UMR 5582 - Laboratoire de mathématiques
Published on UMR 5582 - Laboratoire de mathématiques (https://www-fourier.univ-grenoble-alpes.fr)

Accueil > Nicolas Broutin

Nicolas Broutin [1]

Universalité des limite d’échelles de graphes aléatoires
Mardi, 27 Janvier, 2015 - 13:45
Résumé : 
Je commencerai par expliquer dans quel sens les graphes aléatoires classiques de Erdos-Renyi (G(n,p)) ont, au voisinage du 
point critique d'apparition de la composante connexe géante, une limite d'échelle qui permet de calculer les asymptotiques 
des fonctionnelles des distances. La preuve de ce résultat repose très fortement sur des arguments bijectifs qui permettent
de retrouver la métrique associée aux graphes dans certaines marches aléatores décorées.

Comme pour beaucoup de problèmes, en particulier issus de la physique statistique, on s'attend à ce que les propriétés
limites ``critiques'' soit assez robustes vis-à-vis de modifications du modèle en jeu. On pourrait bien sûr le montrer au cas par cas, mais la 
complexité et la variété des modèles rend souvent ce genre d'approche difficile, et dans tous les cas, particulièrement laborieuse.
Notamment, les bijections utilisées pour traiter le cas G(n,p) sont tout à fait spéfiques à ce modèle précis.

Je decrirai précisément la construction des objets limites, ainsi qu'une méthode générale qui permet de montrer qu'ils 
sont effectivement universels : les graphes inhomogènes, les graphes aléatoires à distribution de degrés fixée, et les 
graphes issus de processus d'Achlioptas ont la même limite, à certaines constantes près qui dépendent du modèle. 

(Travail en collaboration avec S. Bhamidi, S. Sen et X. Wang.)
Institution de l'oratrice / orateur: 
INRIA Rocquencourt
Thème de recherche : 
Probabilités
Salle : 
04

Source URL: https://www-fourier.univ-grenoble-alpes.fr/?q=fr/content/nicolas-broutin

Liens
[1] https://www-fourier.univ-grenoble-alpes.fr/?q=fr/content/nicolas-broutin