UMR 5582 - Laboratoire de mathématiques
Published on UMR 5582 - Laboratoire de mathématiques (https://www-fourier.univ-grenoble-alpes.fr)

Accueil > Algebraic cycles on a generic abelian 3-fold

Algebraic cycles on a generic abelian 3-fold [1]

Thursday, 22 April, 2010 - 12:00
Prénom de l'orateur : 
Vasudevan
Nom de l'orateur : 
SRINIVAS
Résumé : 

This is a report on joint work with A. Rosenschon. We show that on such a
3-fold, for all but a finite number of positive integers $n$, the Chow group
of curves with mod $n$ coefficients is not finitely generated. This is done in
two steps: first we use a variant of the technique of Bloch and Esnault to
show that the Ceresa cycle is not $n$-divisible for almost all $n$. Then we
use modular correspondences, following Nori, to show infinite generation.

Thème de recherche : 
Algèbre et géométries
Salle : 
04

Source URL: https://www-fourier.univ-grenoble-alpes.fr/?q=en/content/algebraic-cycles-generic-abelian-3-fold

Links
[1] https://www-fourier.univ-grenoble-alpes.fr/?q=en/content/algebraic-cycles-generic-abelian-3-fold