Soit $(k,d)$ un corps diff\'erentiel de caractéristique $p>0$. Soit $C$ le corps des constantes de $d$; on suppose que l'extension $k/C$ est finie (c'est toujours le cas si $k$ est de type fini sur son sous-corps premier). On d\'emontre que la cat\'egorie des modules diff\'erentiels pour $(k,d)$ est \'equivalente \`a celle des modules sur une alg\`ebre d'Azumaya, de centre l'anneau $k[X]$. On donne une description simple de cette alg\`ebre par g\'en\'erateurs et relations; g\'en\'eralisant celle d'une alg\`ebre cyclique. Ce r\'esultat \'etend un travail de Van der Put (pour la d\'erivation $d/dx$). Comme corollaire amusant, on obtient une CNS \'el\'ementaire pour qu'un module diff\'erentiel en caract\'eristique positive soit cyclique, chose qui demeurait jusqu'\`a pr\'esent myst\'erieuse \`a la connaissance de l'orateur.