100, rue des maths 38610 Gières / GPS : 45.193055, 5.772076 / Directeur : Louis Funar

Louis-Hadrien Robert

Théorie de Kronheimer–Mrowka et évaluation de mousses.
Vendredi, 16 Novembre, 2018 - 10:30
Résumé : 

Kronheimer et Mrowka utilisent la théorie de jauge SO(3) pour associer à tout graphe K plongé dans une 3-variété un espace vectoriel J♯(K). Grâce aux travaux de Gabai sur les variétées suturées, ils montrent que si K est dans ℝ²⊂ ℝ³ et sans pont alors J♯(K) est non trivial. Ils conjecturent que dans ce cas la dimension de J♯(K) est égale au nombre de coloriage de Tait du graphe K. Cette conjecture implique le théorème des quatre couleurs. Dans cet exposé, j'expliquerai comment l'évaluation des mousses permet de construire un analogue combinatoire à J♯(K). (En commun avec M. Khovanov)

Thème de recherche : 
Topologie
logo uga logo cnrs