Explicit Small Height Bound for $\mathds{Q} (E_\text{tor})$
Jeudi, 5 Avril, 2018 - 10:30
Résumé :
Let $E$ be an elliptic curve defined over $\mathbb{Q}$. We will show that there exists an explicit constant $C$ which is only dependent on the conductor and the $j-$invariant of $E$ such that the absolute logarithmic Weil height of an $\alpha \in \mathbb{Q} (E_{tor})^
is always greater than $C$ where $E_\text{tor}$ denotes all the torsion points of $E$ and $\mu_\infty$ are the roots of unity.
Institution de l'orateur :
Basel
Thème de recherche :
Théorie des nombres
Salle :
Salle 4