We introduce a reversible Markovian coagulation-fragmentation process on the set of partitions of $\{1,...,L\}$ into disjoint intervals. Each interval can either split or merge with one of its two neighbors. The invariant measure can be seen as the Gibbs measure for a homogeneous pinning model \cite{cf:GBbook}. Depending on a parameter $\lambda$, the typical configuration can be either dominated by a single big interval (delocalized phase), or be composed of many intervals of order 1 (localized phase), or the interval length can have a power law distribution (critical regime). In the three cases, the time required to approach equilibrium (in total variation) scales very differently with $L$. In the localized phase, when the initial condition is a single interval of size $L$, the equilibration mechanism is due to the propagation of two fragmentation fronts which start from the two boundaries and proceed by power-law jumps.