Algebraic K-theory of smooth schemes is built out of blocks given by motivic cohomology, via a spectral sequence. Motivic cohomology groups, defined as hypercohomology groups of a motivic analogue of the singular chain complex, have a beautiful geometric presentation in terms of algebraic cycles, by higher Chow groups. For hermitian K-theory there is a similar spectral sequence, however in this case the spectral sequence has additional terms, given by the Milnor-Witt motivic cohomology of Calmès-Fasel. In this talk, we provide a geometric presentation of MW-motivic cohomology in the flavour of higher Chow groups. The main ingredient is our computation of Levine’s homotopy coniveau tower for “discrete” motivic spectra. This is joint work with Tom Bachmann.