100, rue des maths 38610 Gières / GPS : 45.193055, 5.772076 / Directeur : Louis Funar

Juan Viu Sos

Configurations de points et topologie des arrangements de droites réelles.
Lundi, 28 Novembre, 2016 - 10:30
Résumé : 

Un arrangement de droites est une collection finie de droites dans le plan projective complexe, et on s’intéresse à la la relation entre la topologie et la combinatoire (c.-à-d. les relations d'incidence) de ces objets. A l'heure actuelle, on ne connaît fondamentalement que trois exemples de paires d'arrangements ayant la même combinatoire mais des topologies différentes (appelées paires de Zariski), dont une seule admets des équations réelles.

Dans cet exposé, nous présentons une méthode de distinction de paires de Zariski admettant des équations réelles, basée sur le dénombrement de points dans une région précise du plan projectif réel au sein de la configuration dual de l'arrangement. Nous illustrerons cette méthode avec la construction d'une nouvelle paire de Zariski composée de 13 droites.

Travail en collaboration avec B. Guerville-Ballé (Post-doc, Tokyo Gakugei University).

Institution de l'orateur : 
IF
Thème de recherche : 
Algèbre et géométries
Salle : 
4
logo uga logo cnrs