Congruences for coefficients of rational functions
星期四, 11 五月, 2017 - 10:30
Résumé :
We discuss generalizations of the well-known congruences
u(mp^r) = u(mp^(r-1)) mod p^r of the Fibonacci sequence u(1)=1, u(2)=3,
u(3)=4, ... Here m,r are arbitrary positive integers and p is an arbitrary prime.
The generating function of the u(n) is (x+2x^2)/(1-x-x^2). It turns out
that similar congruences occur for coefficients of certain multivariable rational functions.
We explore this phenomenon. The ultimate goal will be to find cases where
congruences mod p^(2r) and p^(3r) hold.
Institution de l'orateur :
Mathematics Utrecht University the Netherlands
Thème de recherche :
Théorie des nombres
Salle :
Salle 4