UMR 5582 - Laboratoire de mathématiques
Published on UMR 5582 - Laboratoire de mathématiques (https://www-fourier.univ-grenoble-alpes.fr)

Accueil > Michael Hutchings

Michael Hutchings [1]

Symplectic embeddings of cubes
Jeudi, 30 Mars, 2017 - 16:30 à 17:30
Résumé: 

A symplectic embedding of one domain in R^(2n) into another is a smooth embedding which preserves the standard symplectic form. It is a fundamental problem to determine when one domain can be symplectically embedded into another. Even for simple domains such as ellipsoids and polydisks, this is a difficult question, and the known answers often involve subtle combinatorics. In general, one can obstruct the existence of symplectic embeddings using various “symplectic capacities”. We introduce a new series of symplectic capacities based on positive S^1-equivariant symplectic homology. These capacities can be computed combinatorially for “toric domains”, and lead to some sharp obstructions to symplectic embeddings in which the domain is a cube. Joint work with Jean Gutt.

Institution: 
University of California, Berkeley
Contact mail: 
emmanuel.russ@univ-grenoble-alpes.fr [2]
Salle: 
Salle 4

Source URL: https://www-fourier.univ-grenoble-alpes.fr/?q=fr/content/michael-hutchings

Liens
[1] https://www-fourier.univ-grenoble-alpes.fr/?q=fr/content/michael-hutchings
[2] mailto:emmanuel.russ@univ-grenoble-alpes.fr