Mardi, 15 Janvier, 2013 - 15:00
Prénom de l'orateur :
Uros
Nom de l'orateur :
KUZMAN
Résumé :
We prove the existence of a maximal plurisubharmonic minorant of a given upper
semicontinous function f on an almost complex manifold (M, J) of complex dimension
two. Such maximal function is obtained as the pointwise minimum of averages of f
over the boundaries of all J-complex discs in M centered at the given point. This result
is an almost complex analogue of classical results of Poletsky, Larusson and Sigurdsson,
Rosay and others in the case when the almost complex structure J is integrable.
Institution de l'orateur :
IMFM Ljubljana, Slovenia, et IF
Thème de recherche :
Analyse
Salle :
04