Γ, G) →
∏
S

G, defined by ϕ(ρ) = hρ, is a

bijection between R(Γ, G) and
⋂

x∈H
f−1

x (e). If R(Γ, G) is endowed with the

topology of pointwise convergence then ϕ is a homeomorphism onto its im-
age.

This lemma is an easy exercise left to the reader.
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If Γ is finitely presented, then H is finitely generated and the above inter-
section can be taken to be finite (by taking x in a generating set for H).
Furthermore if G is an algebraic group over a field k then R(Γ, G) is a variety
defined over k.

Finally, G acts on R(Γ, G) by

(g, ρ) #−→ gρg−1

where gρg−1 is the morphism

Γ −→ G

γ #−→ gρ(γ)g−1

Définition 3.2. A representation ρ0 ∈ R(Γ, G) is locally rigid if the orbit
of ρ0 under the action of G is a neighbourhood of ρ0 in R(Γ, G) .

Remarks

i) It says that close to ρ0 (in the topology given by a finite generating system)
a representation ρ is a trivial deformation of ρ0.

ii) In the introduction we used 1-parameter deformations which are C1; the
above definition is more general.

The key result of these lectures is the

Théorème 3.3 (A. Weil [We3]). Let G ⊂ GL(n, C) an algebraic group
and ρ0 ∈ R(Γ, G). If H1(Γ,Ad ◦ρ0) vanishes then ρ0 is locally rigid.

Remarks

i) This is more difficult than the sketch made in section 1. Indeed there
we just showed that a C1-deformation is tangent at the origin to a
trivial deformation when H1(Γ,Ad ◦ρ0) = 0. However since R(Γ, G)
is an algebraic variety one can get the stronger result stated above.

ii) The converse is not true. More precisely, there are examples where not
all elements of H1(Γ,Ad ◦ρ0) give rise to a deformation. The difficulty
is thus that one cannot always “integrate” an infinitesimal non trivial
deformation.

We intend to prove Weil’s local rigidity which is
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Théorème 3.4 (A. Weil [We2]). If G is a connected semi-simple Lie
group without compact factor and Γ ⊂ G is an irreducible uniform lattice.
If G is not locally isomorphic to SL2(R), then H1(Γ,Ad ◦i) = 0.

Here i : Γ ↪→ G is the injection of Γ into G.

Corollaire 3.5. In this situation Γ is locally rigid.

Remarks

i) We shall restrict our (sketch of) proof to the case when G is a simple
Lie group and thus an algebraic subgroup of some GL(n, C).

ii) The first proof of such a result is due to A. Selberg for the case G =
SL(n, R), n ≥ 3. E. Calabi in an unpublished paper has then proved a
similar result for lattices in the hyperbolic space of dimension≥ 3. The
case of hermitian symmetric spaces was first established by E. Calabi
and ?.Vesentini. The general case is due to A. Weil.

iii) The non-uniform case is settled by H. Garland ([Ga]) and H.Garland
and M.S. Raghunatan ([G-R]). G. Margulis’s results then cover all
remaining cases.

iv) One should cite Y. Matushima for the use of the Bochner formula and
computation of some Betti numbers.

4 Differential geometry

Let X be a connected and oriented differentiable manifold, which will be
compact in the sequel and let Γ = π1(X). The group Γ acts on the universal
covering X̃ of X by deck transformation. We assume that Γ acts on a finite
dimensional vector space V and denote by ρ : Γ→ GL(V ) the corresponding
representation.

This defines a vector bundle E(ρ) on X, by the following standard construc-
tion: Γ acts on X̃ × V by the left action,

Γ× (X̃ × V ) −→ X̃ × V

γ, (x̃, v) #−→ (γx̃, ρ(γ)v)

and
E(ρ) = X̃ ×ρ V = X̃ × V/Γ −→ X .
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This bundle is flat, that is to say that it has a flat connection. This means
two equivalent properties:

i) There is a foliation on E(ρ) transverse to the fibers of π : E(ρ) → X.
Lifted to X̃ ×V the leaf of this foliation through (x̃, v) is X̃ × {v} while the
fiber of π is {x̃}× V . This is the geometric point of view on connections.

ii) There is a flat covariant derivative. Precisely a section s of the bundle
can be viewed as an ρ-equivariant map

s̃ : X̃ −→ (X̃ × Ṽ )
x̃ #−→ (x̃,ϕ(x̃))

where ϕ : X̃ → Ṽ satisfies

∀γ ∈ Γ , ϕ(γx̃) = ρ(γ)ϕ(x̃) .

Indeed this defines a section by

s([x̃]) =
[
(x̃,ϕ(x̃))

]

where [x̃] (resp.
[
(x̃,ϕ(x̃))

]
then denotes the class of x̃ (resp. (x̃,ϕ(x̃)))

for the equivalence relation given by the action of Γ. One then has the
commutative diagram

s̃

E(ρ)X̃ × Ṽ

X̃
p

X

π s

Exercise: We showed how to get s from s̃. Explain how to construct s̃ from
s.

Now let U be a vector field near x ∈ X and Ũ a pulled back of U in TX̃,
we define DUs through the previous construction using Ũ ·ϕ, that is

(Ũ ·ϕ)(x̃) = dx̃ϕ(Ũ) .

Here p(x̃) = x. We remark that, by construction,

Ũ(γx̃) = dx̃γ(Ũ(x̃))
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then

dγx̃ϕ
[
Ũ(γx̃)

]
= dx̃(ϕ ◦ γ)

(
Ũ(x̃)

)

= dx̃
(
ρ(γ) ◦ ϕ

)(
Ũ(x̃)

)

= ρ(γ)
(
dx̃ϕ

(
Ũ(x̃)

))

since the action of ρ(γ) on V is linear. This shows the equivariance of the
derivative ũ ·ϕ which in turn defines the value at x of a new section denoted
by (DUs)(x). The operator D is a covariant derivative, the analytic version
of a connection. It is clearly flat, indeed let (x1, . . . , xn) be a coordinate
chart of X around a point x ∈ X and let ∂/∂xi be the canonical vector
fields, then, for any section s defined in a neighbourhood of x,

D∂/∂xi
D∂/∂xj

s = D∂/∂xj
D∂/∂xi

s

which is the Schwarz lemma, asserting the flatness of D.

Exercise: Check the above formula.

For a section s, the map

TX −→ E(ρ)
u #−→ Dus

gives rise to a differential form on X with values in the bundle E(ρ); it is
thus a section of the bundle T ∗X ⊗ E(ρ) −→ X. By applying the previous
construction inductively one can define k-differential forms with values in
E(ρ) and we denote by

Λk(E) = {k-forms with values in E(ρ)} .

The operator D allows to define a coboundary operator,

dD : Λk(E) −→ Λk+1(E)

by the formula

dDω(U1, . . . , Uk+1) =
k+1∑

i=1

(−1)i+1DXiω
(
U1, . . . , Ûi, . . . , Uk+1

)
+

∑

i<j

(−1)i+jω
(
[Ui, Uj ], U1, . . . , Ûi, . . . , Ûj , . . . , Un

)
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where ω ∈ Λk(E) and Ui are vector fields on X. One can check that (dD)2 =
0 (since D is flat). It gives rise to a cohomology with values in E. We shall
denote by Hk(X,E) the k-th cohomology group with values in E. This is a
De Rham cohomology.

Another point of view could be to work on X̃ with equivariant map. More
precisely one can consider differential forms on X̃ with values in V (which is a
modest modification of the classical notion of differential forms with values
in R or C) which are ρ equivariant. One builds a cohomology denoted
by Hk(Γ, X̃, ρ). It is not difficult to see that these two cohomologies are
isomorphic.

Exercise: Prove this assertion. The first step is to define the action of Γ on
forms with values in V .

The main result of this section is the following

Théorème 4.1 (Eilenberg). It X̃ is contractible then H∗(X,E) (and
H∗(Γ, X̃, ρ)) are naturally isomorphic to H∗(Γ, ρ)

In particular, one has H1(Γ, ρ) ∼= H1(X,E). This opens the possibilities
of using all the differential geometric techniques in order to prove that
H1(Γ, ρ) = 0 and thus the local rigidity of certain representations.

Remarks

i) A contractible space is a topological space such that the identity is homo-
topic to a constant map. The symmetric spaces of non positive curvature
are contractible.

ii) The above theorem is not difficult to understand in certain easy situation.
Let us assume that X̃ is non positively curved (a real hyperbolic space for
example) and let ω be a 1-form on X̃ with values in V and ρ-equivariant.
We fix an origin x0 ∈ X̃ and define, for γ ∈ Γ:

f(γ) =
∫ γx0

x0

ω = integral of ω on the (unique) geodesic between x0 and γx0.

Lemme 4.2. If ω is closed then f is a 1-cocycle.

Proof. Since ω is closed, one has

f(γγ′) =
∫ γγ′x0

x0

ω =
∫ γx0

x0

ω +
∫ γγ′x0

γx0

ω

now
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x0
γγ′x0

γx0

∫ γγ′x0

γx0

ω =
∫ γ′x0

x0

γ∗ω =
∫ γ′x0

x0

ρ(γ)(ω) = ρ(γ)

(∫ γ′x0

x0

ω

)

by linearity of the action ρ(γ). Here we used the equivariance of ω which
reads, for u ∈ TxM ,

(γ∗ω)x(u) = ωγx(dxγ(u)) = ρ(γ)(ωx(u)) .

We thus proved

f(γγ′) = f(γ) + ρ(γ)f(γ′) ⇐⇒ df ≡ 0 .

One can extend this construction to arbitrary forms and show that the
correspondence yields an isomorphism between the two cohomologies.

Exercise: Just do it!

5 Hodge theory

The reader can learn the Hodge theory for real-valued forms in [Wa], for
example.

If X is an oriented Riemannian manifold then the scalar product (the metric)
extends to a scalar product for k-forms. More precisely let ω and η be two
real-valued k-forms and let {ei}i=1,...,n be an orthonormal basis of TxX, then
the scalar product at x is defined by

(ω, η)(x) =
∑

i1<i2<···<ik

ω(ei1 , . . . , eik)η(ei1 , . . . , eik).

We may then talk about orthonormal basis of real-valued k-forms.

We now assume that E(ρ) → X is a metric bundle, i.e. the fiber above x
carries a Euclidean structure gx depending smoothly on x ∈ X.
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Such a metric gives a (musical) isomorphism:

) : E(ρ)x −→ E(ρ)∗x

defined by
v%(u) = gx(u, v) .

This naturally extends to a pairing

) : Λk(E) −→ Λk(E∗)

by (ω·u)% = ωu% if ω is a real-valued form and u ∈ E(ρ). On a coordinate
open set on X, let α1, . . . ,αn be real-valued 1-forms which are a local basis
of T ∗X. Then, on this set, for ξ ∈ Λk(E), one can write

ξ =
∑

i1<···<ik

ui1···ikαi1 ∧ · · · ∧ αik

where ui1···ik are smooth sections of E(ρ) (or E(ρ)∗). Now, if η ∈ Λp(E∗),
we define

ξ ∧ η =
∑

i1<···<ik
j1<···<j!

vj1···j!(ui1···ik)αi1 ∧ · · · ∧ αik ∧ αj1 ∧ · · · ∧ αj! .

It is a scalar k + ,-form.

The Hodge-star operator is then defined by

∗ : Λp(E) −→ Λn−k(E)

∗ξ =
∑

ui1···ik ∗ (αi1 ∧ · · · ∧ αik) .

We thus have to define the ∗-operator for real-valued forms;

∗ : Λk(X) −→ Λn−k(X)

for α and β ∈ Λk(X), α ∧ ∗β = (α,β) dvol ;

where (·, ·) is the scalar product on k-forms on X. If {αi, . . . ,α&} is a positive
orthonormal basis of real valued 1-forms at x ∈ X, then

∗(αi1 ∧ · · · ∧ αik) = αj1 ∧ · · · ∧ αjl , k + , = n

where (j1, . . . , j&) are such that

αi1 ∧ · · · ∧ αik ∧ αj1 ∧ · · · ∧ αj! = α1 ∧ · · · ∧ αn .
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The following properties are easily checked

i) ∗ ∗ ξ = (−1)k(n−k)ξ for ξ ∈ Λk(E)

ii) for ξ, η ∈ Λk(E), ξ =
∑

ui1···ikαi1∧· · ·∧αik and η =
∑

vi1···ikαi1∧· · ·∧αik
where {αi}i=1,...,n is a (local) orthonormal basis of real-valued 1-forms we
set

(ξ, η) =
∑

i1<···<ik

gx (ui1···ik , vi1···ik)

and we have
ξ ∧ (∗η)% = (ξ, η) dvol .

We can also define a global scalar product

〈ξ, η〉 =
∫

X
(η, ξ) dvol =

∫

X
η ∧ (∗ξ)%

when the integral makes sense, for example, when one of the forms is com-
pactly supported.

With the help of these structures we shall construct some natural differential
operators.

Définition 5.1. The codifferential δD : Λk+1(E) → Λk(E) is the operator

δDξ = (−1)k(n−k)+k+1#
(
∗dD ∗ (ξ%)

)

where # = ())−1.

It is straightforward to check the following result,

Proposition 5.2. 〈dDα,β〉 = 〈α, δDβ〉 for α ∈ Λk(E), β ∈ Λk+1(E) and
one of them is compactly supported.

In other words δ is the formal adjoint of d.

Définition 5.3. We define the Hodge Laplacian acting on E-valued forms
by

∆D = dDδD + δDdD = dD(dD)∗ + (dD)∗(dD)

The operator ∆D preserves the degree of forms.

Proposition 5.4. i) ∆ is formally self-adjoint, that is

〈∆Dξ, η〉 = 〈ξ,∆Dη〉

13



for ξ, η ∈ Λk(E) and compactly supported.

ii) With the same notations

〈∆Dξ, η〉 = 〈dDξ, dDη〉 + 〈δDξ, δDη〉 .

Définition 5.5. A form ξ ∈ Λk(E) is said to be harmonic when ∆Dξ = 0,
which is equivalent to

dDξ = δDξ = 0 .

The main results of the Hodge theory is (see [Wa]):

Théorème 5.6. If X is compact without boundary, every closed form ξ ∈
Λk(E) (i.e. , dDξ = 0) is cohomologous to a unique harmonic form. Thus
Hk(X,E) is isomorphic to the vector space of k-harmonic E-valued forms.

Corollaire 5.7. Let X be compact, if there exists c > 0 such that, for all
ξ ∈ Λk(E),

〈∆ξ, ξ〉 ≥ c‖ξ‖2 then Hk(X,E) = 0 .

The goal is now to compute, in the case under consideration, dD, δD and
∆k. We shall show that

∆ξ = ∆ξ + Q(ξ)

where ∆ is a nonnegative operator and Q is an endomorphism (it does not
differentiate ξ) which is positive.

6 Applications I

Let G be a semi-simple connected Lie group without compact factor and Γ
a uniform lattice. Let K be maximal compact subgroup, then X̃ = G/K
is the symmetric space defined by G which is simply connected of non pos-
itive curvature and thus contractible by Hadamard-Cartan’s theorem (for
example).

We shall make the assumption that the representation

ρ : Γ −→ GL(V )

is the restriction to Γ of a morphism, called ρ again,

ρ : G −→ GL(V ) .
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Remark 6.1. This is the case in the situation of Calabi-Weil’s rigidity since
we have to consider

ρ = Ad ◦i , V = g

where i is the injection of Γ into G. It is the restriction of Ad.

We “extend” ρ to the Lie algebra g. Indeed if Y ∈ g and ϕt is the one-
parameter group generated by to Y , we then set

v ∈ V , ρ(Y )v =
d

dt
∣∣t=0

ρ(ϕt)v = deρ(Y )v .

Let us consider the following diagram

E(ρ) ←−−−− X̃ × V ←−−−− G × V
9

9
9

X ←−−−− X̃
p←−−−− G

We now call p the projection of G onto X̃ . E(ρ) is the quotient of G × V
by the following action of K × Γ

(k, γ) · (g, v) = (γgk, ρ(γ)v) .

We lift the forms from X̃ to G. Let ω be a k-form on X̃ with values in V
and which is ρ-equivariant, i.e. ω satisfies

γ∗ω = ρ(γ) ◦ ω .

We pulled it back to G as follows:

ωg = ρ(g)−1(p∗ωp(g)) .

The aim is to make the computations on G and use the underlying algebra.
The previous formula means that if Z1, . . . , Zk are vector fields near g and
Zi = dp(Zi) then

ωg(Z1, . . . , Zk) = ρ(g)−1ωp(g)(Z1, . . . , Zk) .

The space of such forms is denoted Λk(Γ, G,K, ρ).

Proposition 6.2. If ω ∈ Λk(Γ, G,K, ρ) then

i) γ∗ω = ω, for all γ ∈ Γ.
ii) R∗

k(ω) = ρ(k)−1ω, for all k ∈ K, where Rk denotes the right multipli-
cation by k ∈ K.

iii) i(Y )ω = 0 for all Y ∈ k.
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Sketch of proof. iii) i(Y )ω is the inner product of ω by Y . With the above
notations

i(Y )ω(Z1, . . . , Zk−1) = ω(Y,Z1, . . . , Zk−1) = 0

since p∗(Y ) = dp(Y ) = 0.

i) Let us check this case also

(γ∗ω)g(Z1, . . . , Zk) = ωγg(dγ(Z1), . . . , dγ(Zk))

= ρ(γg)−1
(
ωp(γg)(dγ(Z1), . . . , dγ(Zk)

)

but p(γg) = γp(g) by definition of the action on G/K and thus dγ(Zi) =
dγ(Zi). Then

(γ∗ω)g(Z1, . . . , Zk) = ρ(g)−1ρ(γ)−1
(
ωγp(g)(dγ(Z1), . . . , dγ(Zk)

)

= ρ(g)−1ρ(γ)−1(γ∗ωp(g))(Z1, . . . , Zk)

= ρ(g)−1ωp(g)(Z1, . . . , Zk)

ii) This is left to the reader.

Being invariant by Γ allows to view these forms as k-forms on Γ!G with val-
ues in V satisfying ii) and iii). Now if we call Λk(Γ, X̃, p) the ρ-equivariant
k-forms on X̃ with values in V , then one has the following diagram

Λk(Γ, X̃, ρ) dD

−→ Λk+1(Γ, X̃, ρ)∣∣5
∣∣5

Λk(Γ, G,K, ρ)
dρ−→ Λk+1(Γ, G,K, ρ)

This gives a definition for a differential operator dρ. The isomorphisms
Λk(Γ, X̃, ρ) 6
Λk(Γ, G,K, ρ) are easy to understand.

Proposition 6.3. For ω ∈ Λk(Γ, G,K, ρ) and Z1, . . . , Zk+1 ∈ g

dρω(Z1, . . . , Zk+1) =
k∑

s=1

(−1)s+1(Zs + ρ(Zs))ω(Z1, . . . , Ẑs, . . . , Zk+1)

+
∑

s<t

(−1)s+tω
(
[Zs, Zt], Z1, . . . , Ẑs, . . . , Ẑt, . . . , Zk+1

)
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Remark 6.4. Zs + ρ(Zs) consists of a derivation by Zs and an operator
ρ(Zs) ∈ GL(V ) applied to the vector ω(Z1, . . . , Ẑs, . . . , Zk+1) ∈ V .

Sketch of proof. With the previous notations

(dρω)g = ρ(g)−1(p∗(dω))g .

When one differentiates expression of the type ρ(g)−1p∗(η) one differentiates
p∗(η) but also ρ−1(g); In fact

dω = d(ρ−1) ∧ p∗(ω) + ρ−1d(p∗ω)

where here dω denotes the differential on G. This condensed notation means
that the GL(V ) valued 1-form d(ρ−1) is paired with the V -valued form p∗(ω)
by exterior product on the “form” part and by the action of GL(V ) on V
for the “vector” part. Thus

dρω = dω − d(ρ−1) ∧ p∗(ω)

since p∗(dω) = d(p∗ω). It remains to compute dgρ−1(Y ) for Y ∈ g. Let ϕt

the one-parameter group generated by Y , then

d

dt
∣∣∣t=0

ρ−1(ϕt) =
d

dt
∣∣∣t=0

(
ρ−1(gϕt)

)
ρ−1(g) = −ρ(Y )ρ−1(g) .

We thus have
dρω = dω + ρ(·) ∧ ω .

Let us apply these remarks to the case of a 1-form ω. Let Z1, Z2 ∈ g

dρω(Z1, Z2) = Z1 · ω(Z2) − Z2 · ω(Z1) − ω ([Z1, Z2])
+ ρ(Z1)ω(Z2) − ρ(Z2)ω(Z1)

= (Z1 + ρ(Z1))ω(Z2) − (Z2 + ρ(Z2))ω(Z1) − ω([Z1, Z2])

which is the desired formula. The other cases are left to the reader.

Remark 6.5. It is worth noticing that we never used the semi-simplicity of
G. We just need at this stage G to be a connected Lie group, K to be a closed
compact subgroup such that G/K is contractible and Γ a uniform lattice.
These computations can be used to show that the cohomology Hk(Γ, ρ)
when G is solvable or nilpotent can be computed in terms of a cohomology
of the Lie algebra g of G.
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7 Applications II: Semi-simple groups

In order to simplify the exposition we shall restrict ourselves to the case
when G is a simple group. For the general case the reader is referred to
[Rag].

We recall that we study k-forms on the compact space Γ! G with values in
a finite dimensional vector space V ans satisfying the two conditions

a) ∀k ∈ K, R∗
kω = ρ(k)−1ω.

b) ∀Y ∈ k, i(Y )ω = 0.

We shall need to integrate on Γ! G, so we choose a bi-invariant measure µ
(Haar measure) on G, which exists by uni-modularity of semi-simple groups.
Now the Lie algebra of G decomposes

g = p ⊕ k

with the property [p, p] ⊂ k (see P. Paradan’s lectures).

The forms are multiplied by ρ(k)−1 when we right-translate them by k ∈ K.
So in order to have a metric structure on V which descends to a Euclidean
structure on V -valued forms on X̃ we need to choose it invariant by ρ(K).
In fact one can do better.

Lemme 7.1. Let ρ be a finite dimensional representation of G on a vector
space V (over R). Then there exists a Euclidean scalar product (·, ·)V on V
with respect to which

i) ρ(k) is orthogonal, ∀k ∈ K.

ii) ρ(Y ) is symmetric, ∀Y ∈ p

Exercise: Describe the metric structure gx on the fiber E(ρ)x of E(ρ) → X,
for x ∈ X.

For Z ∈ g we write Z = Y + V with Y ∈ p and V ∈ k, then a k-form as
above is completely determined by its values on p tanks to b). Let us choose
an orthonormal basis of p denoted {Y1, . . . , Yn} where n = dim X̃ = dim p.

A form ω ∈ Λk(Γ, G,K, ρ) is completely determined by the functions,

ωi1,...,ik = ω(Yi1, . . . , Yik) ,
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and the global scalar product of two k-forms ξ and η is given by

〈ξ, η〉 =
∑

i1<···<ik

∫

G/Γ
(ξi1···ik , ηi1···ik)V dµ .

The following equalities are then consequences of the invariance of µ and
Stoke’s formula (precisely the divergence formula). For Z ∈ g and f , f1 and
f2 smooth functions on Γ! G, one has

∫

G/Γ
Z · f dµ = 0 and

∫

G/Γ
(Z· f1)f2 dµ = −

∫

G/Γ
f1(Z· f2) dµ .

These will be used to do the necessary integration by parts in order to
compute the adjoint of dρ.

Proposition 7.2. Let ω ∈ Λk(Γ, G,K, ρ) then, if k > 0,

(δρω)i1···ik−1 = −
n∑

s=1

(Ys − ρ(Ys))ωsi1···ik−1

and δρω = 0, if k = 0.

Sketch of proof.

−Ys is the adjoint of Ys and ρ(Ys) is self-adjoint (symmetric) by our choice
of (·, ·)V .

Let us look at two easy cases

1) If ω is a 1-form, δρω is then a V -valued function. Let η be a V -valued
function, then

〈δρ, η〉 =
∫

Γ!G

(

−
n∑

s=1

(Ys − ρ(Ys))ω(Ys), η

)

V

dµ

=
∫

Γ!G

n∑

s=1

(ω(Ys), Ysη)V + (ω(Ys), ρ(Ys)η)V dµ

= 〈ω, dρη〉

which is the desired formula.
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2) If ω is a 2-form, δρω is a 1-form. Let η be another 1-form

〈δρ, η〉 =
∫

Γ!G
−

n∑

i=1

n∑

s=1

((Ys − ρ(Ys))ω(Ys, Yi), η(Yi))V dµ

=
∫

Γ!G

∑

s<i

(ω(Ys, Yi), (Ys + ρ(Ys))η(Yi) − (Yi + ρ(Yi))η(Ys))V dµ

=
∫

Γ!G
(ω, dρη)V dµ = 〈ω, dρη〉 .

In this proof we used the following fact: If Zi = Yi + Vi where Yi ∈ p and
Vi ∈ k, then dρω(Z1, . . . , Zk) = dρω(Y1, . . . , Yk) for ω ∈ Λk−1(Γ, G,K, ρ).
Indeed in the computation of dρω appears terms of the form

ω
(
[Ys, Yt], Y1, . . . , Ŷs, . . . , Ŷt, . . . , Yk

)

which vanish since [Ys, Yt] ∈ k.

We can then compute the associated Laplacian ∆ρ = dρδρ + δρdρ.

Proposition 7.3. For ω ∈ Λk(Γ, G,K, ρ)

(∆ρω)(Yi1 , . . . , Yik) =
n∑

j=1

(
−Y 2

j + ρ(Yj)2
)
ωi1···ik

+
n∑

j=1

k∑

s=1

(−1)s+1 (−[Yis , Yj] + ρ([Yis , Yj]))ωji1···̂is···ip .

Proof. It is a straightforward computation. Let us look at the elementary
case k = 0 where ∆ρω = δρdρω.

∆ρω = −
n∑

j=1

(Yj − ρ(Yj)) dρω(Yj)

= −
n∑

j=1

(Yj − ρ(Yj)) (Yj + ρ(Yj))ω .

Here there is only one term in the sum defining dρ since ω is a V -valued
function on Γ! G.

Let us recall that ρ(Yj) is a matrix which is constant, i.e. it does not depend
on g ∈ G, thus

Yj· ρ(Yj)ω = ρ(Yj)(Yj ·ω)
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and

∆ρω = −
n∑

j=1

Y 2
j ·ω +

n∑

j=1

ρ(Yj)2ω .

In the other degrees, expressions of the form

(Yj + ρ(Yj))(Ys − ρ(Ys))

appear and yield the commutators in the above formula.

Now, ∆ρ can be decomposed in the sum of two operators

∆ρ = ∆D + Hρ

where

(∆Dω)i1···ip =
n∑

j=1

−Y 2
j ·ωi1···ik −

n∑

j=1

k∑

s=1

(−1)s+1[Yis , Yj ]ωji1···̂is···ik

and

(Hpω)i1···ip = same formula with derivatives by Y replaced by the operator
ρ(Y ) for Y ∈p.

Even better, there exist two operators Dρ and Tρ such that

∆D = D∗
ρDρ + DρD

∗
ρ and Hρ = T ∗

ρ Tρ + TρT
∗
ρ

where D∗
ρ is the adjoint of the differential operator Dρ, i.e.

〈Dρξ, η〉 = 〈ξ,D∗
ρη〉 for ξ ∈ Λk and η ∈ Λk+1

and T ∗
ρ is the pointwise adjoint of Tρ, i.e.

(Tρξ, η)V = (ξ, T ∗
ρ η)V .

More precisely

(Dρξ)i1···ik+1 =
k+1∑

s=1

(−1)s+1Yis · ξi1···̂is···ik+1

(D∗
ρξ)i1···ik−1 =

n∑

s=1

(−Ys)ξsi1···ik−1

(Tρξ)i1···ik+1 =
k+1∑

s=1

(−1)s+1ρ(Yis)ξi1···̂is···ik+1

(T ∗
ρ ξ)i1···ik−1 =

n∑

s=1

ρ(Ys)ξsi1···ik−1 .
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These remarks lead to

〈∆pω,ω〉 = 〈∆Dω,ω〉 + 〈Hρω,ω〉

for ω ∈ Λk(Γ, G,K, ρ), and both operators ∆D and Hρ are non negative.
Let us define

Q
k
p(ω) = 〈Hρω,ω〉

which is a quadratic form on Λk(Γ, G,K, ρ). We aim at showing that it is
positive and bounded below.

It is worth noticing that

Exercise: Show that Hρ does not depend on the choice of the basis of p.

The k-forms ω of Λk(Γ, G,K,π) are horizontal with respect to the fibration
G → X̃ thanks to the property b) above.

Let us point out the following two facts

i) Hρ is a constant operator. Indeed it does not depend on g ∈ G since it
involves expression of the type ρ(Y ) for Y ∈ p.

ii) The above remark says that a k-form ω ∈ Λk(Γ, G,K, ρ) can be viewed
as a k-linear map, called ω again

ω : Λkp −→ V

so we can consider ω as being an element of Hom(Λkp, V ).

Let us now define
Q1

ρ(ω) = (H1
ρ(ω),ω)

for ω ∈ Hom(p, V ).

Proposition 7.4. If Q1
ρ is positive definite on Hom(p, V ) then there exists

c > 0 such that for all ξ ∈ Λ1(Γ, G,K, ρ) one has 〈∆ρξ, ξ〉 ≥ c‖ξ‖2.

Corollaire 7.5. H1(Γ, ρ) = 0.

We now specify the situation to the case under consideration; precisely,
ρ = Ad and V = g. The canonical metric on g satisfies the properties
required, namely

i) Ad(k) is orthogonal, ∀k ∈ K.

ii) ad(Y ) is symmetric for all Y ∈ p.

Notice that the extension of Ad to the Lie algebra is ad.
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We thus have to study Q1
Ad on the space

Hom(p, g) 6 Hom(p, k) ⊕ Hom(p, g) .

If ω ∈ Hom(p, g), then we compute

Q1
Ad(ω) =

n∑

i=1

( n∑

j=1

ad(Yj)2ω(Yi) +
n∑

j=1

ad([Yi, Yj ])ω(Yj),ω(Ti)
)

g

.

Now the subspaces p and k of g are ad(k)-invariant; therefore if we write
ω = ωp + ωk, ωp ∈ Hom(p, p) and ωk ∈ Hom(p, k), they satisfy the same
conditions, namely

i) ∀X ∈ k, 0 = ω(X) = iXω = ωp(X) + ωk(X) implies that ωp(X) = 0 and
ωk(X) = 0.

ii) R∗
kω = ad(k−1)ωp︸ ︷︷ ︸

∈p

+ ad(k−1)ωk︸ ︷︷ ︸
∈k

for all k ∈ K.

Furthermore, let us recall that

Q1
Ad(ω) =

(
H1

Adω,ω
)
.

Lemme 7.6. H1
Ad leaves Hom(p, p) and Hom(p, k) stable and moreover these

two sub-spaces are orthogonal for the canonical scalar product on Hom(p, g).

Proof.

i) Let ω ∈ Hom(p, p), then

H1
Adω(Yi) =

n∑

j=1

ad(Yj)2ω(Yi) +
n∑

j=1

ad([Yi, Yj])ω(Yj)

is in p for all Yi.

ii) Similarly H1
Adω ∈ Hom(p, k) when ω ∈ Hom(p, k).

iii) If ζ ∈ Hom(p, p) and β ∈ Hom(p, k) then

(α,β) =
n∑

i=1

(
α(Yi),β(Yj)

)
g

= 0

since p and k are orthogonal.
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Consequently it suffices to study Q1
Ad on each space.

Remark 7.7. We shall leave aside the case Hom(p, k) which does not contain
any information. Furthermore Q1

Ad is positive on this space without any
restriction on the group (see [Rag]). Let us consider Hom(p, p). Any ω in
this space can be decomposed in

ω = ωS + ωA

where ωS is the symmetric part of the endomorphism ω and ωA the skew-
symmetric part.

Lemme 7.8. This decomposition is again stable by H1
Ad and the two sub-

spaces are orthogonal.

It is thus sufficient to study the two cases separately. Again we shall leave
aside the case when ω is skew-symmetric since Q1

Ad is positive on this space
without any restriction on G (see [Rag]).

Let ω ∈ Hom(p, p) be a symmetric endomorphism. We want to show that if
(H1

Adω,ω) = 0 then ω = 0. Let us recall that

H1
Ad = T 1

Ad(T
1
Ad)∗ + (T 1

Ad)∗T 1
Ad .

Thus if (H1
Adω,ω) = 0 then T 1

Adω = 0. Here

T 1
Adω(Yi, Yj) = ad(Yi)ω(Yj) − ad(Yj)ω(Yi) .

Since ω is symmetric, one can choose the basis to be constituted of eigen-
vectors for ω, i.e.

ω(Yi) = λiYi .

Now T 1
Adω = 0, implies that for all i and j

λj[Yi, Yj ] = λi[Yj, Yi]

showing that, if [Yi, Yj ] 8= 0, then λi = −λj. We shall use the following
lemma

Lemme 7.9. Let g be a non compact simple Lie algebra and g = k ⊕ p
a Cartan decomposition. Let {Y1, . . . , Yn} be a basis of p. Then for all
0 ≤ r ≤ n there exists r1, . . . , rk, with 1 ≤ ri ≤ n such that r1 = 1, rk = r
and [Yri , Yri+1 ] 8= 0 for all 1 ≤ i ≤ k − 1.
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It says that one can “reach” any Yr by a sequence of Yi’s such that two
successive Yi’s do not commute. Here the simplicity of G is essential.

This lemma implies that, for all 1 ≤ i ≤ n,

λi = ±λ1.

Let us study these eigenvalues and the corresponding eigenspaces. We let

E = {Y ∈ p | ω(Y ) = λ1Y }
F = {Y ∈ p | ω(Y ) = −λ1Y }

Then, since ω is symmetric

p = E
⊥⊕

F .

E is not reduced to {0} since it contains at least Y1, and F is not trivial
either thanks to the above lemma.

Now for Y, Y ′ ∈ E (resp. F ) one has [Y, Y ′] = 0 otherwise the eigenvalues
would have different signs.

If Z ∈ k, by symmetry of ad(Y ) we get that for all Y, Y ′ ∈ E (resp. F )

〈[Z, Y ], Y ′〉 = −〈Z, [Y, Y ′]〉 = 0

thus ad(Z)(E) ⊂ E⊥ = F (resp. ad(Z)(F ) ⊂ E). The endomorphism
ad(Z) ad(Z ′) then preserves E and F for Z,Z ′ ∈ k. We conclude that

ad([Z,Z ′])(E) ⊂
{

F since[Z,Z ′] ∈ k

E because of the above remark.

which leads to

ad([Z,Z ′])(E) = ad([Z,Z ′])(F ) = 0 =⇒ ad([Z,Z ′])∣∣p = 0

that is the action of ad(k) on p is abelian. On the other hand since G
is simple, this action is irreducible and faithful. Thus k is abelian by the
faithfulness and dim p = 1 or 2 by the irreducibility. Moreover this action
is skew-symmetric (i.e. ad(Z)) is skew-symmetric for all Z ∈ k). Thus
dim p = 2 that is, in a suitable basis, for all Z ∈ k

ad(Z) =
(

0 a
−a 0

)
, a ∈ R , a > 0 .
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The vector space {ad(Z) | Z ∈ k} is then 1-dimensional and again by faith-
fulness, dim k = 1. The Lie algebra g is described as follows: Let Z be a
generator of k and Y1 and Y2 a basis of p in which ad(Z) is written as above,
then one has

[X,Y1] = −aY2 , [X,Y2] = aY1 and [Y1, Y2] = bX .

Here b 8= 0 can be chosen positive (p generates g as a Lie algebra). Now by
setting X ′ = 1

aX and Y ′
i = 1√

ab
Yi we get the Lie algebra of SL2(R)!

Thus for ω 8= 0 , T 1
Ad(ω) = 0 if and only if g = s,(2, R) and ω is a symmetric

endomorphism with zero-trace (it has opposite eigenvalues). It is not diffi-
cult to check that indeed in the case of s,(2, R) such a ω gives Q1

ad(ω) = 0 .
The dimension of the kernel of H1

Ad is 1 in this case.

8 Extensions of this technique

This technique can be extended in various ways:

1. One can consider the non uniform case, then the Hodge theory works
if one knows the existence of L2-harmonic forms. This relies on the
study of the structure of the cusps. Here one more case has to be
excluded, this is the case when G = SL2(C), see [Ga].

2. This has been applied to the study of the rigidity of some hyperbolic
metrics with conical singularities on a 3-manifold (see [K-H]). Here
the problem reduces to the study of the Hodge theory with boundary.
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38402 St MARTIN D’HÈRES Cedex (France)
e-mail: G.Besson@fourier.ujf-grenoble.fr

27


