UMR 5582 - Laboratoire de mathématiques
Published on UMR 5582 - Laboratoire de mathématiques (https://www-fourier.univ-grenoble-alpes.fr)

Accueil > Dror Bar-Natan

Dror Bar-Natan [1]

Meta-Groups, Meta-Bicrossed-Products, and the Alexander Polynomial
星期五, 29 十一月, 2013 - 从 11:00 到 12:00
Résumé : 

I will define "meta-groups" and explain how one specific meta-group, which in itself is a "meta-bicrossed-product", gives rise to an "ultimate Alexander invariant" of tangles, that contains the Alexander polynomial (multivariable, if you wish), has extremely good composition properties, is evaluated in a topologically meaningful way, and is least-wasteful in a computational sense. If you believe in categorification, that’s a wonderful playground. http://www.math.toronto.edu/ drorbn... [2]

Institution de l'oratrice / orateur: 
Univ. Toronto / Univ. Genève
Thème de recherche : 
Topologie
Salle : 
4

Source URL: https://www-fourier.univ-grenoble-alpes.fr/?q=zh-hans/node/23487

链接
[1] https://www-fourier.univ-grenoble-alpes.fr/?q=zh-hans/node/23487
[2] http://www.math.toronto.edu/%7Edrorbn/Talks/Grenoble-1311/