100, rue des maths 38610 Gières / GPS : 45.193055, 5.772076 / Directeur : Louis Funar

On the slice-ribbon conjecture for Montesinos knots

Vendredi, 6 Mai, 2011 - 16:00
Prénom de l'orateur : 
Ana
Nom de l'orateur : 
Lecuona
Résumé : 

The slice-ribbon conjecture states that a knot in $S^3=partial
B^4$ is the boundary of an embedded disc in $B^4$ if and only if it bounds a disc in $S^3$ which has only ribbon singularities. In this seminar we will prove the conjecture for a family of Montesinos knots. The proof is based on Donaldson's diagonalization theorem for definite four manifolds.

Institution de l'orateur : 
ENS Lyon
Thème de recherche : 
Topologie
Salle : 
04
logo uga logo cnrs