100, rue des maths 38610 Gières / GPS : 45.193055, 5.772076 / Directeur : Louis Funar

Thibault Lefeuvre

Le spectre marqué des longueurs des variétés à courbure négative
Lundi, 4 Mars, 2019 - 13:30
Résumé : 

Burns et Katok ont conjecturé en 1985 que le spectre marqué des longueurs d'une variété riemannienne à courbure sectionnelle strictement négative — la suite des longueurs des géodésiques périodiques, repérées par leur classe d'homotopie libre — déterminait la métrique à isométrie près. Croke et Otal ont démontré indépendamment la conjecture pour les surfaces en 1990 mais, depuis, la question est restée largement ouverte en dimension supérieure. Je présenterai une preuve d'une version locale de la conjecture, valable en dimension quelconque et, sous certaines hypothèses, dans le cadre plus général des variétés à flot géodésique hyperbolique (aussi appelé Anosov dans la littérature). Il s'agit d'un travail en collaboration avec Colin Guillarmou.

Institution de l'orateur : 
Orsay
Thème de recherche : 
Physique mathématique
Salle : 
Salle 1, Tour IRMA
logo uga logo cnrs