UMR 5582 - Laboratoire de mathématiques
Published on UMR 5582 - Laboratoire de mathématiques (https://www-fourier.univ-grenoble-alpes.fr)

Accueil > Optimal transportation and Ricci curvature for metric measure spaces.

Optimal transportation and Ricci curvature for metric measure spaces. [1]

Jeudi, 23 Février, 2006 - 15:00
Prénom de l'orateur : 
Karl-Theodor
Nom de l'orateur : 
STURM
Résumé : 

We introduce and analyze generalized Ricci curvature bounds for
metric measure spaces $(M,d,m)$, based on convexity properties of
the relative entropy $Ent(. | m)$. For Riemannian manifolds,
$Curv(M,d,m)ge K$ if and only if $Ric_Mge K $ on $M$. For the
Wiener space, $Curv(M,d,m)=1$.

oindent One of the main results is that these lower curvature
bounds are stable under (e.g. measured Gromov-Hausdorff)
convergence.

medskip

oindent Moreover, we introduce a curvature-dimension condition
CD$(K,N)$ being more restrictive than the curvature bound
$Curv(M,d,m)ge K$.
For
Riemannian manifolds, CD$(K,N)$ is {equivalent} to $mbox{
m
Ric}_M(xi,xi)ge Kcdot |xi|^2$ and $mbox{
m dim}(M)le N$.

oindent Condition CD$(K,N)$ implies sharp version of the
Brunn-Minkowski inequality, of the Bishop-Gromov volume comparison
theorem and of the Bonnet-Myers theorem. Moreover, it allows to
construct canonical Dirichlet forms with {Gaussian upper and lower
bounds} for the corresponding heat kernels.

Institution de l'oratrice / orateur: 
Université de Bonn
Thème de recherche : 
Théorie spectrale et géométrie
Salle : 
04

Source URL: https://www-fourier.univ-grenoble-alpes.fr/?q=fr/content/optimal-transportation-and-ricci-curvature-metric-measure-spaces

Liens
[1] https://www-fourier.univ-grenoble-alpes.fr/?q=fr/content/optimal-transportation-and-ricci-curvature-metric-measure-spaces